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Abstract

We propose a novel single event fault/error model based
on Logic Induced Fault Encoded Directed Acyclic Graph
(LIFE-DAG) structured probabilistic Bayesian networks,
capturing all spatial dependencies induced by the circuit
logic. The detection probabilities also act as a measure
of soft error susceptibility (an increased threat in nano-
domain logic block) that depends on the structural corre-
lations of the internal nodes and also on input patterns.
Based on this model, we show that we are able to estimate
detection probabilities of single-event faults/errors on IS-
CAS’85 benchmarks with high accuracy (zero-error), lin-
ear space requirement complexity, and with an order of
magnitude (�5 times) reduction in estimation time over
corresponding BDD based approaches.

1 Introduction

Fault Detection Probability (FDP) is an important testa-
bility measure that is useful for not only generating test
patterns, but also to vet designs for random-input testa-
bility. Traditionally, FDP has been used for test point
insertions, however, it can also be used as random single-
event-transient (SET) sensitivity measure, which is im-
portant for characterization of impact of soft errors in
logic blocks. Designers can selectively apply corrective
measures to nodes with higher FDP than the ones with
low FDP. Due to shrinking geometry, low supply volt-
age and high frequency, soft errors or single-event-upsets
in logic circuits would be one of the hard challenges in
nano domain. The major cause of soft error is the natural
cosmic radiation in the atmosphere, which is dominantly
neutron radiation. The factors that influences SET are the
rate of high-energy neutron hits on a node, input pattern
dependence on whether the SET at the node can reach an
output latch and the probability of the latch capturing the
transitions [1]. In this work, we focus on the probabilistic
modeling of SET that allows an SET generated at a node
captured by a latch and measure it by the fault detection

probability of that node. Existing estimation techniques
for SET [2, 3] rely on simulation and hence are model-
ing the pattern dependence of SET by estimation methods
that are in itself pattern-sensitive. We use a probabilistic
zero-error model for detection probability of errors that
can be uniformly applied to permanent stuck-at faults as
well as soft transient errors predominant in nano-domain.
Note that the probabilistic modeling does not require any
assumption in the input patterns and can be extended to
biased target workload patterns.

Fault Detection Probability (FDP) of a stuck-at fault
� � � , where� denotes the set of all faults, in a com-
binational circuit,�, is the probability that� is detected
by a randomly chosen equally-likely input patterns. Sig-
nal probabilities, as well as FDP, are affected by spatial
correlations induced by re-convergence. Existing algo-
rithms for computation of exactfault detection probabil-
ities, mostly based on Binary Decision Diagrams [4] do
not scale well, in terms of time and space requirements,
with circuit size. They usually require various heuristic-
based approximations of the pure model. All the model-
ing issues pertaining to FDP for single stuck-at faults are
relevant for single-event transient soft errors also.

None of the existing algorithms for estimation of FDP,
(as proposed by Seth et al. [12], Wunderlich [14], etc.)
use Bayesian networks as data structure. These works
were done in mid 80’s. Bayesian network was developed
in 1988 as a tool for probabilistic reasoning and it has
been applied in artificial intelligence and image analysis.
Recently, in [7], switching probabilities in VLSI circuits
have been modeled using a Bayesian Network, however
their use in estimation of error detection probabilities in
digital logic is new.

We model single stuck-at-faults in large combinational
circuits using a Logic Induced Fault Encoded Direct
Acyclic Graph (LIFE-DAG) graph structure. We prove
that such a DAG is a Bayesian Network. Bayesian Net-
works are graphical probabilistic models representing the
joint probability function over a set of random variables.



A Bayesian Network is a directed acyclic graphical struc-
ture (DAG), whose nodes describe random variables and
node to node arcs denote direct causal dependencies. A
directed link captures the direct cause and effect relation-
ship between two random variables. Each node is quan-
tified by the conditional probability of the states of that
node given the states of its parents, or its direct causes.
The attractive feature of this graphical representation of
the joint probability distribution is that not only does it
make conditional dependency relationships among the
nodes explicit but it also serves as a computational mech-
anism for efficient probabilistic updating. Probabilistic
Bayesian Networks can be used not only to infer effects
due to known causes (predictive problem) but also to in-
fer possible causes for known effects (the backtracking
or diagnosis problem). The diagnostic aspects of BNs
makes it suitable for further use in test-pattern generators.
To infer using these built BN models, we use stochastic
inference schemes based on importance sampling. An
importance sampling algorithm generates sample instan-
tiations of the wholeDAG network, i.e. for all lines in
our case. These samples are then used to form the final
estimates. At each node, this sampling is done according
to an importance function that is chosen to be close to the
actual joint probability function. The stochastic sampling
strategy works because in a Bayesian Network the prod-
uct of the conditional probability functions for all nodes
is the optimal importance function. Because of this opti-
mality, the demand on the number of samples is low.

We use the stochastic inference scheme, Probabilistic
Logic Sampling (PLS) [6]. In Probabilistic Logic Sam-
pling, a full instantiation of the probabilistic network is
collected based on an simplified importance function that
does not account for any evidence that may be present.
The sampling is stopped when the probabilities of the
nodes converges. It is worth pointing out that unlike
simulative approaches that sample the inputs, importance
sampling based procedures generate instantiations for the
whole network, not just for the inputs. These samples can
be looked upon as Markov Chain sampling of the circuit
state space.

We advance the state of the art in fault analysis in terms
of space and time requirements and in providing an uni-
form model. The worst case space requirement for the
Bayesian network approach is linear in the number of
nodes, specifically, it is ��������� �� where � is the
number of nodes, ���� is the maximum fan-in and �� �
is the cardinality of the fault set. The time complexity,
based on the stochastic inference scheme, is also linear
in �, specifically, it is ����� ���, where � is the num-
ber of samples, which we have found to be in the order of
1000’s for circuits with 10,000’s of signals and 50,000’s
nodes. This is unlike traditional Binary Decision Di-
agram (BDD) based approaches, which have large de-

mands on space and time, necessitating time-consuming
decompositions and pre-processing to the pure BDD ap-
proach. Moreover, our approach works for all the circuits
uniformly and requires no preprocessing judgments, such
as establishing the proper ordering of variables. BDD
based approaches are unsuitable for certain circuits, such
as c6288, which a fairly common data path block (16 bit
multiplier).

2 Related Work

Due to the high computational complexity involved in
computing signal and fault detection probabilities, sev-
eral approximation strategies have been developed in the
past [10, 14, 16, 17]. The cutting algorithm proposed
in [17], computes lower bounds of fault detection proba-
bilities by propagating signal probability values. How-
ever, this algorithm delivers loose bounds, which may
lead to unacceptable test lengths. Also, computing com-
plexity of this algorithm is �����. Lower bounds of fault
detection probability were also derived from controllabil-
ity and observability measures [16]. This latter method
gave poor lower bounds due to the fact that they can-
not account for the component of fault detection prob-
ability due to multiple path sensitizations. The above
mentioned methods are satisfactory only for faults that
have single sensitizing path for fault propagation to an
output and hence will not give good results for highly re-
convergent fan-out circuits that have multiple path sen-
sitizations. PREDICT [12] is a probabilistic graphical
method to estimate circuit testability by computing node
controlabilities and observabilities using shannon’s ex-
pansion. The time complexity of exact analysis by this
method is exponential in the circuit size. PROTEST [14],
which is a tool for probabilistic testability analysis, calcu-
lates fault detection probabilities and optimum input sig-
nal probabilities for random test pattern, by modeling the
signal flow. Fault detection probabilities, which are com-
puted from signal probability values, are underestimated
due to the fact that the algorithm does not take into ac-
count multiple path sensitization. Another method (CA-
COP) [10] is a compromise between the full range cutting
algorithm and the linear time testability analysis, like the
controllability and observability program. However, this
method does not give exact fault detection probability.

The algorithm proposed in [15] uses supergate decom-
position to compute exact fault detection probabilities of
large circuits. PLATO (Probabilistic Logic Analyzing
Tool) [4] is another tool to compute exact fault detection
probabilities using reduced ordered binary decision dia-
grams (ROBDD)s. Space requirement for constructing
the ROBDD of large circuits is very large. Shannon de-
composition and divide-and-conquer strategies are used
to reduce large circuits into small sub-circuits. Comput-
ing complexity of these decomposition methods are quite
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high. Another BDD based algorithm is proposed in [13]
to compute exact random pattern detection probabilities.
However, this algorithm could not be used for large cir-
cuits because of large space requirements.

In this paper, we propose a novel stuck-at-fault model to
compute accurate detection probabilities using Bayesian
networks as data structure. Bayesian networks pushes
the state-of-the-art significantly in terms of reduced space
and time requirements. Using Bayesian networks, we
can calculate the optimum input signal probabilities of
the random test pattern for a desired fault coverage. We
compute the exact fault detection probabilities of a num-
ber of ISCAS benchmark circuits.

3 Bayesian Network

A Bayseian network is a Directed Acyclic Graph (DAG)
in which a set of random variables make up the nodes of
the network and a set of directed links connect pairs of
nodes. The links represent causal dependencies among
the variables. Each node has a conditional probability
table (CPT) except the root nodes. Each root node has
a priopr probability table. The CPT quantifies the effect
the parents have on the node. Bayesian netwoks compute
the joint probability distribution over all the varibles in
the network, based on the conditional probabilities and
the observed evidence about a set of nodes.

Fig. 1 illustrates a small Bayesian network. The exact
joint probability distribution over the variables in this net-
work is given by Eq. 1.

� ���� ��� ��� ��� ��� ��� � � ������� ��� ��� ��� ���
� ������� ��� ��� ���� ������� ��� ���� ����� ����� ����	

(1)
In this BN, the random variable, 
� is independent of

�, 
� and 
� given the states of its parent nodes, 
�

and 
�. This conditional independencecan be expressed
by Eq. 2.

� ������� ��� ��� ��� ��� � � ������� ��� (2)

Mathematically, this is
denoted as ��
�� �
�� 
��� �
�� 
�� 
���. In general,
in a Bayesian network, given the parents of a node �, �
and its descendents are independent of all other nodes in
the network. Let � be the set of all random variables in
a network. A Markov blanket of element 
� � � is
a subset 
 of � for which ��
�� 
� � � 
 � 
�� and

� �� 
. A set is called a Markov boundary, �� of 
�

if it is a minimal Markov blanket of 
�, i.e. none of its
proper subsets satisfy the triplet independence relation.
In the above example, the set �
�� 
�� is the Markov
bounay of the node 
�.
Using the conditional independencies in Eq. 2, we can
arrive at the minimal factored representation shown in

X1 X2 X3

X5

X6

4X

Figure 1. A small bayesian network

Eq. 3.

� ���� ��� ��� ��� ��� ��� � � ������� ���� ������� ���
� ������� ���� ����� ����� ����	

(3)

In general, if �� denotes some value of the variable 
�

and ������ denotes some set of values for 
�’s parents,
the minimal factored representation of exact joint prob-
ability distribution over � random variables can be ex-
pressed as in Eq. 4.

� �
� �

��

���

� ���������� (4)

4 LIFE-BN: Single Event Error Model

We first discuss the basics of fault/error detection proba-
bilities for random-pattern testability analysis. Note that
the probabilistic modeling does not require any assump-
tion in the input patterns and can be extended to biased
target workload patterns. Next, we sketch the concept of
Logic-induced-Fault-Encoded (LIFE) Directed Acyclic
Graph that represents the underlying fault/error model. In
this probabilistic framework, we use partial duplication
of the original circuit for the fault detection logic. Only
the sensitization paths from the fault/error are duplicated.
A set of comparator nodes compares the error-free and
error-sensitized logic. A logic one in such comparator
outputs indicates the occurrence of an error. Error detec-
tion probability of faults/errors that affect multiple out-
puts, is the maximum probability of the sensitized com-
parator outputs. These detection probabilities depend on
the circuit structural dependence, the inputs and the de-
pendencies amongst the inputs. In this work, however,
we assume random inputs for validation and experimen-
tation of our model.

We follow our discussion by proving that such a Logic-
induced-Fault-Encoded (LIFE) Directed Acyclic graph is
indeed the minimal I-map of the fault model for the �
��� � and, hence, is a Bayesian Network.
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Definition: The Logic Induced Fault Encoded Direct
Acyclic Graph (LIFE-DAG) corresponding to the fault
detection model� ��� � can be constructed as follows:

� Nodes of LIFE-DAG are random variables �

�

��,
which are of three types

1. �
�: Set of nodes representing signals in the
circuit �

2. �
��� � ��: where 
� is the set of all the
descendant nodes of fault node � including the
fault node � . Note that these nodes are in ad-
dition to their counterparts in fault-free 
 .

3. �
���� � ������� ����: Set of all the de-
tection nodes (comparator outputs). Cardinal-
ity of this set is determined by the number of
testable outputs for each faults in the fault set.

� Edges of LIFE-DAG are directed and denoted as or-
dered pair ��� ��, denoting � causes �. The edge set
can be classified as follows:

1. ����	���: Edges in � such that both vertices
� and � are in 
 . These edges are part of the
original circuit �.

2. ����	
� ��� � ��: Edges such that child node
� is in fault reachable extension and the par-
ent � is in the original circuit. These edges are
called bridge edges. Note that this edge indi-
cates that there must be at least another parent
of � that is in 
� .

3. ���
� 	
� ��� � ��: Edges where both � and
� are in fault reachable extension 
� . These
edges indicate that both � and � are descen-
dants of � .

4. ��
� 	������� � ��: Edges where � is the out-
put node in 
� and � is the detection node.
These edges are quantified by an xor gate.
Moreover, the detection node � must have an-
other parent in 
 that is the fault free circuit.

5. ����	�����: Edges where � is the output node
in 
 and � is the detection node. These edges
are quantified by an xor gate.

We illustrate the ideas using a two NAND node circuit
with three input lines and two output lines, ���� �

���	������� � ������
�. Figure 2 shows the fault detec-
tion logic corresponding to 16@1 and 19@1. Block �
is the combinational circuit under consideration. Block

���� represents all the descendant nodes of the fault
node 16 (example: ��

�

) which are different from their
counterpart (��) in �. Block 
�
�� represents the same
for ���� fault. The detection set contains the comparator
nodes.

Figure 2(b) is the LIFE-DAG model of the above fault de-
tection logic. Nodes ��	� �
� ��� �	� ��� ��� ��� belong

(a)
(b)
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16@11910

20
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Figure 2. (a) An illustrative fault detection
logic (b) LIFE-DAG model of (a)

to the set �
�. Nodes ��	� �
��� �	
�

� ��
�

� ��
�

� ��
�

� be-
long to the set �
��� where f1 is 16@1 fault, and nodes
��� �� �� �� �
 �� 	 	 	� belong to the set �
���.

Similarly, in Figure 2(b), we have edge �����	����, which
is an element of the edge set ����	��� where both
�
 ��� �� are in �
�. The edge �����	����� is an el-
ement of the edge set ����	
������ where �� � �
�

and ��� � �
�
���. The edge between nodes
���� ��� ���, ����
��	����� is an element of the edge
set ���
����	
������, and the edge �����	�� �
 ��� is an
element of the edge set ����	����� where �� � �
�
and �� �� � � �
�	�.

5 Bayesian Inference

We explore the stochastic sampling algorithm, namely
probabilistic Logic Sampling (PLS). These method have
been proven to converge to the correct probability esti-
mates [6], without the added baggage of high space com-
plexity.

Probabilistic Logic Sampling (PLS): Probabilistic logic
sampling is the earliest and the simplest stochastic sam-
pling algorithms proposed for Bayesian Networks [6].
Probabilities are inferred by a complete set of samples or
instantiations that are generated for each node in the net-
work according to local conditional probabilities stored
at each node. The advantages of this inference are that:
(1) its complexity scales linearly with network size, (2)
it is an any-time algorithm, providing adequate accuracy-
time trade-off, and (3) the samples are not based on inputs
and the approach is input pattern insensitive. The salient
aspects of the algorithm are as follows.

1. Each sampling iteration stochastically instantiates
all the nodes, guided by the link structure, to create
a network instantiation.
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2. At each node, ��, generate a random sample
of its state based on the conditional probability,
� �����������, where ������ represent the states
of the parent nodes. This is the local, importance
sampling function.

3. The probability of all the query nodes are esti-
mated by the relative frequencies of the states in the
stochastic sampling trace.

4. If states of some of the nodes are known (evidence),
such as in diagnostic backtracking, network instan-
tiations that are incompatible with the evidence set
are disregarded.

5. Repeat steps 1, 2, 3 and 4, until the probabilities
converge.

The above scheme is efficient for predictive inference,
when there is no evidence for any node, but is not efficient
for diagnostic reasoning due to the need to generate, but
disregard samples that do not satisfy the given evidence.
It would be more efficient not to generate such samples.
We discuss such a method next.

Time and Space Complexity: The space requirement of
the Bayesian network representation is determined by the
space required to store the conditional probability tables
at each node. For a node with �� parents, the size of the
table is ���
�. The number of parents of a node is equal
to the fan-in at the node. In the LIFE-BN model we break
all fan-ins greater than 2 into a logically equivalent, hier-
archical structure of 2 fan-in gates. For nodes with fan-in
� , we would need 
���� extra Bayesian network nodes,
each requiring only �� sized conditional probability ta-
ble. For the worst case, let all nodes in the original circuit
have the maximum fan-in, ����. Then the total number
of nodes in the LIFE-BN structure for each fault model is
�� �������. Thus, the worst case space requirement is
linear, i.e. ��������� �� where � is the number of nodes,
���� is the maximum fan-in, and �� � is the cardinality of
the fault set.

The time complexity, based on the stochastic inference
scheme, is also linear in �, specifically, it is ����� ���,
where � is the number of samples, which, from our ex-
perience with tested circuits, is in the order of 1000’s for
circuits with 10,000 of signals and 50,000 nodes in the
fault detecting logic.

6 Experimental Results

We demonstrate the ideas using ISCAS benchmark cir-
cuits. The logical relationship between the inputs and the
output of a gate determines the conditional probability of
a child node, given the states of its parents, in the LIFE-
BN. Gates with more than two inputs are reduced to
two-input gates by introducing additional dummy nodes,
without changing the logic structure and accuracy.
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Figure 3. Detection probability as SET sen-
sitivity for different nodes in c880.

First, we determine the hard faults using �	�
 random
input vectors [4]. Faults that are not detected by these
vectors are hard faults. Accurate detection probabilities
are needed for these hard faults. The probabilistic mod-
eling however works uniformly for all the single-event
faults/errors in the fault set. We performed an in-house
logic simulation with �		� 			 random vectors to detect
the exact fault detection probability of all the hard faults.
We use these probabilities as ground truth. We performed
experiments using Probabilistic Logic Sampling. This
sampling scheme is simple and time-efficient.

The results of detection probabilities computed by
PLS [6] for 1000 samples and 3000 samples are shown in
Table 1. In this table, �
 is the accuracy of modeling in
terms of average error in FDP over all the non-redundant
hard faults compared to simulation results. � ��� is the
total elapsed time, including memory and I/O access.
This time is obtained by the ftime command in the WIN-
DOWS environment on a Pentium-4 2.0 GHz PC.. We
report the �
 and � ��� for 1000 samples in columns 2
and 3, respectively, and the �
 and � ��� for 3000 sam-
ples in columns 4 and 5, respectively. We partitioned the
faults in circuits c3540, c6288 and c7552 into three sub-
sets and determined the detection probabilities in each set
by parallelly running the circuits for all the fault sets.

Figure 3 shows the FDP, which can also be used to char-
acterize single-event-transient (SET) error sensitivity, for
the nodes in c880. Note that some nodes that have
high detection probabilities which should have been cap-
tured by the initial simulation, however was undetected.
Hence, characterization based on simulation suffers from
pattern-dependence of the simulative methods.

In Table 2, we compare LIFE-BN fault modeling with the
performance of approaches based on the Binary Decision
Diagram (BDD) model, as reported by Krieger et al. [4]
for these same circuits. They reported results using four
type of fault partitioning. We compare our time (column
4) with the time taken by their two best methods, namely
and PSG (column 2) and Supergate SG (column 3). In
column 5, we report the ratio between the minimum time
taken by the BDD based method and the time taken by
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Table 1. Fault detection probability estima-
tion errors and time for 1000 samples and
3000 samples.

Bayesian Networks (PLS)
1000 samples 3000 samples

�� T(s) �� T(s)
c432 0.00032 0.24 0.00039 1.26
c499 0.00131 1.00 0.00094 3.48
c880 0.00070 2.00 0.00051 6.58

c1355 0.00093 3.00 0.00083 8.50
c1908 0.00079 5.00 0.00048 13.60
c2670 0.00029 28.00 0.00026 52.12
c3540 0.00215 34.00 0.00163 64.69
c5315 0.00036 12.00 0.00031 27.00
c6288 0.00929 65.00 0.00874 109.87
c7552 0.00069 37.24 0.00081 69.14

our Bayesian network based approach. The average im-
provement seems to be 83 times. However, it is not fair
to directly compare the times since the times reported
by Krieger et al. is based on a early 90’s computer not
specified exactly in the paper, but probably � 125 MHz,
whereas ours is a 2.0GHz computer. Also, the time re-
ported by Krieger et al. is just the CPU time, whereas
ours include CPU, I/O, and memory access. Consider-
ing all these factors, even if we assume a �
 times speed
“handicap” the LIFE-BN with PLS inference scheme ap-
pears to be 5 times more efficient than a BDD based one.
We provide this scaled time performance ratio (Actual
Ratio/16) in column 6 of Table 2.

We present a non-simulative probabilistic method for es-
timating fault/error detection probability for testability
and soft error sensitivity analysis. The simulation method
we used to obtain the ground truth is pattern-sensitive
whereas our model is pattern-insensitive and time effi-
cient. The estimated probabilities are found to be almost
error-free. We are currently experimenting Bayesian Net-
works to backtrack probabilistically for ATGP and ex-
ploring soft error detectability measures.
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