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Abstract— The Quantum-dot Cellular Automata (QCA) model
offers a novel nano-domain computing architecture by mapping
the intended logic onto the lowest energy configuration of a
collection of QCA cells, with two possible ground states for each
cell. A four phased clocking is used to keep the computations
at the ground state throughout the circuit. Computing errors
in QCA circuits can arise due to the failure of the clocking
scheme to switch portions of the circuit to its new ground state
with change in input. To study these switching errors we need
to consider low-energy state configurations of QCA circuits.
However, current QCA simulators compute just the ground state
configuration of a QCA arrangement. In this paper, we offer
an efficient method, based on graphical probabilistic models, to
compute the N-lowest energy modes of a clocked QCA circuit.
The overall low-energy, excited, spectrum of multiple clocking
zones is constructed by concatenating the excited spectra of the
individual clocking zones. We demonstrate the use of this error
model by comparing different designs of wire crossings.

I. INTRODUCTION

In quantum-dot cellular automata (QCA) [1] architecture
the elementary unit of computation is a cell consisting of
two electrons that can exist in four possible quantum dots.
There are two possible ground state (minimum energy) con-
figurations for each cell, corresponding to the two possible
diagonal occupancies (see Fig. 1). These two states are used
to represent the logic states 0 and 1. While there is quantum
tunneling between dots in the same cell, there is no quantum
tunneling between neighboring cells. However, neighboring
cells effect each other by modifying the potential energies
through Coulombic interactions, which in turn effect the
ground state configuration of a cell arrangement. The kink
energy between two cells is defined to be the difference in
energy if the cells have opposite states (or polarizations) and
the energy if the cells have same states (or polarizations).
Thus, a linear arrangement of cells has two ground state
configurations, without any kinks, and can act as a wire (see
Fig. 1). Another basic logic element is the 3-input majority
gate that can be constructed by arranging the cells as shown
in Fig. 1. Logic circuits can be built by mapping the intended
logic onto the ground state configuration.

Initial criticisms about the difficulty of converging to the
ground state has been solved by using the concept of a four
phased adiabatic clocking. In such designs, the overall circuit
is divided into zones, with each zone driven by one of the
four clocks. The clocks are phase shifted versions of each
other. The clocking scheme controls the flow of information
in a QCA circuit by driving each cell through depolarized state,
latching phase, and hold phase, and then back to a depolarized

0 1

0

1

1

1

Individual QCA Cell

QCA Wire Majority gate

Output

Full polarized states

Unpolarized

state

Energy of

Energy of

=  Kink Energy

minus

Fig. 1. QCA basics and the traditional use of QCAs for logic computing. Each
cell exists in a combination of two polarized states. The kink energy between
two cells is defined to be the difference in energy if the cells have opposite
states and the energy if the cells have same states. A linear arrangement of
cells has two ground state configurations and can act as a wire. Majority logic
is natural to QCA and is the basic gate for QCA circuits.

state. A depolarized cell state does not effect the surrounding
cells. The clock phases of two consecutive zones are staggered
so that the cells in one zone can “drive” the cells in the other
zone. The adiabatic aspect of the clocking seeks to keep the
circuit at ground state. Since there is no flow of electrons
involved, there is no need for interconnects, and it has potential
for extremely low-power computing.

Apart from fabrication related defects and hard faults [2],
there are four kinds of soft errors in QCA operations: decay
errors, dynamic errors, background charge fluctuations, and
switching (or thermal) errors. There were analyzed and exper-
imentally quantified for metal-dot QCAs in [3] and expected
to be also present for molecular QCAs. Decay error occurs due
to the failure of retaining the state of a cell, however, the time
constants of such effects is larger than the GHz operating point
of QCA clocks. Dynamic errors can occur when the clock
frequencies approach the time constants for tunneling events.
Thus, this would be a problem only for ultra high frequencies
(>> 1 GHz). Random background charge drifts in the order of
minutes could be a problems, but there is possibility that new
fabrication methods can control it. By far, the most dominant
form of errors in QCA devices are expected to be switching
or thermal errors. Within each clocking zone it is necessary
that the cells stay in the ground state. This can be achieved
by using adiabatic clocking so that states are not changed
suddenly. However in practice, imperfect adiabatic clocking
and increased temperatures can results in error conditions
when the cells in a zone can settle down to a excited states.
At temperature T , the probability for these kinds of thermally
induced errors is given by [3]: pth ∝ exp(−∆/kT ), where k
is the Boltzman constant and ∆ is the energy gap between
the ground state and the next excited state. Thus, to analyze
these switching errors in QCA circuits, we need to be able
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to reason about near ground states in each clocking zone.
However, current QCA simulators (the best available is [4])
cannot compute such states. The only work that computes the
non-ground state is [5], but it computes just one lowest energy
state configuration that causes output errors. It cannot find all
the degenerate states, i.e. multiple states with same energy,
and it does not provide a clock zone by clock zone energy
spectrum. To fully study the error behavior of designs it is
important to consider excited states in each clocking zone.

The inference of the low-energy non-ground states requires
an exploration of the QCA cell state configuration space,
whose size is exponential in the number of cells in each
clocking zone. The only currently available approach, that we
are aware, to accomplish this is using simulated annealing
search [6], which is time consuming. For a circuit with 6 cells,
it can take 10,000’s of iteration. In this paper, we present a
method based on maximum likelihood probabilistic inference
to infer the N-lowest energy configurations. The inference is
conducted with a graphical probabilistic model [7] that is built
to represent the joint probability of the state configuration. The
N-most likely states correspond to the N-lowest energy states.

II. MARKOV MODEL OF QCA COMPUTATION

We denote a QCA cell is denoted by Xi, where i = 1, · · · ,N.
The first r cells, {X1, · · · ,Xr} are the driving cells, and the
next N − r cells, {Xr+1, · · · ,XN} are the driven cells. The
driver cells are the cells in the previous clock zone or are
the primary inputs for the first clock zone. Each cell can
be observed to be in a one of a finite number of states, xi.
If we consider just the ground states of the cell, then there
will be 2 of them, denoting a 0 or a 1. We will denote the
probability of observing a cell at state, xi, by P(Xi = xi) or
PXi(xi), or simply by P(xi). The commonly used attribute of a
polarization of a QCA cell can be expressed in terms of these
state probabilities, ρXi = PXi(1)−PXi(0). The joint probability
of observing a set assignments for the cells is denoted by
P(x1, · · · ,xn). The probability of state assignment of a N-cell
arrangement is determined by the Boltzman distribution law.
Thus,

P(x1, · · · ,xN) =
1
Z

exp

(
−E(x1, · · · ,xN)

kT

)
(1)

where Z is the normalizing partition function, k is the
Boltzman constant, and T is the temperature. The function
E(x1, · · · ,xN) is the energy of the state assignment. If we
consider only Coulombic interactions between QCA-cells,
ignoring quantum effects within cells, this energy would be
composed out of energy terms capturing energy between
two QCA cells, E(xi,x j). It is not necessary to model the
interactions of each cell with every other cells. Due to the 1/r5

fall-off of Coulombic interaction between cells, the energy
term between the pair of cells that are far away can be ignored.
Let Ne(X) represent the set of cells that are within a specified
distance, D, from it, then the total energy can be expressed as

E(x1, · · · ,xn) =
N

∑
i=1

∑
j=Ne(Xi)

E(xi,x j) (2)
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Fig. 2. Markov net dependency model for (a) 9-cell QCA wire considering
(b) 1-cell radius of influence (b) 2-cell radius of influence, and (c) all cells.
Ignore the link directions.

where Ne(Xi) = {Xj|d(Xi,Xj) ≤ D} and d is the Euclidean
distance function. This decomposition of the total energy in
a set of pairwise interactions, induces a decomposition of the
joint probability function.

P(x1, · · · ,xM) =
1
Z

exp

(
−∑M

i=1 ∑ j=Ne(Xi) E(xi,x j)
kT

)
(3)

This joint probability can be factored in terms of pairwise
functions, which we will term as probability potential func-
tions, φ(xi,x j) = exp

(
−E(xi,x j)

kT

)
.

P(x1, · · · ,xM) =
1
Z

i=M

∏
i=1, j=Ne(Xi)

φ(xi,x j) (4)

Given this joint probability function, in principle, it is possible
to compute probability of any state configuration or the
marginal probability of any particular subset of random vari-
ables. However, the computational complexity is exponential
if the computations are blind to independencies that exist
because of the local nature of the Coulombic interactions.
We exploit these independencies to factorize the underlying
joint probability function into product of joint probability
functions over smaller subsets of random variables. We do
not have space to describe this factorization process in detail.
However it suffices to say that it involves the construction
of a Markov graph network, followed by a process called
graph triangulation, followed by the construction of a tree
of cliques. More details of the later two processes can be
found in [7]. Fig. 2 shows an illustration of the mapping of
a QCA cell arrangement to a Markov network. The Markov
graph representation for 1-cell and 2-cell radius of influence
are shown in Figs. 2(b) and (c), respectively. Fig. 2(d) shows
a 9-cell neighborhood, where there is no approximation about
the neighborhood of influence – we have a complete graph.

Markov models are commonly used in reliability studies of
circuits [8], [9], where average case behavior is computed. We
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take this idea farther by (i) exploring non-ground states using
maximum-likelihood inference rather than average-likelihood,
(ii) strongly coupling device physics into the model, (iii) and
using an accurate probabilistic computing model.

III. ERROR MODES OF EACH CLOCK ZONE

Given the joint probability specification of the cells in these
two zones P(X1 = x1, · · · ,Xn = xn), as captured by the Markov
network representation, we explore the computation of the
following:

1) Given the polarization of the driver cells in the
previous clock zone, x1, · · · ,xr, what is the mini-
mum energy polarization (or most likely state) assign-
ments of all the cells? For this we need to compute
argmaxx1,x2,··· P(xr+1, · · · ,xN |x1, · · · ,xr), or the maximum
likelihood state assignments.

2) What are N-lowest energy configuration for the QCA
circuit, for a given driver cell configuration, x1, · · · ,xr?

Note that these computations are different from the computa-
tion of the average case (expected) probabilities, or marginal
probabilities, which is commonly considered in most proba-
bilistic analysis. We need maximum likelihood inference. The
answer to the first question above can be arrived by message
passing in the graphical dependency structure that we construct
among the QCA cells. We refer the reader to [7] for details
about the details of the inference scheme that is involved. The
inference scheme is an exact one and is guaranteed to result
in the global maximum. However, to also arrive at the N-
most probable configurations (question 2 above), we adopt
the iterative strategy proposed by [10], [7], starting from the
most probable configuration found by maximum likelihood
inference.

The search for the k-th lowest energy configuration is
constrained by the 1-st through k−1-th lowest energy configu-
rations found. Let the most likely configuration of variables be
denoted by x(1) = {x1

1, · · · ,x1
N}, with a probability of P∗(x(1)).

The second most likely configuration, x(2) must differ from the
most likely configuration in the state of at least one variable.
We search for this configuration by performing N maximum
propagations with the evidences, Fi, given by

Fi = {X1 = x1
1, · · · ,Xi−1 = x1

i−1,Xi �= x1
i } (5)

for i = 1, · · · ,N. Let the mostly likely configuration, con-
strained by the evidence, Fi, be x(Fi) with probability P∗(x(Fi)).
The second most likely configuration will be the most likely
configuration with one of these evidences.

x(2) = argmax
x(Fi)

P∗(x(Fi)) (6)

The third most likely configuration, x(3), will be from this set
of propagations, i.e. one of x(Fj), or from propagations with
evidences that differ from the first and second most likely
configurations by at least one state each, Fi j.

Fi j = {X1 = x1
1, · · · ,Xi−1 = x1

i−1,Xi �= x1
i ,Xi+1 = x1

i+1, · · · ,Xj �= x2
j}

(7)

for j = 1, · · · ,N − i+1. Thus, the third most likely configura-
tion is

x(3) = argmax

(
max
x(Fi)

P∗(x(Fi)), max
x(Fi j)

P∗(x(Fi j)))

)
(8)

The process continues, until we have N most likely configu-
rations.

IV. ENERGY SPECTRUM OF MULTIPLE CLOCKED ZONES

To construct the energy spectrum of the full clocked QCA
circuit, we use the Markov model based inference mechanism
for each clock zone, conditioned on the low-energy states of
the previous clock zone. For the first clock zone, we compute
the ground and excited states. For the second clock zone, we
compute the ground and excited states conditioned once on
the first zone in the ground state and then conditioned on
the first zone in the excited state. Thus, for the second zone,
we have four possible sets of states. The possible ground and
exited states for a clock zone increases with this distance from
the primary inputs. This defines a state configuration tree for
clocked QCA circuits.

V. RESULTS

We illustrate our ideas using QCA crossbars, a crucial
element of QCA circuits. The ability to cross wires in QCA
designs has been considered to be one its biggest advantages.
Consider the arrangement of QCA cells shown in Fig. 3(a),
which shows three vertical QCA wires consisting of rotated
cells and one horizontal wire. Since the horizontal wire is
“cut” by the vertical wire, errors in the horizontal wire is of
concern. Figs. 3(b), (c), and (d) shows three switching error
modes. Fig. 3(e) shows the excited spectrum of the design. It
plots the probability of each of the excited state configurations.
The configurations that result in output errors are marked by
red bars. Note that ground state (the left most bar) is not
the only one resulting in correct output; switching errors can
“cancel out” to result in correct output, however, the associated
probabilities would be low. Notice that first excited states of
the design is almost as probable as the ground state. Also, there
are three excited states. All of this suggests that the design is
unstable and prone to switching errors. This corroborates the
finding of crossbar instability in [11].

To harden the design, we use the pattern of the switching
error modes in Figs. 3(b), (c), and (d) to partition the circuit
into 4 clock zones as shown in Fig. 4(a). In addition we
considered hardening the design at the crossings by thickening
them (Fig. 4(b)) and also adding clocking zones (Fig. 4(c)). To
characterize the overall switching stability of a circuit, we will
use the ratio of the probability of the error state configurations
to the configurations that results in correct output.

L(i) =
∑(i)∈error Pr(x(i))

∑( j)∈correct Pr(x( j))
(9)

We call this ratio the switching error likelihood L(i) and
suggest it as design metric. The lower this value, the better.
Higher values indicates the propensity of switching errors.
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Fig. 3. (a) Consecutive crossbars, all in one clock zone. Errors in the
horizontal line are of concern. The switching error modes are shown in (b),
(c), and (d). The excited state spectrum for the design is shown in (e). The
bars corresponds to the probability of that configuration. The configurations
that result in output errors are denoted by red bars.

Fig. 4(d) plots the value of this ratio for the four crossbar
designs. We notice that with thickened crossing, the switching
error propensity goes down even with one clocking zone.
However, the greatest gain is the addition of clocking zone.
The switching error likelihood for thickened and single cell
design is similar with addition of clocking zones. We also
noticed that the switching error modes of all the four designs
are the same, except for the error likelihood values.

VI. CONCLUSIONS

We described an efficient computation mechanism to esti-
mate switching error likelihoods in clocked QCA circuits. To
our knowledge, this is the first such formalism proposed at cir-
cuit level. The analysis is based on inferring the excited states
of each clocking zone and constructing a configuration tree
for the whole circuit. We modeled any QCA cell arrangement
using a Markov graph-based probabilistic model, which we
then transformed into a Markov tree structure defined over
subsets of QCA cells. The N-lowest energy configurations
were then computed by local message passing; the inference
is exact and there are no approximations involved. We demon-
strated the model using crossover wire designs. The developed
method should be useful in the analysis and design of robust
QCA circuits in terms of switching errors in the presence of
variabilities in permitivity, cell size, defects, and operating
temperature.
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Fig. 4. Different crossbar designs with three crossings (a) clocked single
cell in 4 clock zone, (b) thickened crossings – all in one clock zone, (c)
thickened crossings with 4 clock zones. (d) Switching error likelihood of
different crossbar designs.
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