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Abstract

We propose a novel, non-simulative, probabilistic
model for switching activity in sequential circuits, cap-
turing both spatio-temporal correlations at internal
nodes and higher order temporal correlations due to
feedback. This model, which we refer to as the tem-
poral dependency model (TDM), can be constructed
from the logic structure and is shown to be a dynamic
Bayesian Network. Dynamic Bayesian Networks are
extremely powerful in modeling high order temporal
as well as spatial correlations; it is an exact model
for the underlying conditional independencies. The at-
tractive feature of this graphical representation of the
joint probability function is that not only does it make
the dependency relationships amongst the nodes ex-
plicit but it also serves as a computational mechanism
for probabilistic inference. We report average errors in
switching probability of 0.006, with errors tightly dis-
tributed around the mean error values, on ISCAS’89
benchmark circuits involving up to 10000 signals.

1 Introduction

The ability to form accurate estimates of power
usage, both dynamic and static, of VLSI circuits is
an important issue for rapid design-space exploration.
Switching activity is one important component in dy-
namic power dissipation that is independent of the
technology of the implementation of the VLSI circuit.
Contribution to total power due to switching is depen-
dent on the logic of the circuit and the inputs and will
be present even if sizes of circuits reduce to nano do-
main. Apart from contributing to power, switching in
circuits is also important from reliability point of view
and hence can be considered to be fundamental in cap-
turing the dynamic aspects of VLSI circuits.

Among different types of VLSI circuits, switching in
sequential circuits, which also happens to be the most

common type of logic, are the hardest to estimate. This
is particularly due to the complex higher order depen-
dencies in the switching profile, induced by the spatio-
temporal components of the main circuit but mainly
caused by the state feedbacks that are present. These
state feedbacks are not present in pure combinational
circuits. One important aspect of switching dependen-
cies in sequential circuits that one can exploit is the
first order Markov property, i.e. the system state is
independent of all past states given just the previous
state. This is true because the dependencies are ulti-
mately created due to logic and re-convergence, using
just the current and last values.

The complexity of switching in sequential circuits
arise due to the presence of feedback in basic compo-
nents such as flip-flops and latches. The inputs to a
sequential circuit are not only the primary inputs but
also these feedback signals. The feedback lines can be
looked upon as determining the state of the circuits at
each time instant. The state probabilities affect the
state feedback line probabilities that, in turn, affect
the switching probabilities in the entire circuit. Thus,
formally, given a set of inputs i; at a clock pulse and
present states s;, the next state signal s;41 is uniquely
determined as a function of 4; and s;. At the next clock
pulse, we have a new set of inputs i;11 along with state
S¢+1 as an input to the circuit to obtain the next state
signal s;y2, and so on. Hence, the statistics of both
spatial and temporal correlations at the state lines are
of great interest. It is important to be able to model
both kinds of dependencies in these lines.

Previous work [4] has shown that a combinational
circuit can be exactly modeled in a probabilistic
Bayesian Network. The BN structure, however, cannot
model cyclical logical structure, like those induced by
the feedback lines. This cyclic dependence effects the
state line probabilities that, in turn, effect the switch-
ing probabilities in the entire circuit.

In this work, we propose a probabilistic, non-



simulative, predictive model of the switching in sequen-
tial circuits using temporal dependency model (TDM)
structure that explicitly models the higher order tem-
poral and spatial dependencies among the feedback
lines. The nodes in TDM represent switching random
variable at the primary input, state feedback, and in-
ternal lines. These random variables defined over four
states, representing four possible signal transitions at
each line which are (zoo, zo1, Z10,z11). Edges of TDM
denote direct dependency. Some of them are depen-
dencies within one time slice and the conditional prob-
ability specification capture the conditional probabil-
ity of switching at an output line of a gate given the
switching at the input lines of that gate. Rest of the
edges are temporal, i.e. the edges are between nodes
from different time slices, capturing the state depen-
dencies between two consecutive time slices. We add
another set of temporal edges between the same input
line at two consecutive slices, capturing the implicit
spatio-temporal dependencies in the input switchings.
Temporal edges between just consecutive slices are suf-
ficient because of the first order Markov property of the
underlying logic. We prove that the TDM structure
is a Dynamic Bayesian Networks (DBN) capturing all
spatial and higher order temporal dependencies among
the switchings in a sequential circuit. It is a minimal
representation, exploiting all the independencies. The
model, in essence, builds a factored representation of
the joint probability distribution of the switchings at
all the lines in the circuit.

For large circuits, we resort to a stochastic simu-
lation based inference method which is non-simulative
and is different from samplings that are commonly used
in circuit simulations. In the later, the input space is
sampled, whereas in our case both the input and the
line state spaces are sampled simultaneously, using a
strong correlative model, as captured by the Bayesian
network. Due to this, convergence is faster and the
inference strategy is input pattern insensitive.

The key features of our approaches are (1) this is the
first and only probabilistic modeling framework that
can be used to model switching in both sequential and
combinational circuits and (2) the adopted strategy
uses a dynamic Bayesian Network formalisim which is
edge-minimal, pattern insensitive switching model that
are not logic unraveling[9].

2 Prior Work

Existing techniques for switching estimation in se-
quential circuits use statistical simulation. We are the
first ones to use entirely probabilistic models for switch-
ing estimation in sequential circuits. Almost all the

statistical techniques in some way or the other em-
ploy sequential sampling of inputs, along with stopping
criteria, determined by the assumed statistical model.
Stamoulis et al. [10] considered a path oriented transi-
tion probability computation to sample the input signal
space, but the model did not account for correlations
between latch and the combinational part. In one of
the pioneering work, Najm et al. [7] proposed a logic
simulation to obtain the state line probability and then
used statistical simulation for estimation.

Tsui et al. [9] used a two-step approach. First, the
stationary state line probabilities were estimated in-
stead of state probabilities, thereby reducing the prob-
lem complexity but sacrificing the ability to model
the spatial dependencies among the state lines. A set
of non-linear equations described the relations of the
next state to the primary inputs and the current state
lines. These equations are solved using the Picard-
Peano and Newton-Raphson methods to arrive at lo-
cally optimal solution for the individual state line prob-
abilities. Next, given these state probability estimates,
statistical simulations (or, for very small circuits, bi-
nary decision diagrams (BDD)) were used to obtain
switching estimates. Yuan et al. [11] exploited the ob-
servation that beyond a length of samples the inputs
can be considered independent. Saxena et al. [14] sim-
ulated multiple copies of a circuit, with mutually in-
dependent input vectors, thereby generating mutually
independent samples. The entire sequential circuit es-
timates were formed by Monte-Carlo simulation with
these inputs. Chen et al. [12] presented a technique to
estimate upper and lower bounds of power by consid-
ering the signal probability and signal activity at the
inputs. Kozhaya et al. [13] enhanced this method in
their work to estimate power in sequential circuits.

Even the best simulation based methods suffer from
weak input pattern dependencies. Besides, for any
change in primary input statistics, simulations need
to be rerun. For these reasons, we prefer probabilistic
strategies, particularly those that model the underly-
ing joint probability distribution of the node switch-
ing. Such probabilistic models, not only allows one
to estimate the switching probabilities, but also read-
ily facilitates conditional estimations, i.e. estimation
conditioned on the knowledge of the switching statis-
tics at some nodes, not necessarily the input lines. In
this work, we propose a graphical probabilistic model
over all the state nodes, inputs, and internal lines to
accurately model the joint switching probabilities of
the whole circuit. The model accounts for high order
temporal and spatial dependencies. The exact spatio-
temporal correlation is modeled over n time slices to
capture higher (> 1) order temporal effects that are



present in sequential circuits. Circuits modeled us-
ing n slices captures n-th order temporal dependencies.
Similar strategy was used by Tsui et al. [9], who “un-
raveled” the circuits n times to arrive at the statistics
of the individual state lines, which were then used in
simulations. We do not restrict ourselves to just state
lines. Our comprehensive probability model, spanning
multiple time slices, is over all the lines and simulta-
neously estimates the switching probabilities at all the
lines (primary input, internal, and state lines).

3 Background on Dynamic Bayesian
Networks

In this section, we discuss the structure and funda-
mentals of dynamic Bayesian Networks, which under-
lies our modeling of sequential circuits as TDMs. Since
Dynamic Bayesian Networks are structurally Bayesian
Networks themselves, we will highlight important fea-
tures of Bayesian Networks as well. The following dis-
cussion is fashioned after [3, 2]. As a peek ahead, the
reader can look at Fig. 3 for some examples of the rep-
resentation for a small circuit.

A Bayesian network is a directed acyclic graph
(DAG) representation of the conditional factoring of
a joint probability distribution. Any probability func-

tion P(xy,---,,) can be written as!
P(mla"'amN) = P($n|$n_1,$n_2,"',.’1}1)
P(zp-1|zn—2,Tn-3, -, 1)
- P(xy) (1)

This expression holds for any ordering of the random
variables. In most applications, a variable is usually
not dependent on all other variables. There are lots of
conditional independencies embedded among the ran-
dom variables, which can be used to reorder the ran-
dom variables and to simplify the conditional probabil-
ities.

P(.Tl,---,ZEN) :va(mv|Pa'(Xv)) (2)
where Pa(X,) are the parents of the variable x,, rep-
resenting its direct causes. This factoring of the joint
probability function can be represented as a directed
acyclic graph (DAG), with nodes (V') representing the
random variables and directed links (E) from the par-
ents to the children, denoting direct dependencies.

The DAG structure preserves all the independencies
among sets of random variables and is referred to as
a Bayesian network. The concept of Bayesian network
can be precisely stated by defining the notion of condi-
tional independence among a set of random variables.

LProbability of the event X; = x; will be denoted simply by
P(xz;) or by P(X; = x;).

3.1 DBN Structure

A Dynamic Bayesian Network (DBN) is a general-
ization of Bayesian networks to handle temporal ef-
fects of an evolving set of random variables. Other
formalisms such as hidden Markov models and linear
dynamic systems are special cases. The nodes and the
links of the DBN are defined as follows. For any time
period or slice, t;, let a directed acyclic graph (DAG),
Gy, = (W, Ey,), represent the underlying dependency
graphical model for the combinational part. Then the
nodes of the DBN, V| is the union of all the nodes each
time slice.

v=Uw )

However, the links, E, of the DBN are not just the
union of the links in the time-slice DAGs, but also in-
clude links between time-slices, i.e. temporal edges,
E; defined as

i+1)

Eti,ti+1 = {(Xi7ti’Xj7ti+l)|Xi7ti € V;fivXj7ti+1 € ‘/ti+1}

(4)
where X4, is the j-th node of the DAG for time slice
tr- Thus the complete set of edges F is

E=E, U O(E(ti) +Ey; 1 t;) (5)

=2

Apart from the independencies among the variables
from one time slices, we also have the following inde-
pendence map over variable across time slices if we as-
sume that the random variables representing the nodes
follow Markov property, which is true for switching.

I ({Xj,h y T Ty Xjﬂfi—l }7 vati’ {Xj,ti+1a T :Xi,ti+k })
Vi>1,k>1 (6)

4 TDM Modeling

The core idea is to express the switching activ-
ity of a circuit as a joint probability function, which
can be mapped one-to-one onto a Bayesian Network,
while preserving the dependencies. To model switch-
ing at a line, we use a random variable, X, with
four possible states indicating the transitions from
{00, Zo01,T10,211}. For combinational circuits, di-
rected edges are drawn from the random variables rep-
resenting switching of each gate input to the random
variable for switching at the outputs of that gate. At
each node, we also have conditional probabilities, given
the states of parent nodes. If the DAG structure fol-
lows the logic structure then it is guaranteed to map all
the dependencies inherent in the combinational circuit.
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Figure 1. (a) Combinational circuit and its
graph structure. (b) Time unraveled repre-
sentation. (c) TDM representation

However, sequential circuits cannot be handled in this
manner.

4.1 Structure

Let us consider graph structure of a small sequen-
tial circuit shown in Fig. 1(a). Following logic struc-
ture will not result in a DAG; there will be directed
cycles due to feedback lines. To handle this, we do not
represent the switching at a line as a single random
variable, X}, but rather as a set of random variables,
representing the switching at consecutive time instants,
{Xkts, -, Xkt }, and then model the logical depen-
dencies between them by two types of directed links.

1. For any time instant, edges are constructed be-
tween nodes that are logically connected in the
combinational part of the circuit, i.e. without the
feedback component. Edges are drawn from each
random variable representing switching activity at
each input of a gate to the random variable repre-
senting output switching of the gate.

2. We connect random variables representing the

same state line from two consecutive time instants,
Xiy — X,j’tiﬂ, to capture the temporal de-
pendencies between the switchings at state lines.

Moreover, we also connect the random variables
representing the switching at primary input lines
at consecutive times, X, — Xp, . This is
done to capture the constraint in the primary line
switching between two consecutive time instants.
For instance, if an input has switched from 0 — 1
at time ¢;, then switching at the next time instant

cannot be 0 — 0.

Let us consider Figure 1(b), note that we have all
random variables connected to the previous time slice
for every slice. This is required as our random variables
are switching and not logic. Every random variable
in this experiment has effect in time stamps. How-
ever, Markov blanket of the switching variables are
still its parents and hence for individual node X,
I(X; 4, |Pa(X; 4,1 Xi4;_,) is true, where Pa(X;,,) are
parent set of X;.. However, for primary inputs,
we have make sure that P(XY,  |X}, ) handles the
switching constraints properly. In sequential circuit,
each input signal values are considered random, how-
ever, for modeling the the switching variables the tem-
poral edges in inputs are essential and eliminates the
need for explicit temporal dependencies of the interme-
diate random variables.

We call this graph structure as the temporal depen-
dency model or TDM. Fig. 1(c) shows the TDM for the
example sequential circuit in Fig. 1 (a); we just show
two time slices here. The dash-dot edges shows the
second type of edges mentioned above, which couples
adjacent DAGs. We have X5 as input and X; as the
present state node. Random variable X4 represents the
next state signal. Note that this graph is a DAG.

The joint probability function is modeled by a
Bayesian network as the product of the conditional
probabilities defined between a node and its parents in
the TDM structure: P(z,|Pa(X,)). These conditional
probabilities can be easily specified using the circuit
logic. There are three basic types of conditional prob-
ability specifications: (i) internal lines, (ii) primary in-
put lines, and (iii) state lines. For the internal lines, the
specification follows the gate logic. For state lines, the
conditional probability models the logic of a buffer, as
shown in Table 1(b). For primary input lines, the con-
ditional probabilities models the switching constraints
between two time instants, as listed in Table 1(a). For
instance, if the primary line switched from 0 to 1, then
at the next time slice the line can either switch from 1
to 0 or remain at 1. Since, we are considering random
inputs, we distribute the probabilities equally between
these two options. For correlated inputs, these condi-
tional probabilities will have to adjusted.



Table 1. Conditional probability specification
between (a) primary input line switchings at
consecutive time instants , and (b) state line
switchings at consecutive time instants

(2) (b)

’f'ii+1 X:,ti le,tl-_H X;i,ti
Zoo To1 T10 T11 oo o1 10 T11
0.5 0.5 0 0 oo 1 0 0 0 o0
0 0 0.5 0.5 To1 0 1 0 0 o1
0.5 0.5 0 0 10 0 0 1 0 10
0 0 0.5 0.5 T11 0 0 0 1 T11

5 Inference in TDM

Stochastic sampling algorithms are approximate BN
inference schemes. Probabilities are inferred by a com-
plete set of samples or instantiations that are gener-
ated for each node in the network according to the con-
ditional probability table which stores the conditional
probability of a random variable given its parents. In
these sampling schemes each sample determines the
posterior probability of the underlying model for the
remaining samples. The probability of random vari-
able is proven to converge to the correct values given
enough time. The salient features of these algorithms
are: (1) They scale extremely well for larger systems
making them a target inference for nano-domain bil-
lion transistor scenario and (2) They are any-time algo-
rithm, providing adequate accuracy-time trade-off and
(3) The samples are not based on inputs and the ap-
proach is input pattern insensitive.

For large circuits, Probabilistic Logic Sampling
(PLS) [6] which uses local message passing and stochas-
tic sampling, is appropriate. This method scales well
with circuit size and is proven to converge to correct es-
timates. These classes of algorithms are also anytime-
algorithms since they can be stopped at any point of
time to produce estimates. Of course, the accuracy of
estimates increases with time.

Probabilistic Logic Sampling(PLS) developed by
Henrion in 1988 is credited to be the first stochas-
tic sampling method for inferencing Bayesian Networks
[6]. In this method sampling is performed in the for-
ward direction(from parents to children). The algo-
rithm works as follows,

e In the circuit which is represented as a Bayesian
network each node is selected in top-down fashion
and they are sampled.

e Wiile inferencing the Bayesian network the sam-
ples are grouped into sets and the observed value

in each sample in a set is compared with the cor-
responding evidence values.

e If they are inconsistent with each other the whole
sample set is discarded.

e The same method is repeated with each sample
set.

e In the selected sample set the belief distributions
are calculated by averaging the frequencies with
which the relevant events occur.

As compared to the computational merits, this method
also has some disadvantages. Since it is based on
forward sampling, the evidence that have already oc-
curred cannot be accounted until the corresponding
variables are sampled. The occurrence of unlikely evi-
dence can result in rejection of large number of samples
thereby hindering the performance of this method. Due
to this PLS is always considered to be better without
evidence.

The stochastic sampling strategy discussed in this
section, work because in a Bayesian Network the prod-
uct of the conditional probability functions for all nodes
is the optimal importance function. Because of this op-
timality, the demand on samples is low. We have found
that just thousand samples are sufficient to arrive at
good estimates for the ISCAS85 benchmark circuits.
Note that this sampling based probabilistic inference is
non-simulative and is different from samplings that are
used in circuit simulations. In the latter, the input
space is sampled, whereas in our case both the input
and the line state spaces are sampled simultaneously,
using a strong correlative model, as captured by the
Bayesian Network. Due to this, convergence is faster
and the inference strategy is input pattern insensitive.

6 Experimental Results

We have used the sequential circuits from the IS-
CAS89 benchmark suite to verify our method. To gen-
erate the simulation results the circuits were simulated
for 1000000 test vectors. The sequential circuits are
modeled as a DBN with 3 time-slices. A startup simu-
lation with 50 random test vectors was performed and
these startup estimates of the present state lines are
given to the first time-slice of the DBN, i.e. these are
the prior probabilities of the state lines. The priors for
the primary input lines in the first time-slice of DBN
was chosen to be unique, i.e. equally probable switch-
ing states. The approximate computation of the DBN
was done by a tool named ”GeNIe” [5]. The tests were
performed on a Pentium IV, 2.00GHz, Windows XP
computer.



Table 2. Dynamic Bayesian network modeling
using PLS[6] for sequential circuits (3 time
slices).

Circuits wE maxg Time % of nodes

(s) > p+20
s27 0.028 0.092 0.016 5.88
$208 0.014 0.224 0.281 9.02
s382 0.000 0.082 0.750 7.14
s444 0.005 0.067 0.843 3.90
5526 0.002 0.048 1.234 1.84
s713 0.009 0.067 1.968 4.70
820 0.002 0.042 2.125 4.17
s953 0.012 0.185 1.922 7.95
s1196 0.001 0.043 2.735 5.17
s1238 0.003 0.035 2.703 5.00
s1423 0.012 0.114 3.266 6.02
s5378 0.001 0.389 23.128 4.98
515850 0.003 0.434 146.992 3.07

Table 2 lists the error statistics of the circuits by
PLS inference scheme. A sample size of 1000 samples
was considered for both the schemes. Switching error
is the error between the in-house logic simulation and
the switching estimates obtained from Bayesian infer-
ence. We tabulate both the average error, pug, and
maximum error, maxg, over all the nodes in column 2
and column 3 in both Table 2(a) & (b). We also list
the percentage of nodes with switching error above 2
standard deviations from the mean error. The fourth
column in both Table 2(a) & (b) indicate the run-time
of the circuit with the specific inference scheme. The
listed elapsed times are obtained by the ftime com-
mand in the WINDOWS environment, and is the sum
of CPU, memory access and I/O time.

We see that the mean error is extremely small for
most benchmark circuits and even for larger bench-
marks like s5378, s15850. Even the maximum errors
for most circuit are low. However, for some circuits, i.e.
5208, 5953 and s5378, the maximum seem to be high,
but these errors seem to be isolated to a few nodes as
is seen from the low fraction of nodes with error above
20. In most cases, only 5% of the nodes exceed this
error bound. In 5208, we see that % of nodes in p+ 20
range is around 9%. We also found the accuracy of
our model is excellent even for larger benchmark like
515850 (g = 0.004)

In Table 3, we show the modeling for three time
slices versus ten time slices. We observe that ten
time slices do not enhance the quality of estimates.
This shows that third order temporal models are good
enough for our benchmarks, which matches with the
observations made in [9, 11].

Thus, we have successfully modeled the switching
activity of sequential circuits by using a graphical de-
pendency model which is compact and dependency pre-

Table 3. Switching activity estimation for two
different time slices (3,10).

Circuits 3 Time slices 10 Time slices
LE Mazg | Time(s) UE Mazg | Time(s)

827 0.015 0.068 0.047 0.018 0.078 0.172
$208 0.014 0.234 0.719 0.006 0.197 7.532
298 0.015 0.169 1.422 0.010 0.170 13.87
8382 0.002 0.096 2.094 0.000 0.079 21.28
s444 0.003 0.083 2.734 0.005 0.062 26.30
$526 0.003 0.044 3.922 0.001 0.081 42.28

serving. We have tested the model successfully using
two stochastic estimation methods and presented the
results. The scope of the work is limited to zero delay
and the future effort is towards modeling real delay.
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