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Abstract— We propose a graphical probabilistic Bayesian
Network based modeling and inference scheme for Clocked
Quantum-dot Cellar Automata (QCA) based circuit design
that not only specify just the binary discrete states (0 or
1) of the individual cells, but also the probabilities of ob-
serving these states for Ground (Most Likely) state computing.
The nodes of the Bayesian Network (BN) are the random
variables, representing individual cells, and the links between
them capture the dependencies among them. The modeling
exploits the spatially local nature of the dependencies and the
induced causality from the wave propagation and clocking
schemes to arrive at a minimal, factored, representation of
the overall joint probability of the cell states in terms of
local conditional probabilities. This BN model allows us (1) to
estimate the most likely (or ground) state configuration and
the next lowest-energy configuration that results in output
errors and (2) to show how weak spots in clocked QCA circuit
designs can be found using these BN models by comparing
the (most likely) ground state configuration with the next
most likely energy state configuration that results in output
error.

Index Terms— QCA circuits, nanocomputing, energy min-
imization, computer vision

I. INTRODUCTION

Quantum-dot Cellular Automata (QCA) is an emerging
technology that offer a revolutionary approach to comput-
ing at nano-level [1], [2], [3]. It tries to exploit, rather
than treat as nuisance properties, the inevitable nano-level
issue of device to device interaction to perform computing.
Other advantages include the lack of interconnects and
electron transport. Research is ongoing for molecular-
QCAs [4], which will make it possible to operate at room
temperature, possibly alleviating the dominant criticism of
this technology.

High level optimization of QCA circuit structure would
require repeated estimates of ground (and preferably near-
ground) states, along with cell polarizations, for different
design variations. This is presently possible only through
full quantum-mechanical simulation of the system evo-
lution over time, which is known to be computationally
expensive. The toolsets AQUINAS [5] and the Coherence
vector simulation engine in the QCADesigner [6], both
perform iterative quantum mechanical simulation (self
consistent approximation, SCA) are very slow. In addition,

they cannot estimate near-ground state configurations,
which would be important for circuit error analysis. The
toolsets such as QBert [7], Fountain-Excel simulation,
nonlinear simulation [8], [6], and digital simulation [6]
are fast iterative scheme, however, they just estimate the
state of the cells and some fails to estimate the correct
ground state for some situations. They do not estimate the
cell polarization estimate. We present a modeling method
that allows for not only cell polarization estimates for the
ground state in a time-efficient manner, but also allows
us to reason about other near-ground state configurations
and hence generates the probability of the most probable
erroneous states.

We propose the use of probabilistic models at layout
level to model clocked QCA circuits. Given the strong
dependencies among devices that need to be modeled,
we use graphical probabilistic models, namely Bayesian
networks, to explicitly represent dependencies and the in-
herent device-level uncertainties. In these representations,
the nodes denote the random quantities of interest, which
are the states of the QCA cells, and links denote direct
dependencies, determined by causality induced by the
direction of quantum signal propagation. The structure of
the links are dictated by the layout of the devices and are
quantified by conditional or joint probabilities, which are
based on the quantum-mechanical density matrix. Proba-
bility computations is done by local message passing [9].
Using the Bayesian net model, we show not only how
one can reason about ground state configuration but also
the lowest energy state configuration that results in output
errors.

II. BAYESIAN MODEL OF COMPUTATION

We use the two-state approximate model of a single
QCA cell following Tougaw and Lent [5] and other
subsequent works on QCA. Each cell can be observed to
be in one of two possible states, logical state 0, denoted
by x0, and the state 1, denoted by x1. We will denote the
probability of observing a QCA cell at state, xi, by P(Xi =
xi) or PXi(xi), or simply by P(xi)

1. The commonly used

1We will use upper-case to denote random variables and lower-case
letters to denote values taken by the random variable.
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Fig. 1. Bayesian net dependency model for (a) 9-cell QCA wire
considering (b) 1-cell radius of influence (b) 2-cell radius of influence,
and (c) all cells.

attribute of a polarization of a QCA cell can be expressed
in terms of these state probabilities, δXi = PXi(1)−PXi(0).
The joint probability of observing a set of steady-state
assignments for the cells is denoted by P(x1, · · · ,xn). In
terms of the underlying physics of the problem, this joint
probability will be determined by the underlying quantum
wave function over the possible states, which is quite large.
To reduce the combinatorics, it is common to consider joint
wave function in terms of product of wave function over
one or two variables (Slater determinants), i.e. to consider
a factored representation of the wave function (Hartree-
Fock approximation).

Consider a linear arrangement of 9 QCA cells, shown in
Fig. 1(a). Without making any assumptions, the joint state
probability function can be decomposed into product of
conditional probability functions by the repeated use of the
property that P(A,B) = P(A|B)P(B) (graphically shown in
Fig. 1d).

P(x1, · · · ,x9)= P(x9|x8 · · ·x1)P(x8|x7 · · ·x1) · · ·P(x2|x1)P(x1)
(1)

However, if one considers a 1 cell radius of influence, then
a conditional probability P(xi|xi−1, · · · ,x1) can be approx-
imated by P(xi|xi−1), and the overall joint probability can
be factored as (graphically shown in Fig. 1b)

P(x1, · · · ,x9) = P(x9|x8)P(x8|x7) · · ·P(x2|x1)P(x1) (2)

If one were to assume a 2-cell radius of influence, then
the factored joint probability will be,

P(x1, · · · ,x9) = P(x9|x8,x7)P(x8|x7,x6) · · ·P(x2|x1)P(x1)
(3)

Bayesian Networks are graphical representation of the
underlying dependency model. Note that directed link
structure should not be interpreted as the lack of depen-
dence of a node on its children, rather the direction just
represents the cause-effect relationship. The dependence
of node on its children is implicitly represented by the
conditional probabilities.

A. Inferring and Quantifying Link Structure

The complexity of Bayesian network representation will
be dependent on the order of the conditional probabilities,
i.e. the maxium number of parents (Np) a node. The

maximum size of the conditional probability table stored
will be 2Np+1. Note that since we use directional graph
structure, we use the inherent causal ordering among the
cells. Part of the ordering is imposed by the clocking
zones. Cells in the previous clock zone are the drivers
or the causes of the change in polarization of the current
cell. Within each clocking zone, ordering is determined by
the direction of propagation of the wave function [5].

Let Ne(X) denote the set of all neighboring cells than
can effect a cell, X . It consists of all cell within a pre-
specified radius. Let C(X) denote the clocking zone of cell
X . We assume that we have phased clocking zones, as has
been proposed for QCAs. Let T (X) denote the time it take
for the wave function to propagate from the nodes nearest
to the previous clock zone or from the inputs, if X shares
the clock with the inputs. Note that only the relative values
of T (X) are important to decide upon the causal ordering
of the cells. We employ the breadth first search strategy,
to decide upon this time ordering, T (X).

The causes, and hence the parents Pa(X), of X are the
neighboring cells that are either in the previous clocking
zone or nearer to the previous clocking zone or closer to
the inputs than X . The children set, Ch(X), of a node,
X , will be the neighbor nodes that are not parents, i.e.
Ch(X) = Ne(X)/Pa(X).

The next important part of a Bayesian network speci-
fication involves the conditional probabilities P(x|pa(X)),
where pa(X) represents the values taken on by the parent
set, Pa(X). For arrangements of QCA cells, it is common
to assume only Columbic interaction between cells and
use the Hartree-Fock approximation to arrive at the matrix
representation of the Hamiltonian given by [5]

H =

[

− 1
2 ∑i∈Ne(X) Ekδi fi −γ

−γ 1
2 ∑i∈Ne(X) Ekδi fi

]

(4)

where the sums are over the cells in the local neighbor-
hood, Ne(X). Ek is the “kink energy” or the energy cost
of two neighboring cells having opposite polarizations.
fi is the geometric factor capturing electrostatic fall off
with distance between cells. δi is the polarization of the
i-th neighboring cell. The tunneling energy between the
two states of a cell, which is controlled by the clocking
mechanism, is denoted by γ.

In the presence of inelastic dissipative heat bath cou-
pling (open world), the system moves towards the ground
state [5]. At thermal equilibrium, the steady-state density
matrix is given by

ρss =
e−H/kT

Tr[e−H/kT ]
(5)

where k is the Boltzman constant and T is the temperature.
Of particular interest are the diagonal entries of the density
matrix, which expresses the probabilities of observing the
cell in the two states. They are given by



ρss
00 = 1

2

(

1− E
Ω tanh(∆)

)

, ρss
11 = 1

2

(

1+ E
Ω tanh(∆)

)

where E = 1
2 ∑i∈Ne(X) Ekδi fi, the total kink energy at

the cell, Ω =
√

E2 + γ2, the energy term (also known as
the Rabi frequency), and ∆ = Ω

kT , is the thermal ratio.
We are interested in these probabilities for the minimum
energy ground state values. This is determined by the
eigenvalues of the Hamiltonian (Eq. 4) which are ±Ω, a
function of the kink energy with the neighbors. However,
the states (or equivalently, polarization) of only the parents
are specified in the conditional probability that we seek.
The polarization of the children are unspecified. We choose
the children states (or polarization) so as to maximize
Ω, which would minimize the ground state energy over
all possible ground states of the cell. Thus, the chosen
children states are

ch∗(X) = arg max
ch(X)

Ω = arg max
ch(X)

∑
i∈(Pa(X)∪Ch(X))

Ekδi fi (6)

The steady state density matrix diagonal entries with these
children state assignments are used to decide upon the
conditional probabilities in the Bayesian network (BN).

P(X = 0|pa(X)) = ρss
00(pa(X),ch∗(X))

P(X = 1|pa(X)) = ρss
11(pa(X),ch∗(X))

(7)

III. REASONING ABOUT QCA CELLS BY
PROBABILISTIC INFERENCE

Given the joint probability specification P(X1 =
x1, · · · ,Xn = xn), as captured by the Bayesian network
(BN) representation, we explore the computation of the
following quantities of interest.

1) Given the polarization of the r input cells,
x1, · · · ,xr, what is the minimum energy polar-
ization (or most likely state) assignments of
all the cells? For this we need to compute
argmax{xi} P(xr+1, · · · ,xN |x1, · · · ,xr), or the maxi-
mum likelihood state assignments. This can done
using maximum likelihood propagation in the BN.

2) What is the minimum energy configuration that
results in error at a output cell, xs, for a given input
assignment, x1, · · · ,xr? This can be arrived at, again,
by conditional maximum likelihood propagation.

Using the above computations we can address QCA
design issues such as, (i) What is a likelihood that a QCA
circuit will result in correct output? (ii) What is lowest-
energy state configurations that result in output errors.
In the rest of this section, we outline the nature of the
maximum likelihood propagation schemes that we will use
to answer these questions.

The exact inference scheme is based on local message
passing on a tree structure, whose nodes are subsets
(cliques) of random variables in the original DAG [10].
This tree of cliques is obtained from the initial DAG
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Fig. 2. (a) An arrangemnt of QCA cells (b) Transformation from a
Bayesian network to a triangulated graph. (c) Junction tree of cliques.

structure via a series of transformations that preserve the
represented dependencies and are necessary for the local
message passing scheme. We illustrate this process using
the simple arrangement of QCA cells in Fig. 2(a). First,
we convert the DAG structure to a triangulated undirected
graph structure via the construction of an undirected
Markov structure, which is referred to as the triangularized
moral graph, modeling the underlying joint probability
distribution. An illustration of this process is shown in
Fig. 2(b) (additional links added between parents and
then further links are added for triangularization). In this
triangulated graph, cliques Ci’s are found. In practice,
the triangulation and the clique enumeration steps is
coupled [10]. We need to perform these transformations
because it is proven [10] that these cliques can be arranged
and connected as a junction tree 2c. Note that this structure
is a special tree where there is unique path between
any two cliques but if two (non-adjacent) cliques have a
variable in common, this variable has to be present in all
cliques that lie in the path connecting the two cliques.
With each clique, Ci, in the junction tree we associate a
function, φ(ci), also termed as the probability potential
function, over the variables in the clique, constructed out
of conditional probabilities in the BN. For each conditional
probability in the BN, p(v|pa(X)), we find one and only
one clique, Ci, that contain the node set {V} ∪ Pa(X).
The potential function for a clique is the product of the
conditional probability functions mapped to that clique.
Thus,

φ(ci) = ∏
{V}∪Pa(X)∈Ci

p(v|pa(X)) (8)

The joint probability function, which was expressed as
product of conditional probabilities, can now be expressed
equivalently as product of the clique potentials.

p(x1, · · · ,xN) = ∏
v

p(v|pa(X)) = ∏
ci∈C t

φ(ci) (9)

The tree structure is useful for local message passing.
Given any observation (evidence), messages consist of the
updated probabilities of the common variables between
two neighboring cliques. Global consistency is automat-
ically maintained by the junction tree [10].
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Fig. 3. Probability of most likely state (ground) configuration that result
in correct output and those minimum energy configurations that result in
errors in the sum and carry output lines: (a) for the first design and (b)
for the second design.

Maximum Likelihood Propagation: In the context of
QCA circuits, it will be necessary to compute the ground
state configuration and its probabilities. This can be cast as
the maximum likelihood estimation problem. The ground
state is given by the argmaxx1,···,xn p(x1, · · · ,xn). Since
the problem of maximization of a product of probability
functions can be factored as product of the maximization
over each probability functions, this maximization can also
be computed by local message passing [10]. The overall
message passing scheme, the messages passed between
two cliques using the maximum operator.
φ∗i (si j) = max{Ci−Si j} φ(ci); φ∗j(si j) = max{C j−Si j} φ(c j)

If message is being transmitted from Ci to C j, then
the scaling factor φ∗

i (si j) is transmitted to clique C j and
probability distribution of C j is rescaled where si j are
common variables between Ci and and C j.
Hence, φ(c j) =

φ∗i (si j)

φ∗j (si j)
φ(c j)

To find the configuration with this maximum likelihood
probability, we start with the root clique, choose its most
likely configurations. Then, we move on to its neighbors
and choose their most likely configurations, constrained
by the configuration of the separator nodes chosen in the
root clique. The process continues to the neighbors of the
neighbors and so on. The maximum likelihood probability
can be computed by the product of the probabilities from
the individual cliques.

Another analysis of interest when comparing QCA
designs is the comparison of the least energy state con-
figuration that results in correct output versus those that
result in erroneous outputs. This is obtained by conditional
maximum likelihood propagation where the next probable
state probabilities are obtained.

Fig. 3 shows the probabilities of the most likely state
(ground) configuration with correct outputs (shown in
blue) and those minimum energy states configurations with
error in the carry (shown in white) and sum output lines
(shown in red), for four different inputs and for two design
of full adders (shown in Fig. 3a and b). The second
adder design is better than the first because the ratio of
the probability of the erroneous state configuration to the
probability of the correct configuration is lower than for
the first design.
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Fig. 4. Differences in cell states (polarization), shown in red, between
ground state and the energy state that results in erroneous outputs for an
input vector of 1,0,0. The carry output most likely error modes for the
first design are shown in (a) and the corresponding modes for the second
design are shown in (b).

Apart from probabilities, we can also compute the most
likely cell state configuration itself. For one input, Fig. 4
show the cells with erroneous states (shown as red cells)
between least energy configurations resulting the correct
output and the least energy configuration that results in
error in the carry output lines. We found that, for different
input combinations, the cell state errors in the first design
start at the wiretaps, whereas the state errors in the second
design start at the corners. These are weak spots in the
respective designs that need to be reinforced.

We presented an efficient Bayesian network based
probabilistic modeling for QCA circuit that can estimate
ground state configurations, and near-ground state config-
urations for clocked designs, without the need for compu-
tationally expensive quantum-mechanical computations.
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