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Abstract—
In this work, we investigate the estimation of switching activity in VLSI cir-

cuits using a graphical probabilistic model based on Cascaded Bayesian Net-
works (CBN’s). First, we develop a theoretical analysis for Bayesian inferenc-
ing of switching activity and then derive upper bounds for certain circuit param-
eters which, in turn, are useful in establishing the cascade structure of the CBN
model. We formulate an elegant framework for maintaining probabilistic con-
sistency in the interfacing boundaries across the CBN’s during the inference
process using a tree-dependent (TD) probability distribution function. A TD
distribution is an approximation of the true joint probability function over the
switching variables, with the constraint that the underlying Bayesian network
representation is a tree. The tree approximation of the true joint probability
function can be arrived at by using a Maximum Weight Spanning Tree (MWST)
built using pairwise mutual information about the switching occurring at pairs
of signal lines on the boundary. Further, we show that the proposed TD dis-
tribution function can be used to model correlations among the primary inputs
which is critical for accuracy in modeling of switching activity. Experimental
results for ISCAS circuits are presented to illustrate the efficacy of the proposed
CBN models.

I. INTRODUCTION

Switching activity is one of the important parameters for
power estimation and reliability analysis. The switching activ-
ity of a node is affected by various factors such as the connec-
tivity of the circuit, the input statistics, the correlation among
nodes (or lines), the gate type, and the gate delays, thus making
the estimation process a complex procedure. It is well-known
that switching activity depends on temporal, spatial, and spatio-
temporal correlations exhibited by the signals, which could be
internal nodes or primary inputs or state lines.

In this work, we propose a new switching probability model
for combinational circuits based on the concept of Cascaded-
Bayesian Networks (CBN), capturing complex conditional de-
pendencies over a set of random variables. Bayesian Network
(BN) is a graphical representation of the joint probability func-
tion over a set of random variables in which nodes denote ran-
dom variables and directed edges represent direct dependencies,
quantified by the conditional probability of the child node given
its parents. It is known that switching in a combinational circuit
can be easily modeled as a Bayesian Network (BN) representa-
tion. Since Bayesian Network is an exact graphical representa-
tion of the underlying switching probability function, it captures
higher order interdependencies among the switching variables
completely rather than propagating the effects of low order cor-
relations (usually pair-wise) in most probabilistic modeling.

In the BN structure, each random variable represents switch-
ing activity of a single line in the combinational circuit and
can take four values corresponding to the four possible tran-
sitions: {x00, x01, x10, x11} which ensures a lag-one Markov
model to capture temporal effect completely in a zero-delay sce-
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nario [18]. The probability of switching at a line Xi would be
given by P(Xi = x01) + P(Xi = x10). The conditional proba-
bilities that are needed to quantify the dependencies in BN are
obtained directly from the logic structure. Bayesian Inferenc-
ing is NP-hard and hence a single BN is not sufficient to model
large circuits. This forces us, given the available computing
constraints, to represent combinational circuits using the con-
cept of Cascaded BNs.

The contributions of this work are many fold. First, we inves-
tigate ways to infer the computational complexity of Bayesian
inferencing of switching activity, dependent on the maximum
clique-size, through the construction of theelimination set,
which is an ordered superset of the clique-sets known to have
an unique property of running intersection a requirement for
Bayesian inferencing by local message passing. Using this elim-
ination set, which can be constructed in O(n+ e), (n and e are
number of nodes and edges) we establish an upper bound on
the complexity of the BN inference in terms of circuit param-
eters. The estimate of the upper bound, which we express in
terms of maximum fan-ins and maximum fan-outs, can be used
to partition the circuit into loosely coupled, cascaded BN repre-
sentations. Second, we address the problem of maintaining con-
sistency across the Cascaded BN representations during the in-
ference process. Third, we address the problem of modeling the
switching activity among correlatedprimary inputs. The prob-
lems of input correlation modeling and maintaining correlations
across the CBN is essentially the same. For input modeling, we
need a mechanism to represent the correlations among the in-
puts and for cascaded Bayesian modeling, we need to capture
the correlations among the nodes of the boundaries between cas-
caded BN’s. It is possible to elegantly address both these prob-
lems, similar in nature, with the same concept of tree-dependent
distribution.

A tree-dependent (TD) distribution is an approximation of
the true joint probability function over the switching variables,
with the constraint that the underlying Bayesian network rep-
resentation is a tree. The tree structure controls the compu-
tational complexity. The tree approximation of the true joint
probability function can be arrived at using a Maximum Weight
Spanning Tree (MWST) based on the pair wise mutual infor-
mation between switchings at two signal lines [3]. Since the
tree-dependent (TD) distribution can also be represented as a
Bayesian Network, we can fuse this approximate tree repre-
sentation over the primary nodes with the accurate BN-based
representation over the internal nodes of the combinational cir-
cuit to form the TD-BN structure. This TD-BN structure can
also be used to couple the BNs (as a CBN), in which the cor-
relations among the boundary nodes are represented. Construc-
tion of CBN requires O(n2) computational effort. Also, if the
compiled Bayesian Networks occupy most of the memory re-
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sources, computing mutual information itself takes significant
computational time. Hence, we resort to a heuristic tree that
will compute mutual information between boundary nodes only
if they have common inputs or common children. We show
how our proposed Approximate TD modeling lowers the mean
error, standard deviation of error, and maximum error over a
naive Bayesian network coupling, indicating that CBN is in-
deed a superior model, estimating switching activity accurately
and uniformly over all the nodes.

II. RELATED WORK

Switching activity estimation through probabilistic tech-
niques [10], [13], [14], [5] are fast and tractable, but typi-
cally involve assumptions about joint correlations. Probabilistic
techniques use knowledge about input statistics to estimate the
switching activity of internal nodes. In some of the pioneer-
ing works around this idea, Najm et al. [17] estimated switch-
ing activity through probabilistic simulation and in a later work,
Najm et al. [11] introduced the concept of transition density
which is a measure of switching activity. However, these meth-
ods have been reported to yield less accurate estimates when
the nodes are highly correlated. An improved switching ac-
tivity estimation strategy based on OBDD was proposed by
Bryant [10], however, it had high space requirements. Ghosh
et al. [5] modeled temporal correlation effects in a real delay
model. The computational complexity was, however, extremely
high. Tagged probability simulation with a partial real delay
model was proposed by Ding et al. [13], which was based on
local OBDD propagation capturing first order spatial correla-
tions.

Dependency modeling of switching activity has been per-
formed by many, but only partially. Present formalisms are
not able to account for all types of spatial dependencies.
Kapoor [15] has modeled structural dependencies and Schnei-
der et al. [18] used one-lag Markov model to capture temporal
dependence. Tsui et al. [16] modeled first order spatial correla-
tion efficiently. Schneider et al. [19] proposed a fast estimation
technique based on ROBDD where an approximate solution is
provided for spatial correlation to reduce time complexity of the
exact approach. Pair-wise correlation between circuit lines were
first proposed by Ercolani et al. [12]. Marculescu et al. [21],
studied temporal, spatial dependencies jointly by a local OBDD
that handles pairwise correlations. In a later pioneering work,
Marculescu et al. [7], formulated higher order correlations by
approximating them as a set of pair-wise correlations. More-
over, Marculescu et al. [7] was the first to study the effect of
highly correlated input streams where they tried to capture the
input correlation approximately. They also proved that correla-
tions exhibited in the inputs have significant effect on switching
activity throughout the circuit, and hence showed that power es-
timation assuming random inputs is not the correct picture.

Our focus in this paper is to analyze the theoretical aspects
of Bayesian inferencing and establish upper bounds using cir-
cuit parameters, which help in determining the size and struc-
ture of each BN in the cascade. We formulate methods to cap-
ture the correlations among the primary inputs as well as the
among the boundary nodes of CBN’s using the concept of tree-
dependent (TD) probability function. The proposed cascaded

Bayesian inferencing model incorporates the above methods to
improve the estimation accuracy without greatly increasing the
computational cost.

III. ANALYSIS OF BN INFERENCING

In this section, we provide a theoretical analysis of Bayesian
inferencing for switching activity modeling. The purpose of this
analysis is to decide whether a given circuit can be mapped to a

single BN or not, given system constraints such as memory
and CPU speed. Our goal is to partition the circuits into the least
number of BNs keeping each of them as large as possible. This
is because there is no loss of accuracy during the probability
propagation within a BN while in cascaded BN’s, some accu-
racy is lost at the boundaries in the coupling between the BN’s
even with the effort to reduce the loss by TD. This is a common
challenge in probabilistic approaches when large circuits need
to be partitioned for the computations. In the next section, we
show how to minimize these coupling losses by reducing the
number of instances when such losses can occur.

For the inference process, the Bayesian network structure is
transformed first into a moral graph (M) by removing the di-
rections on the links and mutually connecting the parents of a
node. It should be noted that from this point onwards the di-
rectional properties of BN will not be needed in the inference
process. This moral graph is then triangulated and a junction
tree of cliques is formed, which is used for the cluster based
inferencing. It is known from [22] that Bayesian network infer-
ence process based on the junction tree is limited by the product
of the number of nodes and the exponential of the maximum
clique size in the junction tree.

Since the triangularization of the moral graph is NP-hard,
a minimum fill-in heuristic is used for triangularization from
which clique setis obtained by constructing the intermediate
elimination set. Hence, the maximum number of nodes in the
cliques can be obtained by the maximum number of nodes in
the elimination set. The triangularization is performed as fol-
lows: All the vertices of the moral graph are first unlabeled. An
unlabeled vertex that has the minimum number of unconnected
neighbors (only unlabeled neighbors) is chosen first. This ver-
tex is then labeled with the highest available node number, say
i, starting from a number equal to the total number of nodes.
A set Ci , is then formed consisting of the selected vertex and
its still unnumbered neighbors. Edges are filled in between any
two unlinked nodes in this set Ci . Then the maximum available
node number i is decremented by 1. This process is repeated un-
til there is no unlabeled-numbered nodes. The resultant graph
is guaranteed to be triangularized. Note that each Ci is a com-
plete subgraph by construction and the set of these constitutes
the cliques of the graph G. The generated sequence of cliques
E={Ci}’s is termed the elimination setof cliques of the graph.

In the moral graph shown in the left graph in Figure 1 (the
dotted lines are achieved by connecting the parents during mor-
alization), node X9 is first selected since no fill-in edge is needed
because all the neighbors (remember the moral graph is undi-
rected) are already linked. This node X9 is assigned the num-
ber 9 - the total number of nodes in the graph. The set C9 is
then formed by nodes {X9,X8,X7}. The nodes X8 and X7 are
not yet numbered. For the second cycle, the nodes X8,X7,X6,
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Fig. 1. Moral Graph M and its induced graph w.r.t. ordering d.

and X4 cannot be selected as they each would require one fill-
in edge amongst its neighbors, whereas the neighbors of X3

do not require any fill-in edges. Hence X3 is numbered 8
in our example and C8 is formed by {X3, X4, X6}. For the
third cycle, we then select X2, numbering it as 7 and forming
C7 = {X2,X1,X5}. In the fourth cycle, node X1 is assigned 6
and C6 = {X1,X5} is formed. We then select X5, assign a num-
ber 5, and form C5 = {X5,X6,X7}. Node X8 is assigned number
4, and C4 = {X8,X7,X4} is formed. In this step, a fill-in edge
between X4 and X7 is added. We then assign the number 3 to
X7, the number 2 to X6, and the number 1 to X4. The resultant
elimination set{Ci} obtained from our example is

{C1, · · · ,C9} = {{X4},{X6},{X7,X6,X4},
{X8,X7,X4},{X5,X6,X7},{X1,X5},
{X2,X1,X5},{X3,X4,X6},
{X9,X8,X7}}

Definition : Let G(V, E) contain p cliques. An ordering
[C1,C2, · · · ,Cp] possesses running intersection property if for
every j > 1,∃i, i < j such that Cj ∩ (C1 ∪C2 · · · ∪Cj−1) ⊆Ci .

By the construction of the elimination set, it possesses the
running intersection property, namely, for C4, {X8, X7, X4} ∩
({X4} ∪ {X6} ∪ {X7,X6,X4}) = {X4,X7} ⊆ C3. This property
is essential for BN inferencing and is solely responsible for
fast inferencing through message passing between neighboring
cliques.

It is shown in [1] that if C1, · · ·Ck is a sequence of sets having
running intersection property and Ct ⊆ Cp for some t �= p then
the ordered set C‘ = {C1, · · ·Ct−1,Cp,Ct+1, · · · ,Cp−1,Cp+1,Ck}
also has running intersection property. By this property Ct can
be eliminated for all Ct ⊆ Cp, p �= t. Hence, the elimination
setcan be reduced to obtain the minimal ordered set of cliques
called Clique setrepresenting the triangularized graph com-
pletely. A junction tree between these cliques is then obtained
and the probability for each clique is computed, requiring stor-
age of the order of O(n.4 |Cmax|) where n is the number of vertices
and |Cmax| is the maximum clique size. In fact, updating prob-
abilities of the single variables in the cliques can be performed
in O(p.4|Cmax|) time where p is the number of cliques. Since,

the number of cliques is generally much less than the number
of vertices, memory requirement poses larger problem for BN
inferencing. It can be easily concluded that since the elimina-
tion setpossesses running intersection property, the maximum
cardinality of the elimination setis the maximum cardinality of
the clique set. Hence, even before we compute the probability
function for the cliques and probabilistic updating, we can in-
fer accurately the complexity of the inference by constructing
the elimination set. It is obvious that the elimination set can be
obtained by the minimum fill-in heuristics mentioned above in
O(n+ e) where n is the number of vertices and e is the number
of edges and hence the complexity of obtaining the elimination
set is essentially O(n2).

Since the circuits are reasonably sparse, the elimination time
is not too high for real benchmarks. In the in experimental
section, we tabulate total compilation time in which the moral-
ization, triangularization (elimination set construction is a part
of this step) and clique joint probabilities are computed. The
overall compilation time is less than 19 seconds and majority of
this time is consumed in calculation of joint probabilities of the
cliques.

For a large circuit, we compute n.4 |Cmax|) and if it is larger
than a threshold, we reduce the circuit. Obviously, we need a
simpler bound for such partitioning and hence we develop O(n)
bounds on the maximum clique size and we discuss them in the
next subsection.

A. Bounds for Circuit Structure

In this subsection, we use the concept of induced width [22]
and obtain simple bounds based on induced width, which are
computationally simple and easily obtained from circuit struc-
ture. These bounds serve as an approximate index for com-
plexity and can be used to partition the circuits. We are con-
cerned only with undirected graph as our analysis concerns
moral graph, which is undirected.

Definition 1: The width wx of a node x in an undirected graph
G is defined as the number of neighbors of the node that pre-
cedes this node in a given order d of the graph nodes.

Definition 2: The width of an ordering wG,d is defined as the
maximum width wx in the undirected graph G, with respect to a
particular order d.

Definition 3: The induced graph IG of an undirected graph
G with respect to a particular ordering d can be obtained by pro-
cessing nodes in the reverse order of d (last to first) and adding
edges between each of the parents preceding to a node in the
order d with each node.

For example, the induced graph of the example graph M
shown in the left side of Figure 1 with respect to ordering
(X9,X8,X7,X6,X5,X4,X3,X2,X1) is illustrated in the right hand
side of figure. The width of any node with respect to this order-
ing can be obtained using the number of links directed down-
wards from those nodes.

Definition 4: The induced width WG,d of an undirected graph
G with respect to a particular order d is the width of ordering of
the induced graph IG. Hence,

WG,d = wIG,d (1)
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Definition 5: The induced width WG of a graph is the mini-
muminduced width of the graph (G) over all possible orderings.

WG = minWG,d∀d (2)

Hence, for our analysis, for the undirected Moral graph M,
we establish an upper bound for the induced width of the Moral
graph WM which is the minimum of wIM ,d for all possible order-
ing d, where IM denotes the induced graph of the Moral graph
M.

WM = minWM,d and WM,d = wIM ,d (3)

It is known [22] that the task of finding the induced width of
a graph, which entails considering all possible node orderings,
is NP-hard. Hence, estimating the exact induced width is not
feasible. However, a rough estimate of it is needed for parti-
tioning the circuits into BNs such that each BN is large enough,
to be handled by the available resources and minimize error in
the estimation process. Hence, we establish upper bounds on
this induced width WM that can be computed efficiently in terms
of the circuit parameters.

Theorem 1: Given a combinational circuit, let I i be the fan-
in of the input of the gate with output i, Oi be the fan-out of
the gate with output i, Imax be the maximum fan-in of the gates
of the circuit, Omax be the maximum fan-out of the gates of the
circuit, and child(i) be the set of output signals of a gate/buffer
where i is an input. Then, an upper bound UWM of the induced
width of the moral graphof the BN is given by:

UWM = Imax+ ImaxOmax (4)

A tighter upper bound UtWM is given by:

UtWM = max
i

(Ii +Oi + ∑
j∈child(i)

I j −1) (5)

Proof: From Eq. 3 one can easily observe that

WM ≤WM,d, WM,d = wIM ,d,and wIM ,d ≤ max
v∈M

[wv] (6)

The width of node i in moral graph M can be obtained with the
information of node i in the original BN. Considering the worst
case where all the links connected to the node i is preceding it
in a particular ordering. We then have

wi = Ii +Oi + ∑
j∈child(i)

I j −1 (7)

where Ii denotes the number of links to the node i’s parents
(edges in the BN), Oi denotes the number of links to the node
i’s children (edges in the BN), and ∑ j∈child(i) I j − 1 denotes the
number of extra edges added during moralization, since each
node j will have a maximum ofI j − 1 number of parents pre-
ceding i, in the worst case ordering, which will be linked with i.
Hence,

max
i

wi = max
i

[Ii +Oi + ∑
j∈child(i)

I j −1] (8)

WM ≤ max
i

[Ii +Oi + ∑
j∈child(i)

I j −1] (9)

and
UtWM = max

i
(Ii +Oi + ∑

j∈child(i)
I j −1) (10)

TABLE I

BN INFERENCE COMPLEXITY AND ITS UPPER BOUNDS.

BN from Maximum UtWM UWM

Circuits Clique size
c432 7 10 20
c499 4 4 18
c880 5 8 18

c1355 5 14 26
c1908 10 16 34
c3540 5 6 14
c6288 5 5 8
c7552 3 8 14

Now, it is evident that UtWM ≤ Imax+ Omax+ OmaxImax and
hence simplifying UtWM ≤UWM = Imax+ ImaxOmax.

In Table I, we show the difference between the upper bound
UtWM , UWM and maximum clique size (WM +1) for the BNs that
are generated by randomly partitioning the ISCAS’85 circuits.
In our BN modeling, to control complexity of representation,
we replaced each node with fan-in greater than 2 by a combina-
tion of nodes with fan-ins of 2. Thus, the maximum fan-in for
our BNs are 2. The fan-outs can, of course, be larger than 2.

The upper bound estimate can be used to decide on the size of
each BNs as we partition large circuits into cascaded BN. The
memory required to compute using a BN will be O(n.4WM+1).
We can easily compute both the upper bounds and number of
nodes n to determine the size of the individual BN. In our ap-
proach we find that for most circuits the number of segments
are on an average around 5 and for c6288 and c7552, we need a
maximum of 18 individual BNs.

Note that the upper bounds are not tight. This is because we
assume that all the fan-ins of the fan-outs of the node in consid-
eration are ordered before the selected node. Hence by choosing
BNs based on this bound, one might select smaller Bayesian
Networks than the memory would allow. Performance would
thus vary with different partitioning schemes. In fact, if the es-
timation is performed off-line, the designer might want to use
the exact inference complexity calculation (O(n2)) through the
dimension of elimination set discussed earlier in this section.
However, since our goal is to prove that CBN works better than
BN for any generic partition (good or bad), we use the compu-
tationally inexpensive bounds.

B. Partitioning Strategies

In this paper, we did not address partitioning strategies com-
prehensively, in fact the purpose of introducing TD is to allevi-
ate the effect of a bad partition and this paper concentrates on
that effort. However, we provide the guidelines for best parti-
tioning scheme that can generate best segmentation. We will
also discuss partitioning method used here for experimentation.

The ideal partitioning requires that each Bayesian Network
is large given a resource of the computing device and also
where the boundary nodes between the Bayesian Networks are
least correlated. The largeness of a Bayesian Network is mea-
sured in terms of spatial requirements for inference which is
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Fig. 2. 4 input AND gate built through 2-input AND gates: probabilistic infer-
ence

τ = n.4|Cmax|) where Cmax is the maximum clique size and n is
the number of nodes in the Bayesian Networks. Hence the par-
titioning problem through min-cut becomes How can we parti-
tion a Bayesian Network into smaller loosely coupled ones such
that each Bayesian Network has largestτ value (determined by
the memory resource of the computing device) and the bound-
ary nodes have least mutual correlation which can be denoted
as∑Xi ,Xj

I(Xi ,Xj) described in Eq. 14 for all boundary nodes?
We need to compute I(Xi ,Xj) between two boundary nodes even
before the probabilities are propagated and hence circuits fea-
tures have to be used to measure mutual correlation between
nodes. An easy index of correlation is nodes with same parent
and grand parents are likely to be highly correlated.

Our aim is however to propose Tree-dependent distribution
to capture the lost correlation during any partitioning. Hence,
we heuristically tackled the largeness issue and boundary nodes
correlation captured by TD. Steps involved in creating multiple
Bayesian Networks from combinational circuits are as follows:
Step 1 Re-arranging the node numbering that such parents of
a node are always numbered lower than the children. This en-
sures that all boundary nodes would have their ancestors in the
previous BNs.

Step 2 Nodes with more than two parents are realized as
a combination of nodes with two parents. These nodes are
dummy nodes and as it can be seen from Figure 2 reduces max-
imum clique-size in (b) and hence reduces computational com-
plexity. The accuracy of switching activity as depicted in Fig-
ure 2 is unaffected by this effort. Even for real-delay modeling,
which we are currently investigating with Bayesian Networks,
these dummy gates are assigned zero delay. While the TD con-
struction, right now, we check all the boundary nodes for mu-
tual correlation, the accuracy of tree-dependent distribution is
not affected.

Step 3 Through experimentation, we figure the resource con-
straint of our computing device which is the allocated memory
for running a single application. Our initial attempt is to take
500 nodes in one BN. This means that the first 500 nodes with
all the edges are clubbed into one group. Maximum clique size
is then estimated by the bounds described in previous section.
If τ = 4Cmax.n where n is the number of nodes (and number of
states for each node is 4) exceeds the resource constraint num-
ber, we reduce the last 50 nodes (and relevant edges) and try

to infer the computational complexity and stop when τ roughly
matches 4Cmax.n. Thus, we get reasonably large individual net-
works. If τ is less than the resource constraint number we add
250 nodes with all the edges and re-estimate 4Cmax.n till it ex-
ceeds τ. The reduction is done then by 50 nodes as before till
we get a match. The numbers (500, 250, 50) are obtained com-
pletely by trial and error. Thus, accuracy of the entire cascade
structure is pre-dominantly determined by the internal nodes of
the individual Bayesian Networks.

It has to be noted that we did not select BN by choosing least
correlated boundary nodes at the boundary but in the next sec-
tion, we discuss tree-dependent distribution and cascade struc-
ture which handles and re-capture lost information in the bound-
ary nodes. In experimental results, we demonstrate the effect
of TD on various partition points of c432 benchmark and show
that TD improves the accuracy to a great extent when individual
BNs are sufficiently large.

IV. CASCADED BN MODELING

In this section, we first introduce the Tree-Dependent distri-
bution (TD) as an approximation for the actual probability func-
tion of the switching variables of interest. A Tree-Dependent
distribution is the closest distribution to the actual underlying
probability distribution of the switching variables with the con-
straint that the BN structure is a tree. This ensures that the TD
is the best possible tree that captures the dependencies (spa-
tial, temporal and spatio-temporal) closest to those exhibited by
the actual distribution. Next, we utilize the approximate TD to
model the correlations amongst the primary inputs as well as
amongst the boundary nodes between the adjacent BNs in CBN
model.

A. Tree-Dependent Distribution

We formally define a tree-dependent structure that we super-
impose on the boundary nodes of the CBN’s being cascaded.
Next, we adapt the optimality results for TD function structure
and hence, restate the proof of optimality from [3].

Definition 6: Any tree-dependent distribution Pt(x) can be
defined as a Markov field relative to the tree t which can be
written as the product of n−1 pair-wise conditional probability
distributions,

pt(x) = ∏
i

p(xi |xj(i)) (11)

where Xj(i) is the designated parent of Xi in some orientation of
the tree t. The root node X1 is chosen arbitrarily without any
parents and P(x1|x0) = P(x1). Apart from the memory require-
ment, only second order statistics are needed to construct the
tree.

Our goal is to construct a tree over n variables, representing
the input nodes, that is the closest representation of the under-
lying joint probability function over the n variables. Hence, out
of all the spanning tree over the n variables that can be con-
structed, we have to select the one which preserve the correla-
tions to a maximum level. For this, we use a distance measure
between two distribution P and P

′
known as Kullback-Leibler

cross-entropy measure [4] in Eq. 12.
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D(P,P
′
) = ∑

x
P(x) log(P(x)/P

′
(x)) (12)

A low distance measure between P and P′ indicates that the
two distribution almost coincide with each other. Now, we have
two subgoals: (1) To choose the best conditional probabilities
between the parent and the child nodes in the tree given a fixed
tree t such that Pt is the best approximation of P. This distribu-
tion is called the projection of P on t, Pt

P . And, (2) to choose
a tree from a set of all the spanning trees over the nodes such
that it would make the projection P on this tree Pt

P closest to
P. We will use the two following theorems to arrive at a tree
structure [3].

Theorem 2: The projection of P on t is characterized by the
equality

Pt
P(xi |xj(i)) = P(xi |xj(i)) (13)

Proof in [3].
This implies that the conditional probabilities for a branch a

tree has to coincide with that computed from P will produce the
best projection of P on t, Pt

P.
Theorem 3: The distance measure of Equation 12 is mini-

mized by projecting P on any maximum weight spanning tree
(MWST) where the weight of the branch (Xi ,Xj) is defined by
the information measure between them

I(Xi ,Xj) = ∑
xi ,xj

P(xi ,xj ) log

(
P(xi ,xj)

P(xi)P(xj)

)
(14)

Proof in [3].
We can use any algorithm for deriving the MWST. The

steps we follow are listed below in Figure 3. Using a tree-
structured representation ensures that storage proportional to
(r − 1)r(n− 1) + r − 1 [2] is used where r is the number of
states (in our case r = 4) and n is the number of variables of
the primary inputs which is much less than r n, which would be
needed for a complete representation. Moreover, by the above
algorithms, we ensure that at least the pairwise correlations are
captured effectively and propagated to the internal nodes.

B. Tree Dependent Input Modeling

The inputs to a combinational block can be correlated with
each other. This may happen because the inputs could be out-
puts of another combinational block and its structural depen-
dencies will force the primary inputs of the current blocks to
be correlated. Moreover, high correlations are exhibited if the
inputs are generated by some sequential circuits like counters.
Switching correlations among the primary input nodes can af-
fect switching activity estimates across the whole circuits. An
ideal way to model the input switching would be, given a train-
ing set of input line transition, to learn an exact switching model
in terms of a joint probability function over the input lines,
which, of course, can also be represented by a Bayesian net-
work (BN). This learned BN then would be coupled with the
BN representation of the combinational circuit. There are, how-
ever, two practical problems associated with this approach.

1. Learning exact BN is NP-hard. Hence, in practice we can
only learn an approximate BN representation.

Calculate the branch weight I(X  , X  ) for all of 
         the edges in the boundary

from the overall distribution

Calculate the P(x  , x  ) for all pair in the boundary 

if it is not forming a cycle

Repeat the above step until n-1  edges have been 
                               selected

t

P
P  (x) can be computed by assigning correct  

conditional probabilities 

i j

i j

Assign the  edges  with the largest I to the tree 

Fig. 3. Steps involved in construction of MWST

2. The exact BN representation might, depending on the cor-
relations present amongst the input lines, have high com-
putational complexity by itself (discussed in section III),
thus allowing only a small sized CBNs and forcing a sig-
nificant increase in the number of cascaded segments.

The large number of BNs will not only result in loss of accuracy,
it will also increase the estimation time. Thus, we resort to TD
based approximate modeling as a practical compromise of the
accuracy of representation of dependencies and computational
costs in terms of time and storage. For primary input modeling,
we obtain the pairwise probability function based on the input
statistics provided by the user, which we then use to compute
the mutual information and the MWST, as shown as outlined in
Figure 3.

C. Tree Dependent CBN Model

Since, large circuits with large induced widthscan not be
modeled using a single BN structure, partitioning into Cascaded
BNs is inevitable. How do we couple these Cascaded-BNs?
What kind of information passes between them? One possibil-
ity that we explore in [8] is naive coupling where two adjacent
BNs have consistency in terms of singletonprobabilities. How-
ever, this results in loss of accuracy for not capturing any corre-
lation between the boundary nodes. One observation that helps
is that some of the nodes of one BN are inputsto another BN.
Thus, the BN coupling problem can be seen as an instance of
the primary input modeling problem, where the “inputs” are not
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Fig. 4. Naively coupled adjacent BNs G1 and G2 of a graph G with common
edges.

Fig. 5. TD coupled adjacent BNs G1 and G2 of a graph G with common edges.

the primary input lines but nodes in the previous BN. Hence,
like the input modeling problem, we could use the approximate
tree-dependent representation over the “input” nodes. Learn-
ing an accurate BN structure is, of course, another possibility,
but that is computationally prohibitive. Besides, the accuracy
achieved by an accurate Bayesian Network model over the seg-
ment boundaries may be nullified by the loss of accuracy due to
increased number of BNs in the CBN that would be necessary.
The accuracy improvement by accurate Bayesian Network mod-
eling may become marginal as opposed to the computational
time and memory requirements. Hence, as for primary input
modeling, we resort to an approximation technique which is a
good compromise between accuracy and memory requirement.

As an illustration of naive and TD-BN coupling, consider
two segments G1 and G2, shown in Figure 4, which are two
parts of one network G. Let the edges (U,V),(W,X),(Y,X) and
(Y,Z) be the four edges that have the first node in G1 and the
second node in G2. In both naive and TD based coupling we
remove edges (U,V), (W,X), (Y,X) and (Y,Z) from G1, how-
ever these common nodes U , W and Y are retained in G1. We
then reproduce the common nodes in G2 along with the links
(U,V),(W,X),(Y,X) and (Y,Z) that were removed from G1. In
case of naive coupling (Figure 4), we treat these common nodes
as primary inputs of G2 and assign the singleton probabilities of
these common nodes based on the computation of the inference
engine from G1.

However, in case of TD based CBN coupling, we do not want
to lose the correlation between nodes U , W and Y in G2. Hence

we construct the tree-dependent distribution on these boundary
nodes based on their mutual correlations in G1. In G2, we add
all four edges, along with a tree structure between nodes U , W
and Y shown in the dashed lines in Figure 5. This tree cap-
tures significant information from G1 and propagates them to
G2. It has to be noted that tree-dependent distribution is com-
puted purely by the information and the correlation exhibited
between the boundary nodes in segment G1. Since, any tree
can be represented as a Bayesian Network, we cascade the tree
into G2 and obtain a combined Bayesian Network for the sec-
ond segment. Thus, every Bayesian Network model of a part
of the circuit now captures accurate correlation in the internal
nodes of its own and captures significant correlations from the
previous BN.

It has to be noted here that we will finally have n− 1 edges,
that would be selected from n2 edges in each boundary. More-
over, computing mutual information between two nodes in dif-
ferent cliques is computationally expensive. The reason for that
is the compiled BN itself complete use the existing resource and
hence computing the marginal joint probabilities requires large
memory accesses. In experimental results, we report our obser-
vation and it can be seen that building a tree without any heuris-
tics, can consume large computational time which underplays
the accuracy improvement. In the next section, we develop a
heuristic in tree building that we use a good trade-off between
accuracy and time.

D. Approximate CBN Modeling

In this subsection, we propose an approximate cascade struc-
ture which in theory is same as the CBN model discussed before
and relies on the same tree-dependent distribution that is dis-
cussed in section A. However, we do not explore all the n2 edges
to compute the best n− 1 edges. Instead, we use the circuit
structure to select n−1 edges. We calculate mutual information
between two boundary nodes only if they have a common child
in the next BN segment or have common parent. Since our data
structure stores parents of a node efficiently, we also calculate
mutual information between nodes having common grandpar-
ents. In circuit terms, this implies that we collect mutual cor-
relation for output signals of logic gates which have common
inputs. Also, we calculate mutual information for signals that
are inputs to one gate generating output signal. We present the
steps to generate the heuristic tree for the tree-dependent distri-
bution.

• Generate node pair in the boundary nodes that have com-
mon children.

• Generate node pair that have common inputs. This is per-
formed before breaking larger fan-ins into smaller ones.

• Generate node pair that have common parents for parents of
the boundary nodes. This is also performed in the original
network.

• Calculate P(Xi,Xj) for all the nodes from the above node
pair i, j .

• Calculate I(Xi ,Xj) for all the nodes from the above node
pair i, j .

• Assign the edges with largest I to the tree if it is not forming
cycle.

• Repeat till n− 1 edges are selected or if the all the node
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Fig. 6. Combinational circuit c17

pairs are considered.
• Pt

P(x) is computed y assigning the conditional probability
to the node pair.

V. EXPERIMENTAL RESULTS AND CONCLUSIONS

We mapped several ISCAS circuits to their corresponding
Cascaded Bayesian Networks representation. The conditional
probabilities are pre-determined by the type of gate connecting
the parents and the child. We have already discussed in Sec-
tion III that each node in Bayesian network represents switch-
ing at a line in the circuit and can be in one of the four states
(x00, x01, x10, x11). Conditional probabilities are computed di-
rectly from logic structure of the gates. We used HUGIN’s
Bayesian Network tool [23] for compiling the junction tree and
propagating the probabilities. We also performed in-house zero-
delay logic simulation providing “ground truth” estimates of
switching.

Using zero-delay model is a limitation for the current for-
malism. Most of the previous work in probabilistic modeling
presents result on zero-delay simulation.

In our experiments, we want to establish that the tree-
dependent distribution works accurately for input streams with
different degree of correlation. Even for low input correla-
tions the TD based Cascaded BN should perform better than
BN modeling. It is an extremely essential feature of a power
estimator to address inputs with a wide range of correlations.
Many past estimators assumed random inputs. Marculescu et.
al. experimentally modeled spatio-temporal dependencies in in-
put correlations in [7]. The drastic effect of input correlations
(low, medium and high) can be observed in Table IV.

First, let us consider the switching activity estimation of each
node of the c17, which is a ISCAS benchmark that is small
enough to be considered in this fashion under various degrees
of correlations. The fan-out nodes from 3 are 8 and 9. Nodes 14
and 15 are fan-outs from 11 and nodes 20, 21 are fan-outs from
16. As it can be seen in Figure 6, that the nodes 10 and 11 are
highly correlated and the nodes 16 and 19 are highly correlated
to each other. Since the nodes 10 and 16 both are dependent on
node 3 they are correlated too. We performed three experiments
(i) inputs with low correlations (random inputs), (ii) temporally
biased inputs and (iii) highly correlated counter generated in-
puts. Table II lists the estimates for all the nodes. As it can
be observed, at all the nodes, we have extremely accurate es-
timates. Moreover, it becomes very evident that the average
switching activity for these three cases are indeed affected by
the dependencies in the inputs (0.462 for random inputs, 0.347

TABLE II

COMPARISON OF ESTIMATED SWITCHING ACTIVITY BY BN MODELING

AND SIMULATED SWITCHING ACTIVITY OF EACH NODE OF BENCHMARK

C17 FOR DIFFERENT INPUT TYPES.

Node Random
Inputs

Temporally
Corre-
lated

Spatio-
temporally
Corre-
lated

Est.
SwBN

Sim.
Sw

Est.
SwBN

Sim.
Sw

Est.
SwBN

Sim.
Sw

1 0.5 0.499 0.4 0.401 0.063 0.063
2 0.5 0.5 0.4 0.402 0.125 0.125
3 0.5 0.499 0.4 0.4 0.25 0.25
6 0.5 0.5 0.4 0.4 0.5 0.5
7 0.5 0.5 0.4 0.4 1.0 1.0
8 0.5 0.499 0.4 0.4 0.25 0.25
9 0.5 0.499 0.4 0.4 0.25 0.25
10 0.375 0.375 0.16 0.16 0.125 0.125
11 0.375 0.374 0.16 0.16 0.25 0.25
14 0.375 0.374 0.16 0.16 0.25 0.25
15 0.375 0.374 0.16 0.16 0.25 0.25
16 0.469 0.469 0.38 0.382 0.125 0.125
19 0.469 0.469 0.38 0.379 0.75 0.75
20 0.469 0.469 0.38 0.382 0.125 0.125
21 0.469 0.469 0.38 0.382 0.125 0.125
22 0.492 0.493 0.435 0.436 0.125 0.125
23 0.492 0.492 0.48 0.481 0.5 0.5

for temporally biased inputs and 0.297 for highly correlated in-
puts) from each other showing us the need for input-modeling.

It is worth noting that partition points would have impact on
accuracy and in this paper, our partition is based on resource-
constraints. The partitioning algorithms that reduces correlated
boundary nodes, would enhance accuracy of this model further.
Table III shows the BN and approximate CBN model for differ-
ent partition points for benchmark circuit c432. It is clear that
CBN offers lower mean and deviation for almost all cases over
naive BN.

Next, we show results on other benchmark circuits. As be-
fore, we use a random number generator (rand function in C++)
for the inputs exhibiting low correlations (Table V). Adopting
Marculescu et al.’s [7] strategy, we generated a medium correla-
tion scenario by sorting the sequences from the random number
generator (Table VI). It has to be the noted that by sorting the
signal probabilities of each input node remains the same as that
produced by the random generator but correlations between the
nodes are introduced. Finally, we use 16 bit counters to gener-
ate highly correlated sequences for the experiments (Table VII).
These errors and standard deviation of errors (RMS) are ob-
tained by comparing the estimated value of switching activity
by CBN model and the switching activity values obtained from
an in-house zero-delay logic simulators.

In Table V, we show three types of Bayesian Network based
model for inputs with low correlation. The first set denotes
naive Bayesian Network coupling. This model makes all the
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TABLE V

COMPARISON OF RESULTS BETWEEN BN AND CBN BASED MODEL FOR INPUTS WITH LOW CORRELATIONS

BN model CBN model Approx. CBN model
circuit µ σ max Time(s) µ σ max T-

BN(s)
T-
TD(s)

µ σ max T-
BN(s)

T-
Th(s)

c432 0.006 0.031 0.29 0.16 0.002 0.032 0.197 0.36 164.58 0.003 0.023 0.287 0.171 2.83
c499 0 0.004 0.0234 0.08 0 0.001 0.006 0.09 8.94 0 0.001 0.008 1.14 7.49
c880 0.001 0.009 0.066 0.61 0.001 0.009 0.066 0.71 0.26 0 0.004 0.04 0.44 2.08

c1355 0.006 0.033 0.188 0.4 0.001 0.007 0.124 0.491 15.61 0 0.009 0.09 0.5 1.31
c1908 0.001 0.01 0.155 1.0 0.001 0.01 0.099 1.28 988.68 0.001 0.01 0.15 1.36 9.34
c3540 0.003 0.044 0.279 4.4 0.005 0.037 0.252 4.72 3411.7 0 0.041 0.26 7.31 11.55
c6288 0.014 0.046 0.421 4.5 0.006 0.023 0.313 4.857 531.26 0.013 0.041 0.375 17.26 21.49

TABLE VI

COMPARISON OF RESULTS BETWEEN BN AND CBN BASED MODEL FOR INPUTS WITH MEDIUM CORRELATIONS

BN model Approx. CBN model
Circuits µ σ Max Time(s) µ σ Max TBN(s) T-tree(s)

c432 0.004 0.042 0.171 0.22 0.000 0.020 0.183 0.16 0.94
c499 0.004 0.021 0.190 0.11 0.001 0.002 0.020 0.12 1.1
c880 0.004 0.0269 0.278 0.14 0.004 0.023 0.278 0.16 0.04

c1355 0.009 0.037 0.194 0.30 0.010 0.035 0.189 0.38 2.57
c1908 0.016 0.038 0.192 0.95 0.016 0.028 0.191 0.96 2.13
c3540 0.001 0.050 0.298 1.92 0.001 0.042 0.257 3.10 2.81
c6288 0.016 0.066 0.300 2.30 0.010 0.055 0.293 5.39 5.16

TABLE VII

COMPARISON OF RESULTS BETWEEN BN AND CBN BASED MODEL FOR INPUTS WITH HIGH CORRELATIONS.

BN model Approx. CBN model
Circuits µ σ Max Time(s) µ σ Max TBN(s) T-tree(s)

c17 0.000 0.000 0.00 0.000 0.001
c432 0.003 0.027 0.192 0.07 0.003 0.020 0.141 0.61 45.49
c499 0.002 0.023 0.172 0.09 0.000 0.018 0.113 0.12 2.10
c880 0.000 0.002 0.033 0.14 0.000 0.002 0.031 0.19 0.07

c1355 0.007 0.039 0.191 0.37 0.001 0.017 0.191 0.70 0.72
c1908 0.006 0.027 0.388 0.95 0.005 0.027 0.388 1.11 54.08
c3540 0.000 0.001 0.083 2.6 0.000 0.001 0.083 3.26 0.80
c6288 0.009 0.034 0.450 2.7 0.006 0.027 0.440 3.09 12.58

Bayesian Networks consistent on the singleton probabilities of
the boundary nodes. The mean, standard deviation, maximum
error and total computation time is reported in column 2, 3, 4
and 5. The next set is based on tree-dependent CBN model. In
this set, we explore all the n2 possible edges in the boundary
nodes to arrive at the best Maximum weight spanning tree. The
mean, standard deviation, maximum error and total computa-
tion time in Bayesian Networks and in the tree computation is
reported in column 6, 7, 8, 9, and 10 respectively. Accuracy of
this model is much higher than that of the naive coupling. It
is obvious that the time to build the tree can be high for some
benchmarks. In the third set, we report results from the approxi-
mate CBN model where the best tree is selected from the nodes

which have common inputs, or which are common inputs for
another gate (discussed in section D. The mean, standard devi-
ation, maximum error and total computation time in Bayesian
Networks and in the tree computation is reported in column 11,
12, 13, 14, and 15 respectively. It is obvious that these tree-
dependent approximate model is the best trade-off between ac-
curacy and speed.

For medium and high correlation scenarios, we report and
compare results for the naive coupled BN and the approximate
CBN models. It can be observed that the TD-CBN results in
high accuracy in terms of mean and standard deviation of er-
ror. With TD, the mean is in general lower than that without
TD-based models. Standard deviation of error which signifies
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TABLE III

MODELING ERRORS FOR TEN DIFFERENT PARTITIONS OF C432.

BN model CBN model with TD
# µ σ Max µ σ Max
3 0.005 0.054 0.228 0.004 0.052 0.238
4 0.008 0.059 0.208 0.004 0.053 0.237
5 0.010 0.061 0.203 0.010 0.061 0.207
3 0.007 0.034 0.250 0.003 0.024 0.287
5 0.009 0.060 0.208 0.005 0.052 0.229
7 0.007 0.059 0.219 0.005 0.052 0.259
4 0.008 0.057 0.223 0.005 0.054 0.256
6 0.008 0.058 0.223 0.008 0.057 0.244
3 0.007 0.034 0.255 0.002 0.025 0.303

TABLE IV

SWITCHING ACTIVITY AND PRIMARY INPUT CORRELATION

Average Switching Activity under
Circuits Low Corr. Medium Corr. High Corr.

c432 0.39 0.24 0.04
c499 0.42 0.35 0.19
c880 0.39 0.29 0.03

c1355 0.36 0.29 0.10
c1908 0.41 0.30 0.10
c3540 0.37 0.33 0.00
c6288 0.42 0.33 0.01

the diversity of error estimates are 1.5 to 2 times smaller with
TD based coupling than the naive one for most cases. For many
circuits, we have significant reduction of the maximum errors.
The reduction in standard deviation and the maximum errors
signifies that the estimation based on CBN models are not only
more accurate but also more uniform. The error distribution
with CBN and BN models for both low, medium and highly
correlated inputs for benchmark c1355 and c6288 are shown in
Figures 7, 8 (CBN in yellow (or light) and BN in red (or dark)).
We exclude all the nodes that are estimated close to zero error
to have a fair comparison of high-end errors. CBN has signif-
icantly higher number of nodes in the zero-error range (though
not seen in the graph) which is exactly the expected behavior.
It is obvious that with TD based CBN modeling, we achieve
very low error spread compared to naive BN models. We used a
DELL PC with WINDOWS (98 SE) operating system running
at 2 GHz and the maximum time for the input modeling was
1.32s. We can conclude that TD based CBN modeling is essen-
tial for accurate and uniform switching activity estimation of all
the nodes in the entire circuit and is also equally important for
modeling correlated inputs. We compare our work with a few
existing work in Table VIII for random inputs and show that we
perform really well in terms of accuracy of estimation.

VI. CONCLUSION

This paper advances the accuracy of the Bayesian network
based switching activity estimation tool, which captures depen-

TABLE VIII

COMPARISON WITH SCHEIDER et al. [19] AND MARCULESCU et al. [7].

Ref. [19] Ref. [7] CBN-TD
Circ. µErr µErr Max µErr Max
c432 0.016 0.028 0.210 0.002 0.197
c499 - 0.013 0.062 0 0.006
c880 0.006 0.013 0.069 0.001 0.066

c1355 0.005 0.004 0.003 0.001 0.124
c1908 0.010 0.009 0.131 0.001 0.099
c3540 0.014 0.030 0.201 0.005 0.252
c6288 0.023 0.014 0.089 0.006 0.318

dencies, both in the internal nodes and in inputs, in reasonable
time and with high accuracies. We suggest ways to handle large
circuits using Cascaded BNs where each BN in the cascade
exactly models spatio-temporal dependencies among the nodes
and approximate couplings between BNs are performed by TD
distributions, which are a compromise between space complex-
ity and accuracy. This approach is stimulus-free even for model-
ing correlated input streams. We also discuss complexity issues
for BN inference schemes and suggest partitioning guidelines
to form the CBN. The results are very competitive in terms of
accuracy and the elapsed time for estimation. Our future effort
will focus on modeling delays.
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