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Abstract— The goal of this work is to present a worst-case
power estimation model for QCA designs. Based on existing
power models, we derive upper bound for power dissipation
that occurs for non-adiabatic clock switching and represents the
worst-case power estimate. This upper bound is easy to compute
and does not require simulation of quantum dynamics. Given the
criticality of thermal issues and the inherent process variabilities
at nano-scale, such worst case estimates, that is easy to compute,
will be useful at higher levels of design abstractions, so as to vet
different designs or to create power macromodels for different
circuit components. There are three power dissipation events for
each cell: first when the clock goes up, second when the input
switches, and third when the clock goes down. The first and
the third events are analogous to “leakage” power in CMOS
designs in that there is dissipation even when there is no change
in inputs. The second event can be related to “switching” power
in CMOS and is dependent on inputs. The proportion between
these two types of dissipations is strongly dependent on the clock
energy. In addition to the clock, the other determining factors are
cell polarization, kink energy, and quantum relaxation time. We
demonstrate the model using majority gate and inverter, which
are critical circuit components.

I. INTRODUCTION

Quantum-dot cellular automata (QCA) is an emerging tech-
nology that offers revolutionary approach to computing at
nano-level [1], where computation is performed by device
to device Coulombic interaction. Both individual QCA cell
(semi-conductor and metallic) and multiple QCA arrangement,
such as wire and majority logic, have been fabricated and
tested [2]. Significant progress is also being made in using
molecules to implement QCAs [3], which will make it possible
to operate at room temperature. Since the QCA concept
does not involve transfer of electrons, it has a potential for
extremely low-power computing, even below the traditional
kT in the most optimistic case [4]. However, given that only
few electrons are involved in computation, it is susceptible to
thermal issues. Hence, it is important to be able to model and
predict power dissipated for the worst-case.

Elementary units of a QCA design are the QCA cells
that contain two electrons and four possible dot locations
at each corner of a QCA cell. There are two ground states
of each cell, 0 or 1, and the particular state of a cell is
determined by the Coulombic interactions with neighboring
cell states. The intended logic is mapped to the ground state
of the configuration. While there is no or very little quantum
entanglement between cells, there is significant entanglement
between the dots within a cell. The extent of the entanglement
is determined by the tunneling energy, which is used to

depolarize (nullify the cell state) a cell or to latch it into a
0 or 1 state. Current QCA designs rely on a set of 4 clocks,
phase shifted with respect to each other, and used to “push”
information from inputs to the output by modifying the cell
tunneling energy. The complete circuit is divided into zones,
each associated with one of the 4 clocks in sequence. The
clocks are used to change the state of a cell from a depolarized
state to a latching state, to a hold state, and then back to a
depolarized state.

While work on issues related to defect and faults in QCA
circuits have started [5], power models are few. Timler et
al. [6] proposed a model to estimate power dissipation during
quasi-adiabatic switching event in a QCA cell and demon-
strated it for a clocked wire. They showed that when clock
changes are nearly adiabatic, i.e. very smooth clocks, then
the power loss can be made as low as possible. Our work
builds upon this quantum mechanical power model to estimate
an easy to compute upper bound of power dissipation in
QCA circuits as a function of cell polarization, clock energy,
kink energy and quantum relaxation time. Unlike Timer et
al.’s quasi-adiabatic estimate, the computation of this upper
bound does not require full quantum-mechanical simulations.
Thus, allowing one to quickly form power estimates during
the design process. Such upper bound represents the worst-
case power dissipation, which happens in the presence of
non-adiabatic clocking. Given fabrication variabilities of nano-
level components and the importance of thermal issues, it
is important to design for the worst-case scenarios. Such
estimates, which are easy to compute, will be useful to make
design choices at higher levels of design abstractions, as and
when they are developed for QCA based circuits.

Each cell in a QCA circuit sees three types of events: (i)
clock going from low to high so as to “depolarize” a cell, (ii)
input or cells in previous clock zone switching states, and (iii)
clock changing from high to low, latching and holding the cell
state to the new state. Each of these events are associated with
power loss. An interesting point is that the power dissipated
in the first and the third transition is due to the clock changing
and occurs even if the state of a cell does not change. This is
analogous to “leakage” power in CMOS circuits. The power
loss due to the second event can be termed as the “switching”
power since it is dependent on the cells actually changing state.

The major contributions of this paper are (i) the derivation
of the upper-bound or worst-case power dissipation that does
require full quantum-mechanical simulation to estimate and
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(ii) the separation of total power into a “leakage” component
and an input dependent “switching” component. We demon-
strate our power model by simulating well known basic QCA
elements like the inverter and majority gate. We also show
how the total power dissipated in a cell varies when the clock
energy supplied to it is varied.

II. UPPER BOUND POWER MODEL

We start with the power formulation in [6] and then derive
worst-case estimates by considering the limiting case of non-
adiabatic clocking. Two possible, orthogonal, eigenstates of a
QCA cell is denoted by |1〉 and |0〉. The state or wave function
at time t, |Ψ(t)〉, evolves according to Schrodinger equation,
driven by the underlying Hamiltonian H, which is 2 by 2
matrix using the Hartree approximation [1].

H =
[ − 1

2 ∑i EkPi fi −γ
−γ 1

2 ∑i EkPi fi

]
=

[ − 1
2 EkP̄ −γ
−γ 1

2 EkP̄

]
(1)

The expected value of any observable, 〈Â(t)〉, can be expressed
in terms of the wave function as 〈Â〉 = 〈Ψ(t)|Â(t)|Ψ(t)〉
or equivalently as Tr[Â(t)|Ψ〉(t)〈Ψ(t)|], where Tr denotes
the trace operation, Tr[· · ·] = 〈1| · · · |1〉+ 〈0| · · · |0〉. The term
|Ψ(t)〉〈Ψ(t)| is known as the density operator, ρ̂(t). Expected
value of any observable of a quantum system can be computed
if ρ̂(t) is known.

Energy (and power) can be estimated by computing the
expected Hamiltonian using this density matrix. However,
for compact mathematical representation of power dissipation
the Bloch formulation of the Schrodinger equation, which
expresses the evolution of quantum systems in operator spaces,
is used. In this formulation, the expectated value of cell energy
〈Ĥ〉 at any time is given by:

E = 〈Ĥ〉 =
h̄
2
�Γ.�λ (2)

where �Γ and �λ are the Hamiltonian and coherence (state)
vectors respectively. These are arrived at by expressing the
density operator as a linear combination of the Pauli’s spin
operator σi: ρ(t) = ∑3

i=1 λiσi, where λi = Tr{ρ̂σ̂i}. The two
state Schrodinger Hamiltonian can be projected onto the Pauli
basis of generators to form a real three-dimensional energy
vector �Γ, whose components are Γi = Tr{Ĥσ̂i}

h̄ . The explicit
form of the Hamiltonian vector corresponding to Hamiltonian
is

�Γ =
1
h̄

[ −2γ,0,EkP̄
]

(3)

where P̄ is the sum of neighboring polarizations. The instan-
taneous power dissipation in a single QCA cell is

P =
dE
dt

=
h̄
2

[
d�Γ
dt

.�λ

]
+

h̄
2

[
�Γ.

d�λ
dt

]
= P1 +P2 (4)

The term P1 includes power from clock introduced into the cell
Pclock and power gain from input to output (Pin−Pout) [6]. We
are concerned with P2 = Pdiss which represents the instanta-
neous dissipated power. We use this expression for this power
dissipation equation to arrive at a bound.

We express the energy dissipated by integrating Pdiss over
time.

Ediss = h̄
2

∫ ∞

0
�Γ.

d�λ
dt

.dt (5)

Integrating by parts, we get:

Ediss = h̄
2

[
�Γ(∞).�λ(∞)−�Γ(0).�λ(0)−

∫ ∞

0

�λ(t).
d�Γ(t)

dt
.dt

]
(6)

The dissipation is related to the rate of change of Γ, which as
we see in Eq. 3, is determined by the clock and neighboring
polarizations. The faster the rate of change, the more is the
dissipated energy. In the limiting case of abrupt switching, the
energy dissipation will be the largest, which will be the upper
bound. We capture this abrupt switching case by modeling

the d�Γ(t)
dt term using delta function as ∆�Γ.δ(t), where ∆�Γ =

(�Γ0+ −�Γ0−) – the difference in magnitude of clock and/or
neighboring polarizations before and after the switching event.
Therefore the integral term in the above equation reduces to:

∫ ∞

0

�λ(t).
d�Γ(t)

dt
.dt =

∫ ∞

0

�λ(t).∆�Γ.δ(t)dt

=
[
�Γ(∞)−�Γ(0)

]
.�λ(0)

(7)

Using Eqs. 5 and 7 we can now represent the dissipation
energy explicitly in terms of coherence vector�λ(t) and Hamil-
tonian vector �Γ(t) as

Ediss = h̄
2

{
�Γ(∞).[�λ(∞)−�λ(0)]

}
(8)

The steady state density matrix at thermal equilibrium is

ρ̂ss =
e−H/kBT

Tr{e−H/kBT} (9)

The associated steady state coherence vector is

�λss = −p = −
�Γ
|�Γ| tanh(∆) (10)

where the temperature ratio (∆) is defined as

∆ = − h̄|�Γ|
2kBT

(11)

Using these Eqns. 9, 10 and 11 we obtain the values of�λ(∞)
and�λ(0)

�λ(∞) = − �Γnew

|�Γnew| tanh(∆new)

�λ(0) = − �Γold
|�Γold |

tanh(∆old)
(12)

where �Γnew and �Γold correspond to the values �Γ0+ and �Γ0−
respectively during the abrupt (non-adiabatic) switching. Now
rearranging Eq. 10 we get

tanh(∆) =
p h̄

EkP̄
|�Γ| (13)

Using these expression we can now express the upper bound
of cell energy dissipated during each switching event of the
inputs as a function of before and after polarizations of the

1-4244-0078-3/06/$20.00 (c) 2006 IEEE



0 0.5 1 1.5 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

γ
H

/E
k

E
ne

rg
y 

(e
V

)

Temp = 5.00K, T
c
 =   (in units of h

bar
/Ek)

0 to 0
0 to 1
1 to 0
1 to 1

Fig. 1. Dependence the total energy dissipated in a cell with clock energy
for different clock transitions. (a) 0→0 (b) 0→1 (c) 1→0 and (d) 1→1. Note
that the plots for cases (a) and (d) overlap completely and so does the plots
for cases (b) and (c).

cells. Given a circuit, these cell polarization changes can be
easily computed.

Ediss ≤
[

2γnew

Ek

(
po

P̄old
γold − pn

P̄new
γnew

)
+

EkP̄new

2
(po − pn)

]
(14)

Fig. 1 shows how the total dissipated energy changes when
the clock energy supplied to the cell is increased from 0.05Ek

to 2Ek for different state transitions (a) 0→0 (b) 0→1 (c)
1→0 and (d) 1→1. Here Ek is the maximum value of kink
energy between any two cells in the circuit. Note that energy
is dissipated even if the state of a cell does not change, i.e for
cases (a) and (d). This is because the high clock state only
partially depolarizes a cell and there is change in this partial
polarization with input change. As the high clock energy is
increased, the cell gets depolarized to a greater extent and the
contribution to overall dissipation due to switching states is
less. However, as we see in Fig. 1, the total dissipated energy
also increases; this is due to the contribution of dissipative
event associated with clock transitions, i.e. “leakage power.”
So, we cannot increase clock energy indefinitely.

If τ is the energy relaxation time, using Eq. 2 we can
represent the power dissipated in a QCA cell by:

P =
h̄
2τ

(�Γ(�λ− �λss)) (15)

Similar to Eq. 14 we can now find the upper bound of power
dissipated at each cell in a QCA logic circuit as

Pdiss ≤ 1
τ

[
2γnew

Ek

(
pn

P̄new
γnew − po

P̄old
γold

)
+

EkP̄new

2
(pn − po)

]
(16)

III. RESULTS

We first validate our power bound expressions using quan-
tum simulation of single cells. Then we show how we can
use these bounds to compute worst case power dissipation for
collections of cells. Fig. 2 shows the switching behavior and
power dissipation during a non adiabatic change in polarization
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Fig. 2. Polarization change (top plot) and power loss (bottom plot) in a
single cell when its polarization changes from -1 to 1 (or 0 to 1 logic) during
non-adiabatic clocking scheme
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Fig. 3. Polarization change (top plot) and power loss (bottom plot) in a
single cell when its polarization changes from -1 to 1 (or 0 to 1 logic) during
a quasi-adiabatic clocking scheme.

of a cell being driven by a single input. As we can see from the
graph, the steady state polarization λss of the cell follows the
driver polarization. In the ideal case of adiabatic switching, the
polarization of the cell (λ) should trace the same curve as λss.
But as we see, that this is not the case, since due to this abrupt
switching, the polarization of cell takes some time to settle
down to a steady state value. As we can see from the graphs,
the total power dissipated by the cell occurs not only when
its polarization changes, but a significant amount of power
loss also occurs when the clock energy barriers are raised and
lowered. We verified the total energy computed using these
types of quantum simulation with theoretical bounds and found
them to be in perfect agreement.

As a comparison, Fig. 3 shows the same switching event
as in Fig. 2 but with a quasi-adiabatic clocking scheme with
smoothed clock transitions. As we can see from the figure,
for quasi-adiabatic switching the power loss due to clock
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Fig. 4. Total power dissipated in each cell of a QCA Inverter for (a) 0→0
input transition (b) 0→1 input transition.

switching is almost zero and power loss due to change in
polarization of the cell is reduced significantly. For ideal
adiabatic switching, which is not practical though, there should
be no power loss.

Next, we consider some arrangements of QCA cells im-
plementing crucial QCA circuit elements. Fig. 4 shows the
power loss at each cell of an inverter when the polarization
of the input cell is (a) kept constant 0→0 and (b) changed
0→1. For this work, we have taken the value of high clock
to be 0.7Ek. Where Ek is the maximum value of kink energy
between any two cells in the circuit. As can be predicted when
there is no change in input polarization (0→0 transition), the
total power dissipated each cell will be only due to the raising
and lowering of clock barriers.

Fig. 5 show the power dissipated in the cells of a majority
gate whenever its inputs are (a) not switched 000→000 and
(b) switched 000→011. We have observed some interesting
results while studying various input vector transitions in a
majority gate. While we have seen that in case no switching,
i.e. 000→000, there is no change in polarization of the cells
and hence the total power dissipated is equal to the power
dissipated in raising and lowering the clock energy barriers.
In case of a 000→011 transition shown in Fig. 5(b), the total
power dissipation in each cell will be significantly higher
as there is significant amount of power dissipation when the
polarization of cell changes. As we can see clearly from the
power dissipation graphs of inverter and majority gate, the total
power dissipation in an inverter is larger as compared to that
of a majority gate. Also the value maximum power dissipated
in single cell in an inverter seems to be larger than that of
a majority gate. For thermal stability of designs, it would be
important to consider the maximum power dissipated at any
cell in a design. Two designs might have the same total power,
but the maximum power at any cell might be higher in one
design.
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Fig. 5. Power dissipated in each cell of a QCA majority gate for (a) no
input transition 000→000 and (b) input transition 000→011.

IV. CONCLUSION

We developed a worst-case power dissipation model for
QCA circuits based on the non-adiabatic case associated with
abrupt clock switching. We derived theoretical upper bounds
on dissipated power and then established correspondence with
the concepts of “leakage” and “switching” power in CMOS
circuits. Such separation is quite important for circuit de-
signs since switching power is dependent on the circuit input
patterns, while leakage power is independent of inputs. The
main contribution of this work is that we can compute power
dissipated at each individual cell in a circuit for any input
vector transition. This enables us to locate cells in a circuit
that are critical in terms of power dissipation and also the
input vector transitions that result in large power dissipations.
One important observation of this work is the extent to which
clock energy has an impact on the power dissipated in QCA
circuits.
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