CGN 6933 Groundwater Engineering

Homework #3 "Due" Tues., Sept. 24, 2019 Fall 2019 Prof. J. A. Cunningham

This assignment will not be collected or graded.

However, diligent completion of this assignment will help prepare you for the examinations.

- (1) A confined aquifer has an estimated compressibility $\alpha = 2 \times 10^{-9} \text{ m}^2/\text{N}$, a thickness b = 20 m, and a porosity n = 0.26. The water temperature in the aquifer is 20 °C.
 - (a) Calculate the specific storage, S_s , and the storativity, S.
 - (b) How much water would be released from storage in this confined aquifer under an area $1 \text{ km} \times 1 \text{ km}$, if the head in that area were lowered by an average of 2 m?
- (2) An unconfined sand aquifer is 20 m thick. Its compressibility is $\alpha = 3 \times 10^{-8} \text{ m}^2/\text{N}$. Its specific yield is $S_y = 0.13$.
 - (a) Estimate the elastic storativity $S = S_s b$ of the sand aquifer. Estimate the ratio of water table storage (phreatic storage) to elastic storage in this aquifer. In your opinion, is it acceptable to ignore elastic storage?
 - (b) How much, on average, would head have to be lowered in an area of 2.5 km² to release 560,000 m³ of water from storage in the aquifer?
- (3) Consider the potential function $\Phi(x, y) = x^2 y^2 + x$.
 - (a) Verify that $\Phi(x, y)$ satisfies the Laplace equation.
 - (b) Find the discharge components Q_x and Q_y .
 - (c) Find the location(s) of the stagnation point(s).
- (4) For unconfined flow, we defined the discharge potential Φ according to $\Phi = \frac{1}{2}Kh^2 + C_U$, where C_U is an arbitrary constant.
 - (a) Verify that $Q_x = -\frac{\partial \Phi}{\partial x}$ and $Q_y = -\frac{\partial \Phi}{\partial y}$. Hint: use Darcy's law, coupled with the relationship between \vec{q} and \vec{Q} for unconfined flow.
 - (b) Verify that $\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = 0$. Hint: it is OK to start with the simplest form of the "general flow equation" that we derived in class for unconfined flow.
 - (c) What are the advantages of working in terms of Φ instead of h for unconfined flow?

- (5) Suppose there is a homogeneous isotropic aquifer where the groundwater flow is stagnant under natural conditions. You drill a well in the aquifer at location (x = 0, y = 0), and you start pumping water out of the well at the volumetric flow rate Q. Your instructor has told you that, once the system reaches steady state, the discharge potential $\Phi(x, y)$ in the aquifer is given by $\Phi(x, y) = \frac{Q}{2\pi} \ln(r) + C$, where C is an arbitrary constant, and $r = \sqrt{x^2 + y^2}$. Here, you will try to convince yourself that this expression is correct.
 - (a) Find Q_x and Q_y . If you can, express Q_x and Q_y in terms of the polar coordinates r and θ . Hint: use the chain rule, i.e., $\frac{d\Phi}{dx} = \frac{d\Phi}{dr}\frac{dr}{dx}$ and $\frac{d\Phi}{dy} = \frac{d\Phi}{dr}\frac{dr}{dy}$.
 - (b) Verify that the expression for Φ satisfies the Laplace equation.
 - (c) Consider a circle of any arbitrary radius R with the pumping well located at the center. Verify that the volumetric flow rate of water into the circle from the surrounding aquifer is equal to the pumping rate Q.
 - (d) Argue that, based on your findings in parts (b) and (c) above, the expression for Φ must be correct.
- (6) This problem deals with the principle of "superposition."
 - (a) Suppose that $\Phi_1(x, y)$ and $\Phi_2(x, y)$ satisfy the Laplace equation. Show that any linear combination $\Phi = C_1 \Phi_1(x, y) + C_2 \Phi_2(x, y)$, where C_1 and C_2 are arbitrary constants, also satisfies the Laplace equation. This is sometimes called the "superposition principle," and it is also said that the Laplace equation is a "linear" equation.
 - (b) Two pumping wells are installed in a homogeneous isotropic aquifer. The first well is located at (x_1, y_1) and pumps at a volumetric flow rate Q_1 . The second well is located at (x_2, y_2) and pumps at a volumetric flow rate Q_2 . What is the discharge potential, $\Phi(x, y)$, within the aquifer?
 - (c) For the scenario posed in part (b), suppose that $Q_1 = 50 \text{ m}^3/\text{day}$ and well 1 is located at $(x_1 = -1 \text{ m}, y_1 = 1 \text{ m})$. Well 2 is located at $(x_2 = 1 \text{ m}, y_2 = -1 \text{ m})$, and pumps at a volumetric flow rate $Q_2 = 10 \text{ m}^3/\text{day}$. Find the location(s) of the stagnation point(s).