Anti-tumor activity of self-charged (Eu,Ca):WO₃ and Eu:CaWO₄ nanoparticles

CAO LIN*, CAO JIEXIN[†], WANG CONG, CHE PING[‡], PAN DE'AN and ALEX A VOLINSKY[#]

Department of Materials Physics, University of Science and Technology Beijing, Beijing 100083, China

[†]Peking University Health Science Centre, Beijing 100191, China

[‡]School of Applied Science, University of Science and Technology Beijing, Beijing 100083, China

[#]Department of Mechanical Engineering, University of South Florida, Tampa FL 33620, USA

MS received 26 May 2011; revised 25 July 2011

Abstract. Non-stoichiometric (Eu,Ca):WO₃ and Eu:CaWO₄ nanoparticles with anti-tumor activity are synthesized in a sol-gel method by adding excessive Eu³⁺ and Ca²⁺ ions to tungsten oxide crystal structure. Colorimetric assay shows that 10 nm (Eu,Ca):WO₃ and Eu:CaWO₄ nanoparticles can effectively inhibit growth of mammary cancer cells without any harm to normal cells. Nanoparticles are characterized by X-ray diffraction, high resolution transmission electron microscopy and fluorescence optical spectrometry. Nanomaterials, insoluble in synthesized water, have complicated self-charging surfaces that trap mammary cancer cells. Surface self-charging effect is suggested as the inhibition mechanism.

Keywords. Anti-tumor activity; self-charged; nanoparticles.

1. Introduction

In the 1970s, French scientists discovered anti-tumor and anti-viral characteristics of polyacid compounds (Raynaud et al 1971; Chermann et al 1975; Schoenfeld et al 1975). In the late 1980s, Yamase suggested a circular redox mechanism from a perspective of biomolecule electronic structure based on certain anti-tumor experiments (Yamase et al 1988; Inouye et al 1991). However, there is no appropriate technique to prove this theory. In recent years, studies of anti-tumor drugs mainly focused on nanomaterials. Several nanomaterials with anti-tumor effects have been synthesized. For example, Yin et al (2006) and Ingo et al (2006) reported that hydroxyapatite nanoparticles can inhibit hepatocellular carcinoma cells. Cao *et al* (2007) prepared Eu^{3+} doped nano-scheelite which can effectively inhibit human promyelocytic leukemia cell line (HL60). In this paper, the inhibiting effects of (Eu,Ca):WO3 and Eu:CaWO4 nanoparticles on HL60 are reported and the anti-tumor mechanism is discussed based on the self-charging surface concept.

2. Results

2.1 Crystal structure and phase analysis

Figure 1 shows XRD diffraction pattern of the as-synthesized (Eu,Ca):WO₃ and Eu:CaWO₄ nanoparticles. The main diffraction reflection corresponds to the (Eu,Ca):WO₃ phase.

The diffraction reflection of the Eu: CaWO₄ phase is quite weak, which means that most of the nanoparticles are formed in the (Eu,Ca):WO₃ phase, and only a small portion of them is the Eu:CaWO₄ phase. The main diffraction reflection can be well indexed to the monoclinic WO₃ phase: space group P2(1)/n, a = 7.297 Å, b = 7.539 Å, c = 7.68809 Å, $\alpha = 90^{\circ}$, $\beta = 90 \cdot 91^{\circ}$, $\gamma = 90^{\circ}$ (PDF number 83-0951). No diffraction reflections corresponding to Eu or Ca-related phases are detected, indicating that the Eu and Ca ions have been doped into the crystal lattice without changing the WO₃ structure.

Crystal structure of (Eu,Ca):WO₃ is similar to ReO₃, which belongs to the cubic crystal system with positive and negative ion coordination numbers of 6 and 2, respectively. In this structure, the [ReO₆] octahedrons are interconnected with each other by Re culmination in three dimensions. This structure has large inter-atomic spaces in the centre of the unit cell, i.e. the structure channels. WO₃ structure can be obtained by a small distortion of the ReO₃ structure. Eu and Ca ions in the inter-atomic spaces of WO₃ can form (Eu,Ca):WO₃ as is shown in figure 2. TEM shows that (Eu,Ca):WO₃ and Eu:CaWO₄ phases can be jointly positioned in each nanoparticle or be respectively positioned in different nanoparticles.

2.2 (Eu,Ca): WO₃ nano-crystal morphology and formation mechanism

Figure 3 shows synthesized (Eu, Ca):WO₃ morphologies at different synthesis stages. In the process of preparing the

^{*}Author for correspondence (lincaoustb@yahoo.com.cn)

sample, as the Ca²⁺ ions are gradually added to the precursor, Eu^{3+} , Ca^{2+} , acetic acid and ammonium paratungstate are formed. (Eu^{3+} , Ca^{2+}):WO₃ system with superabundant positive charge is formed after Eu³⁺ or Ca²⁺ occupied the interatomic spaces of WO₃ decompounded by the ammonium paratungstate. The new decompounded WO₃ in the solution has been adsorbed on the surface of the (Eu^{3+}, Ca^{2+}) :WO₃ system for attracting the positive charge. Thus the micelle system is positively charged and turns into a positive micelle. This is an 'adsorption sol' process. CTAB polarity end in the solution is negatively charged and forms an adsorption layer which is adsorbed on the sol surface. The carbonhydrogen group at the colloid surface of the adsorption layer can reduce surface energy of nanoparticles, weaken the electrostatic effect and avoid enlargement and conglobation of the nanoparticles. At first when calcium acetate drops into the solution, the relative concentration of CTAB is higher

Figure 1. XRD diffraction pattern of (Eu,Ca):WO₃ and Eu:CaWO₄ nanoparticles.

than 1.66%. According to the Debye's sausage shape model (Debye and Anacker 1951), one may assume that this solution system has a structure of CTAB micelle double laver shown in figure 3A. It is shaped like a disc in the centre with radiating molecules, while at the two poles it takes the form of a Hartley sphere (Hartley 1936). There is a large quantity of surfactant molecule polarity groups in this model so that a better contact with the colloid is achieved. At the same time the contact area of the carbon-hydrogen chain with water is reduced. It is more thermodynamically stable, thus a stickshaped Eu, Ca-doped nano-tungsten oxide with a diameter of ~ 10 nm is synthesized, as shown in figure 3B. At the anaphase of the reaction the relative concentration of CTAB is about 0.83% and the stick-shaped nanomaterials change into spherical micelles. Consequently, spheres of Eu, Cadoped nano-tungsten oxide with a diameter of ~ 10 nm are formed.

2.3 Microstructure and electronic structure of (Eu, Ca):WO₃ phase

Based on the structure analysis, Ca and Eu atoms cannot substitute W atoms on the triad axis of the WO_3 , they can only occupy centre of the structure channel inter-atomic spaces formed by WO_3 rhombic system.

Figure 4 is the high-resolution TEM image of a (Eu,Ca):WO₃ nanoparticle taken along the $[\overline{12}1]$ direction; figure 5 is the simulated image of the $[\overline{12}1]$ projection. The black pairs of pellets are the W atoms; the grey ones are the O atoms. Two W atoms share six O atoms and together form an octahedron structure. Every four of these octahedrons can form a big square structure channel. Figure 6 is the high resolution TEM image of a (Eu,Ca):WO₃ nanoparticle taken along the [312] direction, showing that the open square channel in the crystal structure is occupied by Eu and Ca. As

Figure 2. Simulated (Eu,Ca): WO_3 structure image, where biggest white balls are W atoms, smaller red balls are O atoms and centre blue balls are Eu or Ca atoms.

Figure 3. (**A**, **B**). First stage as calcium acetate drops in (CTAB relative concentration is relatively high); (**C**, **D**) later stages as calcium acetate drops in (CTAB relative concentration is relatively low).

Figure 4. High resolution TEM image of a (Eu,Ca):WO₃ nanoparticle taken along $\left\lceil \overline{121} \right\rceil$ direction.

there are so many Ca^{2+} and Eu^{3+} ions that the crystal surface has, excessive charges cannot easily be compensated. Thus, this part of the crystal loses its symmetry centre due to small lattice distortions caused by charge imbalance.

Because preparation of the sample is an adsorption sol process, nanograins will form different channels after being heated. Figure 7 is the grain boundary channel formed by three crystal boundaries converged inside the particle. These channels can form nano-traps with an adsorbing effect.

2.4 Role and charge clustering of Eu³⁺, Ca²⁺ ions in Eu:CaWO₄

Although (Eu,Ca):WO₃ is a non-illuminant, a spectrograph can be used to measure the spectrum of Eu:CaWO₄. Figure 8 gives 394 nm excited emission spectra of bulk Eu:CaWO₄ and Eu:CaWO₄ nanoparticles.

It can be concluded from table 1 and figure 8 that the spectral peak of both bulk and nanomaterials for the ${}^5D_0 \rightarrow {}^7F_2$ transition splits into three peaks. The selection rules state that in such a case the point group of the nanomaterial structure is D_2 , the luminescence centre is a rhombic system with no symmetric or inversion centre (Zhang 1983). There is little difference between the radii of Eu^{3+} and Ca^{2+} ions (96 pm for Eu³⁺ and 99 pm for Ca²⁺), and their charge only differs by 1, therefore, Eu^{3+} ions can easily occupy the lattice sites of Ca^{2+} ions. This causes aberration in the Ca^{2+} ion-induced hexahedron, magnifying the (010) lattice plane and makes it lose its inversion centre. Thus a charge clustering is created and the original CaO₈ regular hexahedron turns into a hexahedron without a symmetric centre. As the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition is stronger in the nanomaterial than in the bulk, it can be inferred that this sort of aberration is more evident in the former than in the latter. Figure 9A shows acyclic variations of the spacing and contrast of the (101) lattice planes brought by local charge surplus as a result of

Figure 5. (A) Simulated $[\overline{12}1]$ projected image and (B) 3D schematic of WO₃ crystal structure.

Figure 6. High resolution TEM image of a (Eu,Ca):WO₃ nanoparticle taken along $[31\overline{2}]$ direction.

Figure 7. Grain boundary channel formed by three crystal boundaries convergence in WO₃ crystal.

 Ca^{2+} ions surplus, causing clustering along the 101 direction and substitution of Ca^{2+} by Eu^{3+} . Figure 9B shows Ca^{2+} substitution by Eu^{3+} , and a short dislocation of the (101) lattice direction caused by CaO_8 aberration generated by surplus Ca^{2+} ions.

3. Anti-tumor experimental results

The results of this study indicates that there is no relationship between drug dose and its effects on human umbilical veins endothelial cell, one kind of normal human cells, as shown in figure 10. This experiment indicates that the drug causes no harm to normal cells.

However, as the concentration of the drug is increased, inhibiting effect on mammary cancer cells is enhanced gradually, presenting a dose response relationship.

This experiment indicates that the drug can inhibit mammary cancer cells and that the inhibiting ratio is enhanced gradually with increasing drug concentration.

3.1 Surface self-charging theory of anti-tumor activity

According to the above analysis, we can propose the surface self-charging theory of (Eu,Ca):WO₃ and Eu:CaWO₄ nanoparticles. Tumor cells have abnormal electronic structure with non-localized, highly active electrons. Lanthanide, Ln^{3+} ions, originating from biological macromolecules (proteins, enzymes and nucleic acids, etc.) can replace metal ions such as Ca²⁺ and Mg²⁺. These ions can be combined with groups such as amino acid, phosphoric acid, etc in biological macromolecules, thus forming biological macromolecule groups. Because of these special features, when the structure traps of the nano-grains adsorb a tumor cell by electrostatic forces, the tumor protein comes into contact with Ln^{3+} ions. Reactions on the self-charged surface of nanoparticles can inhibit duplication of tumor cells through electrons transfer.

Figure 8. 394 nm excited emission spectra of (A) bulk Eu:CaWO₄ and (B) Eu:CaWO₄ nanoparticles.

Figure 9. (A) Bright field high resolution TEM image of Eu:CaWO₄ obtained with electron beam parallel to (101) lattice direction and not parallel to other lattice directions and (**B**) bright field high resolution TEM image of Eu:CaWO₄ obtained with electron beam parallel to both (101) and (010) lattice directions.

Crystal system	Symmetric group	Magnetic dipole transition $J = 0 \rightarrow J = 1$	Electronic dipole transition $J = 0 \rightarrow J = 1$	Electronic dipole transition $J = 0 \rightarrow J = 2$
Monoclinic	C_2	$3(\pi 1, \sigma 2)$	$3(\pi 1, \sigma 2)$	$5(\pi 3, \sigma 2)$
	$C_{\rm s}(C_{\rm 1h})$ $C_{\rm 2h}$		$3 (\pi 2, \sigma 1)$ Forbidden	$5 (\pi 2, \sigma 3)$ Forbidden
Orthorhombic	D_2		$3(\pi 1, \sigma 2)$	$3(\pi 1, \sigma 2)$
	C_{2v} D_{2h}		Forbidden	$4(\pi 2, \sigma 2)$ Forbidden

Table 1. Possible Eu^{3+} ion symmetry positions and their transition characteristics.

4. Discussion

Cancer is one of the most fatal diseases of the present day. Although several chemotherapy or subsidiary anti-cancer drugs are used clinically, most of them can only provide a temporary relief instead of permanent cure. Nobel laureate in Physiology or Medicine, Szent-Györgyi believes that many factors can cause cancer, but just like there are several reasons for a moving car to stop, the most essential one is braking, and the 'brake' which stops cancer is most likely the electron transfer effect. (Eu,Ca):WO₃ and Eu:CaWO₄ nanoparticles are different from other drugs in that they have a structure which can exchange electrons with tumor cells. This new discovery may establish a novel direction for anti-tumor drug research and bring a far-reaching effect in search for the cure of tumors.

The main prospect of this study is that current formulation for cancer treatment can be improved. At the same

Figure 10. Drug concentration effect on inhibition of mammary cancer/human umbilical endothelial cells and HL60.

time Eu:CaWO₄ nanoparticles are also fluorescent, which can provide a new method for *in vivo* tumor research. For instance, we can utilize this material as a spectrum probe for biological dim light stationary processes using a single photon detector. We can also use the *ns-ps-fs* transient absorption line to study the ultra-fast processes that occur in biological systems. Resonance energy spectrometry could be employed to study the electron transfer rules of (Eu,Ca):WO₃ and Eu:CaWO₄ nanoparticles and their anti-tumor characteristics. This research pioneers a new path of medication study, and may have a great impact on anti-tumor research.

4.1 Methods

1 g of ammonium paratungstate was dissolved in 5 ml of glycol in a round bottom flask followed by 0·1 g of cetyltrimethyl ammonium bromide (CTAB). Calcium acetate (0·5 g) was dissolved in another 5 ml glycol solution with 5 ml 0·1 mol/L EuCl₃ in a glass container. The solution from this glass container was then added drop by drop into the round bottom flask under continuous magnetic stirring for 10 min at 60 °C. Mixed solution was then placed in a 100 ml capacity Teflon-lined stainless steel autoclave at a temperature of 110 °C for 4 h, and then cooled at room temperature for 12 h. The sediment was obtained by filtering the product, which was heat-treated at 110 °C for 4 h in a dry oven and then heat-treated again in an electric oven at 550 °C for 4 h.

The product was ground for 30 min to acquire nano-sized (Eu,Ca):WO₃ and Eu:CaWO₄ powders. The anti-tumor drug was obtained by putting the products into dimethyl sulfoxide (DMSO) to form a colloidal solution.

X-ray diffraction (XRD) pattern was obtained using an X-ray diffractometer (D/max, Rigaku, Japan). TEM images were taken on a JEM-100 transmission electron microscope (JEOL Ltd, Tokyo, Japan). High resolution images were taken on JEM-2010 high resolution transmission electron microscope (JEOL Ltd, Tokyo, Japan). The sample emission and excited spectra were obtained with Flourolog-3 fluorescence optical spectrometer at room temperature.

Anti-tumor experiments were carried out at the Peking University Health Science Centre. The effect of the drug on cell proliferation was determined by using MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) colorimetric assay. Exponentially growing cells were seeded onto a 96-well microplate at 10^5 cells/well. After 6 h, cells were exposed to increasing concentrations of compounds for 48 h. Then 20 μ l of 5 mg/ml MTT in pure bovine serum was added. After an additional 4 h of incubation, reaction was quenched with an assay buffer (5% isopropanol, 0-1% hydrochloric acid and 10% sodium dodecyl sulfate) overnight, and the absorbance was measured at 570 nm wavelength by using a microplate multi-detection reader and compared with 630 nm wavelength absorbance.

References

- Cao L et al 2007 Int. J. Miner. Metall. Mater. 16 468
- Chermann J C, Shinoussi F N and Jasmin C 1975 *Biochem. Biophys. Res. Commun.* **65** 1229
- Debye P and Anacker E W 1951 J. Phys. Colloid. Chem. 55 644
- Hartley G S 1936 Aqueous solutions of paraffin chain salts (Paris: Hermann)
- Ingo W B, Yingchao H and Shipu L 2006 J. US-China Medical Sci. 3 42
- Inouye Y, Tokutake Y, Yoshida T, Yamamoto A, Yamase T and Nakamura S 1991 *Chem. Pharm. Bull.* **39** 1638
- Raynaud M et al 1971 C. R. Acad. Sci. Ser. D 272 347
- Schoenfeld B, Steinheider G and Glemser O Z 1975 *Naturforsch.* **306** 959
- Yamase T, Fujita H and Fukushima K 1988 Inorg. Chim. Acta 151 15
- Yin M Z, Han Y C, Bauer I W, Chen P and Li S P 2006 *Biomed. Mater.* **1** 38
- Zhang Siyuan 1983 Lumin. Display Dev. (in Chinese) 3 18