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Relationship between metallic multilayers hardness and monolayer thickness has been investigated and
explained for electroplated Ag/Cu and Cu/Ni multilayers using a modified Thomas-Fermi-Dirac electron
theory. Experiments reveal that the peak hardness of Ag/Cu multilayers occurs at the monolayer thickness of
about 25 nm, while the peak hardness of Cu/Ni multilayers occurs at about 50 nm. Critical monolayer
thickness corresponding to the peak hardness is approximated by the grain size limit of stable dislocations in
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l\ﬁl‘ggyzr structure Ag crystals for the Ag/Cu multilayers and in Cu crystals for Cu/Ni multilayers. Grains size limits are calculated
Hardness based on a modified Thomas-Fermi-Dirac electron theory. Developed relationship between the critical

Mechanical properties monolayer thickness and the grains size limit helps understand nanoscale metallic multilayers softening.
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1. Introduction

Metallic multilayers, such as Cu/Nd [1-4], Cu/Cr [1,4], Cu/V [1,4] and
Al/Nb [1] either get softer or hold their strength when each layer
thickness decreases below a certain value. For nanostructured materials
no apparent dislocations activity is observed during or after straining [5].
Thus there exists a size limit for grains with stable dislocations (the size
limit hereafter).

Gryaznov et al. [6,7], Nieh et al. [8] and Wang et al. [9] analyzed the
stress field around dislocations, and provided the size limit for some
metals and compounds. Cheng et al. [10] calculated the size limits of
fifteen metals according to the modified Thomas-Fermi-Dirac electron
theory (TFDC). However, the size limits calculated by Cheng et al. are
larger in magnitude than the actual measured grain sizes.

In present work the effects of the monolayer thickness on hardness
of electrodeposited Ag/Cu and Cu/Ni multilayers were investigated.
Cheng's method was complemented with dislocation core energy, and
a model for the size limit was derived based on the TFDC electron
theory. The model explains the monolayer thickness corresponding to
the peak hardness (the critical monolayer thickness hereafter).

2. Experimental procedure

Ag/Cu and Cu/Ni multilayers were prepared by electrodeposition
in a dual bath. Each multilayer structure consists of the same thickness
multiple monolayers. Each monolayer thickness was controlled by
electroplating duration and the current density of the cathode
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substrate. Monolayer thickness was measured using scanning
electron microscopy (SEM).

Ag/Cu and Cu/Ni multilayers hardness was measured using a
microhardness tester. The mean value of six hardness measurements
per sample was taken. The indentation depth was less than one-tenth
of the total thickness of the multilayer but no less than seven periodic
thicknesses.

3. Size limit model

Prevailing driving force for generating a dislocation arises from
external stress and the pressure exerted by Fermi electrons, which
supports electron shells expansion at the expense of decreasing internal
energy. Such a counterbalance generates a relatively stable state [10].

The strain energy E; (the sum of the elastic strain energy and the
dislocation core energy) of an edge dislocation per unit length can be
approximately expressed as [11]

_pb* 4R
= p (1)
where pis the shear modulus, b is the Burgers vector, v is the Poisson's
ratio and R is the radius of the edge dislocation elastic stress field.
The electron pressure P at the atomic boundary in solid materials is
equal to (1/3)(2 K+ Vex) [10], where K is the kinetic energy density of
the electrons at the atomic boundary and Ve is the exchange energy
density at the atomic boundary. The electron pressure P can be
written as
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where n is the electron density at the atomic boundary, m is electron
mass, h is the Plank’s constant, & is the permittivity of vacuum and e is
the electron charge.

It can be assumed that in every crystal plane perpendicular to the
dislocation line of an edge dislocation, there is a cavity directly below the
extra half plane of atoms. The work Ep, done by the electron pressure P to
create dislocation cavities per unit length, can be written as Ep = —PV/d,
where V is the volume of electrons driven into a cavity by the
environment, and d is the distance between adjacent cavities [10].

V-n=z, where z is the number of valence electrons. For a close-
packed structure, d =2r(2/3)"?, where r is the atomic radius. The
total energy € used to create a dislocation per unit length is the sum of
E; and Ep. Since dislocation is in a relatively stable state, € must be
positive. When ¢=0, dislocation is in the critical state between
stability and instability. Corresponding elastic stress field diameter,
D (=2R), is the limit size of a grain with stable dislocations, D.. Thus
the size limit (limit diameter of a grain with stable dislocations) is

D= 2(b/4)e" &)

where n=96.9(1 —1)zr* —3n*2/3(1—0523n*—13)i*, n* =n-10"%,
r*=r-10'", b~2r and 1* =10~ '°. Here, SI units are used.

4. Results

Fig. 1 shows a cross—section SEM micrograph of 250 nm/250 nm
Cu/Ni multilayers. In Fig. 2 the multilayer hardness is plotted against
the inverse square root of the monolayer thickness h. The hardness of
both multilayers vary linearly with h~ '/ for h>150 nm. The peaks in
hardness and the softening appear for h<150 nm. The peak hardness
is 1.48 GPa at the thickness h =25 nm for Ag/Cu multilayers, and the
peak hardness is 3.19 GPa at the thickness h=50nm for Cu/Ni
multilayers.

5. Discussion

It is clear that for Ag/Cu and Cu/Ni multilayers with h>150 nm
hardness behavior is consistent with the Hall-Petch relation. In this
paper the critical monolayer thickness is a focus of the discussion.

For metallic films prepared by electrodepositing the grains are
roughly columnar [12]. Each layer in the multilayer structure contains
one layer of grains, 1-2 times the layer thickness in diameter [12,13].
For nanoscale metallic multilayers, the monolayer thickness is
approximately the height of the columnar grains.

Using Eq. (3), for Ag crystal, z=1, n*=2.026 m~3, r*=1.597 m,
,u* =2.7Pa and ¥=0.38 [10] one gets D.=27 nm; for Cu crystal,
z=1,n"=2934m > r"=1.413m, x* =4.79 Pa [10] and v=0.31
one gets D.=88nm; and for Ni crystal, z=2, n*=3.195m 3,
r*=1.382m, " =8 Pa and v=0.34 [10], thus D. =663 nm. Accord-

/

Fig. 1. SEM micrograph of 250 nm/250 nm Cu/Ni multilayers.
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Fig. 2. Hardness versus h~ '/?; (a) Ag/Cu multilayer, (b) Cu/Ni multilayer.

ing to the calculated size limits of Ag and Cu, for Ag/Cu multilayers,
dislocations in Cu layers will disappear when the monolayer thickness
is reduced to 88 nm, roughly consistent with prior observations [13].
No dislocations in Ag layers will appear if the monolayer thickness is
below 27 nm. Similarly, for Cu/Ni multilayers, dislocations in Ni layers
will disappear when the monolayer thickness is reduced to 663 nm,
while dislocations in Cu layers continue to monolayer thickness of
88 nm. In Fig. 2 the critical monolayer thicknesses are respectively
25 nm and 50 nm in Ag/Cu and Cu/Ni multilayers, which is roughly
consistent with the critical grain size of Ag and Cu crystals.

When the monolayer thickness in both multilayers decreases from
150 nm to the size limit, dislocations adjacent to the grain boundaries
of Ag and Cu crystals would disappear because the strain energy
cannot counterbalance the electron pressure work and dislocations in
the center of every grain can exist until the monolayer thickness is
equal to the size limit. At this scale of the monolayer thickness, there
are only a few dislocations present in every grain, thus the work
hardening effect weakens and the Hall-Petch relation based on the
dislocations pileup theory breaks down. When the number of
dislocations (q) in a pileup is small (<6 for a single-ended pileup,
and q<3 for a double-ended pileup), deviations from the Hall-Petch
relation are predicted [14].

The critical monolayer thicknesses of electroplated multilayers in
this paper are larger than reported in other publications, where
multilayers are prepared by physical vapor deposition [15] (the
critical monolayer thickness is about 4 nm for Cu/Ni) or e-beam
evaporation [16] (the critical monolayer thickness is about 1.2 nm for
Ag/Cu). Compared with physical vapor deposition and e-beam
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evaporation, electroplating can reduce inter-diffusion across the
interface due to the lower deposition temperature and coherent
interface, since semi-coherent interfaces and epitaxial growth are less
likely [17]. The constraint effect of the interface in electroplated
multilayers is reduced. An experimental study of Oberle et al. [18]
showed that the interfacial diffusion affects the multilayer hardness.
For Cu/Ni multilayer prepared by physical vapor deposition micro-
structure analysis shows that inter-diffusion of Cu and Ni takes place
over several atomic layers [15]. Dislocation elastic stress field will be
affected by the interfacial diffusion, coherent and semi-coherent
interfaces. Dislocation elastic stress field can be transmitted across
coherent and semi-coherent interfaces. Thus dislocations stability in
multilayers prepared by physical vapor deposition and e-beam
evaporation increases, and the critical monolayer thickness is
reduced.

6. Conclusions

The critical monolayer thicknesses of electrodeposited Ag/Cu and
Cu/Ni multilayers are 25 and 50 nm, respectively. Theoretical size
limits for Ag, Cu and Ni crystals are 27, 88 and 265 nm, respectively.
These estimations are based on the model of the grain size limit that
includes elastic strain energy and dislocation core energy. The critical
monolayer thickness is roughly consistent with the lower grain size
limit of the multilayer crystals.
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