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1.0 INTRODUCTION

Research in computer-aided detection for mammography has been an active area of research, yet little published work has addressed the quantitative comparison of algorithm performance. Publicly available mammography datasets such as those contained in the Mammographic Image Analysis Society (MIAS) (Suckling et al. 1994) and Digital Database for Screening Mammography (DDSM) (Heath et al. 1998) databases make this possible. This paper introduces a new mass detection algorithm that uses a novel approach of average fraction under the minimum (AFUM) filtering and illustrates its performance using datasets from both the MIAS and DDSM databases. Comparisons are made to the performance of two previously published research efforts using datasets from the MIAS database. In both comparisons, the performance of the new algorithm is nearly comparable to, or better than, the previously reported performance. An analysis of the results also suggests the disparate difficulty of these datasets for CAD algorithms. The source code for the new algorithm, its performance evaluation methodology, and the image data set used are available at marathon.csee.usf.edu/Mammography/Database.html.

2.0 METHODS

2.1 AFUM MASS DETECTION ALGORITHM

A new mass detection algorithm was developed that can easily be applied to different mammography datasets. This is because the algorithm requires neither the training of parameters nor the normalization of images. This algorithm treats pixel values as samples from an ordinal random variable. Thus, only logical operations are directly applied to pixel values. This approach obviates the decision to process the mammogram in density space, transmission space or a space designed to achieve an iso-precision scale of the noise (Karssemeijer 1990).

As in most CAD approaches, the breast region is first segmented from the mammogram. The AFUM filter is then applied to the breast region in the image. This AFUM filter applies a neighborhood operation in a sliding window. At each pixel position (i,j) the fraction of pixels at a distance r2 from location (i,j) that have a lower intensity value than all the pixels at a distance less than or equal to a distance r1 from location (i,j) is computed. This fraction under the minimum (FUM) calculation is done over many scales using a range of r1 and r2 values and the average of those calculations yields the average FUM, or AFUM, value. This value represents the degree to which the surrounding region of a point radially decreases in intensity.  Points with a high AFUM value are suspicious for being masses.

The centroid of each local (regional) maxima in the AFUM filtered image is initially marked as a candidate detection site and the suspiciousness of the site is given by the AFUM value at that site. This collection of sites is then sorted in decreasing order of the suspicion. A process is then applied to remove less suspicious sites that are closer than 5mm from a more suspicious site. This yields a set of potential detection sites.

Mammograms were processed to linearly relate the pixel values with optical density and to reduce the resolution to approximately 300 microns by computing the median value of an integer number of raw pixel values that spatially correspond to each 300 micron (or slightly larger) pixel. The reduced resolution image was then processed with the AFUM filter with parameters 0<=r1<=20 and r2=r1+10. These parameters result in the inside disk of the filter ranging in diameter from 0 to 1.2cm and the outside in the range 0.6 to 1.8cm in diameter. So long as these values are regarded as fixed apriori choices based on the problem definition, the AFUM algorithm is regarded as having no training step.

2.2 EVALUATION OF DETECTION PERFORMANCE

The performance of the mass detection algorithm was evaluated using FROC analysis. The method to calculate true positive and false positive detections was as follows. A ground truth region that had at least one detection site fall inside its boundaries was counted as a true positive detection, and abnormalities with no corresponding detections were counted as false negatives. In an effort to maintain consistency with the approaches used for scoring detections in (te Brake and Karssemeijer 1998) and (Sallam and Bowyer 1999), multiple detections that correspond to the same ground truth region are counted as one true positive and zero false positives. However, in the performance evaluation using a new dataset from DDSM, when N>=1 detections correspond to a ground truth region, they are counted as one true positive detection and N-1 false positive detections. The motivation for switching to this method of counting false positives is that only one prompt is desired for each abnormality.

The method applied to scoring true positive and false positive detections to datasets from the MIAS database is comparable to that used by (te Brake and Karssemeijer 1998) and (Sallam and Bowyer 1999). Although Sallam and Bowyer considered a detection region to correspond to a ground truth region when at least 40% of the detected region fell inside the ground truth region, we consider a correspondence when 100% of our detection region (specified as a single point) falls inside the ground truth region.

For the AFUM algorithm, each point on an FROC curve was generated by scoring the true positives and false positives for a fixed number of (the most suspicious) detections for each image. The number of detections was set to different values to sweep out the FROC curve. This approach of reporting a fixed number of prompts per image is perhaps unusual. In other algorithms that we are aware of, the number of prompts reported varies across the images.

3.0 DATASETS

3.1 MIAS DATABASE

Two previously published articles provided performance evaluation results on datasets contained within the MIAS database. Table 1 lists the individual images used in the performance evaluation of the mass detection algorithms in both papers. These listings were obtained by contacting the authors of the papers.

Table 1: Images from the MIAS database that were used for performance evaluation of mass detection algorithms in previously published papers. Please note that image 59 was treated as a normal image (not containing an abnormality) in the performance evaluation because no ground truth location was present in the ground truth data file.

	MIAS Set 1

60 Images
	MIAS Set 2

246 Images

	003-004,006-009,011,014,016,018,020,

022-024,026-029,031,033-045,058,115,

117,120,124-125,130,134,141,144,148,

155,158,170,171,178-179,181,184,186,

202,206,264-265,267,270-271,274
	001-014,017-018,023-024,029-068,

071-078,081-090,093-174,189-208,

229-230,243-244,257-294,297-304




Karssemeijer and te Brake used all of the malignant masses (excluding asymmetric densities) and 30 normal mammograms from the MIAS database to evaluate three individual mass detection algorithms. They then showed an improvement in detection performance for each approach by combining the density detections with the detection of spiculated features.
Sallam and Bowyer used most of the mammogram pairs that contained both benign and malignant abnormalities for testing (others were used for training). In addition they used 52 pairs of normal mammograms (the number 53 was reported in their paper was a typographic error). They used these cases to evaluate a detection algorithm that used the intensity weighted difference image of the contra-lateral images to locate abnormalities.

3.2 DDSM DATABASE

Seventy nine cases with at least one malignant mass with spiculated margins were extracted from the DDSM to form this dataset. They all came from Massachusetts General Hospital and were scanned on a Howtek 960 digitizer at a 43.5 micron sampling resolution in 12 bits per pixel. The cases were divided into the training and testing sets shown in table 2. The sets have nearly 
Table 2: Cases from the DDSM that were used for training and testing the AFUM detection method. All four mammograms in each case were used in the performance evaluation and all benign and malignant masses were used. Each case contains at least one malignant spiculated lesion. The training set was used for algorithm development (not parameter training).
	Training Set (156 images, 78 masses)

(Cancer Volume Number) Case Number
	Test Set (160 images, 81 masses)

(Cancer Volume Number) Case Number

	(07)1118   (07)1217   (08)1486   (11)1693

(07)1134   (11)1222   (14)1520   (10)1700

(06)1156   (07)1224   (08)1557   (11)1701

(07)1159   (08)1229   (10)1587   (11)1720

(07)1160   (11)1236   (10)1589   (11)1726

(06)1163   (11)1252   (10)1592   (11)1790

(07)1166   (07)1262   (10)1620   (14)1896

(06)1174   (08)1403   (10)1622   (14)1899

(06)1203   (08)1417   (10)1642   (14)1908

(06)1212   (08)1467   (11)1671
	(06)1112   (06)1171   (08)1416   (10)1669

(07)1114   (07)1207   (08)1468   (11)1673

(06)1122   (06)1211   (08)1485   (11)1674

(07)1127   (07)1228   (08)1504   (11)1804

(06)1140   (07)1233   (08)1510   (11)1821

(07)1147   (07)1234   (10)1573   (11)1827

(07)1149   (07)1237   (10)1577   (14)1892

(06)1155   (07)1247   (10)1618   (14)1906

(06)1168   (07)1258   (10)1628   (14)1985

(06)1169   (08)1401   (11)1658   (14)1999


balanced lesion subtlety and ACR breast density distributions. All malignant and benign masses from the ground truth were used. (The DDSM is described in another paper in this volume.)

4.0 RESULTS

The FROC curve in Figure 1 illustrates the performance of the AFUM detection algorithm on the datasets used to evaluate the performance of the algorithms by te Brake and Sallam. The FROC curve in Figure 2 illustrates the performance of the AFUM algorithm on both the training and testing datasets from the DDSM.

5.0 DISCUSSION

The performance of the AFUM algorithm as illustrated in the FROC curve in figure 1 shows that this algorithm compares favorably to the method in (Sallam and Bowyer 1999) at all but one
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Figure1: Results of applying the AFUM algorithm to the datasets used to evaluate the performance of other mass detection algorithms in (te Brake and Karssmeijer 1998) and

(Sallam and Bowyer 1999). Please note that the data to plot the three FROC curves was not available from te Brake and Karssemeijer. The data plotted here was extracted from the FROC plot in their paper by scanning it. Thus, their paper should be consulted by the reader for a definitive performance comparison.
operating point and the AFUM algorithm performs at least as well as all three of the (density) detection methods in (te Brake and Karssemeijer 1998) at most operating points. The AFUM algorithm does not perform as well as methods that combine density and spiculation features in (te Brake and Karssemeijer 1998). This suggests that using the AFUM algorithm in combination with spiculation features may be worthwhile.

Comparing the performance of algorithms by implementing them from published descriptions can be a very difficult task. As can be seen in figure 1, the difference between the measured performance of a single algorithm on different datasets that are in the same database (let alone other databases) can be dramatic. Thus, without the knowledge of the measured performance of an algorithm on a publicly available dataset, it is not possible to tell if one has a correct implementation of an algorithm.

As mentioned in section 2.1, images were normalized to linearly relate pixel value to optical density although this step is not required. The choice to include this step was made because most other algorithms that we are aware of process mammograms in density space. Working in density space also simplified thresholding the image to segment the breast tissue region. Our experience has shown that thresholding at an optical density around 3.0 works well in practice. 
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Figure2: Results of applying the AFUM algorithm to the training and testing cases from

the DDSM. These results suggest that although data from the training set was used in algorithm development, the AFUM algorithm is not specifically tailored to the training set.

The output of AFUM filtering is not sensitive to the remapping of pixel values provided the mapping function is monotonic (and does not invert the image intensities). If one desires to skip the step of re-mapping the image to optical density an automated technique could be applied to identify a threshold value to use in the breast segmentation procedure (Bick et al. 1995).

The implementation of the AFUM method along with the performance detection evaluation software for images from both the MIAS and DDSM databases are being made available so others can reproduce these results and can use the AFUM algorithm to establish a baseline performance on any set of images. While it has been suggested previously (Nishikawa et al. 1994) that physical measurements of lesion size and contrast could be provided for evaluation datasets, those methods incorporate variability in the method used to measure them. An alternative approach may be to provide the FROC performance curve generated by a publicly available implementation of an algorithm. This could show the relative difficulty, or ease, of a dataset measured with a reproducible method. So if a different data set is used in evaluating a mass detection algorithm, then running the publicly available AFUM implementation on this data set and comparing the results to those in figure 2 will indicate if the data set is more or less challenging.

6.0 CONCLUSION

Common mammography databases allow the performance of different CAD methods when both the selection of images and the method used for scoring true positives and false positives are clearly stated. The AFUM algorithm presented in this paper has nearly comparable and in some cases better performance than the mass detection algorithms in previous papers.  It requires no training stage and is can be applied without normalizing images. The details regarding the performance evaluations in this paper may facilitate the evaluation of new algorithms. The implementation is available at marathon.csee.usf.edu. It is written in C to run on a UNIX system.
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