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INTRODUCTION 
 

Air pollution is now the world’s largest single environmental health risk. The recently released 

World Health Organization (WHO) report attributes about 7 million worldwide premature deaths 

to air pollution; 4.3 million deaths are attributable to household air pollution and 3.7 million 

deaths attributable to ambient air pollution
1
. Within the urban context, motor vehicles are a 

significant contributor to ambient air pollution and have been linked with adverse health 

impacts
2
. Therefore, it is important to measure and model population exposure to air pollution. 

 

Personal monitoring, where individuals wear exposure measurement devices, is the gold standard 

for exposure estimation. However, personal monitoring campaigns are often limited to small 

sample sizes due to high costs. Alternatively, studies also use centralized monitoring station 

measurement data to estimate individuals’ exposures. However, this approach can inaccurately 

characterize the spatial distributions of pollutant concentrations, especially for traffic-related air 

pollutants that exhibit considerable spatial variation
3
, leading to exposure misclassification. 

Besides, due to the descriptive nature of these studies, exploring urban design solutions which 

could potentially result in lower exposures has turned out to be a challenge. To overcome these 

limitations, some studies use modeling techniques to estimate pollutant emissions, 

spatiotemporal distributions of concentrations, and the resulting individual exposures
4
. 

 

This study is part of an overarching project that aims to understand and predict interactions 

between design of urban transportation infrastructure, human exposures to traffic-related air 

pollutants, and the social distribution of exposures
5,6

. Here, we describe and demonstrate an 

integrated transportation and air pollution modeling framework that brings together activity-

based travel demand simulation, dynamic traffic assignment simulation, mobile source emissions 

estimation, and dispersion modeling to estimate individual- and group-level exposures to mobile 

source pollution for the Tampa region.  We also demonstrate the first stages of the framework 

resulting in emissions estimates. 

 

 



 2 

METHODS 
 

Hillsborough County, Florida is our study area. The county has a diverse mix of air pollution 

sources and population demographics, few public transportation options, an unsatisfactory air 

quality record, and a sprawling urban form. These attributes make it a good test bed for 

investigating alternate transportation design scenarios that seek to improve the air quality. 

Traffic-related air pollution is a complex mixture of many specific pollutants including oxides of 

nitrogen (NOx), carbon monoxide (CO), particulate matter (PM), and benzene. In this study, we 

focus on oxides of nitrogen (NOx) as a surrogate for traffic-related air pollution
2
. 

The modeling framework is shown in figure 1. It consists of three components: transportation 

modeling, air pollution modeling, and exposure modeling.  

Figure 1. The integrated modeling framework for air pollution exposure estimation. 
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Transportation Modeling 
 

The transportation modeling component includes an activity-based travel demand model 

(DaySim) and a dynamic traffic assignment model (MATSim). As part of the Second Strategic 

Highway Research Program, Resource Systems Group (RSG) has developed the Tampa Bay 

activity-based travel demand model (simply called, Tampa ABM) which is based on the DaySim 

framework
7
. We used this model in our study. The Tampa ABM is comprised of a set of discrete 

choice models that estimate the long term choices (work location, auto ownership levels) and 

short term activities (location, travel mode, daily scheduling) of households and individuals, 

using optimization techniques that assign higher probability to choices with greater utility.  

Inputs to the model include synthetic population, land use data, and travel system 

characteristics
8
. The synthetic population was generated using the 2010 census summary files 

and the American Community Survey’s 2006-10 Public Use Microdata Sample (PUMS) data. 

Similarly, the Florida Department of Revenue’s tax assessor records, household census records, 

and employment data provided by InfoGroup, for the year 2010, were used to generate the land 

use data. Following this, the level of service variables, including travel time and travel cost, for 

2010 were obtained from the Tampa Bay Regional Planning Model. Finally, the discrete choice 

models were estimated using pooled 2009 National Household travel Survey data for the 

Jacksonville and Tampa Bay areas. Activity-travel patterns for one day for each hypothetical 

individual in the study region are output from the model. They include detailed spatial 

coordinates for the fixed activity locations, time-of-day for activities, activity durations, and 

travel mode between these activity locations. 

Although activity-based travel demand models provide detailed information on individuals’ 

activity-travel patterns, they are generally inadequate for estimating travel routes between the 

fixed activity locations. The route information is essential both for emissions and human 

exposure estimation. To estimate the travel route information, we used MATSim which is a 

dynamic traffic assignment model
9
. Specifically, we processed the trip file outputs from the 

Tampa ABM using SPSS and Java programming to provide the initial travel demand for 

MATSim. Additionally, the road network for the Tampa Bay area was also processed to create 

the network inputs for MATSim. MATSim estimates travel routes for the demanded trips by 

maximizing overall utility. In the optimization, an individual’s travel plan is penalized if the 

simulated travel schedule differs from the travel schedule provided by the Tampa ABM. At each 

iteration, MATSim drops the travel plans with high penalties and estimates new travel plans by 

modifying the trip schedules or the travel routes. The outputs for this model include hourly 

traffic volumes and travel times on a typical weekday for each link, and the spatial coordinates 

for each individual along their travel paths. 

Air Pollution Modeling 
 

Once link traffic volumes have been simulated, hourly distributions of mobile source emissions 

and the concentrations can be estimated. To estimate the mobile source emissions, we used the 

2014 MOVES model
10

. Specifically, we estimate seasonal-average diurnal cycles of hourly 

emissions by running MOVES in batch mode at the project scale for all roadway links in 

Hillsborough County. First, the hourly traffic volume and speed for each roadway link, obtained 

using MATSim, are input to the MOVES model. Speeds are estimated using the travel time 

output data. Second, we aggregate the 2010 Hillsborough County meteorological data provided 
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with MOVES, for the months from each season to generate averaged diurnal cycle of hourly 

temperature and relative humidity for a representative day of that season. County-specific default 

fuel formulation data and the national default vehicle age distribution data for the year 2010, are 

also used.  For the results shown below, we applied this framework to estimate NOx emissions on 

an average winter day (including the months of November through March).  

To estimate concentrations, emissions output from MOVES will be combined with the point 

source emissions and are input to AERMOD along with the necessary meteorological inputs to 

calculate the hourly distributions of concentrations. Specifically, the link-level emissions will be 

modeled as area sources using the roadway length and width characteristics obtained from the 

transportation network. Surface and profile data for the year 2010 are being prepared using the 

AERMET program by utilizing the raw data from the National Climatic Data Center for the 

Tampa International Airport and the Ruskin stations, respectively. Similarly, the terrain data and 

the receptor grid are being prepared using the AERMAP program. Using these inputs, 

concentrations will be generated for each hour of the meteorological record for a regular grid of 

receptor locations with 500 m resolution throughout the study area.  Values will be averaged to 

generate the diurnal cycle of hourly concentrations for each season.   

Exposure Modeling 
 

In the exposure modeling step, we combine the spatiotemporal locations of hypothetical 

individuals with the spatiotemporal distribution of pollutant concentrations to estimate the 

person-level exposures. We merge the outputs from DaySim and MATSim to create a sequential 

activity-record for each person. Specifically, the activity records contain the location coordinates, 

time-of-day, and activity durations both for fixed location activities and the travel activity, for 

each individual. This information will be combined with the concentration maps to generate 

time-weighted exposure measures for all the representative individuals in the study region. 

RESULTS  
 

The link-specific NOx emissions resulting from passenger cars on an average winter day are 

presented in figure 2. Emissions are higher during the morning (7 to 9 am) and the evening (4 to 

7 pm) peak hours compared to the rest of the day. Additionally, emissions during the evening 

peak hours are higher compared to the emissions during the morning peak hours. This could be 

an artifact of the individual activity-travel patterns, because the evening commute has a higher 

propensity for stopping when compared to the morning commute
11

. 

Spatially, higher emissions are observed along the major freeway corridors including I-75, I-275, 

and I-4. This is expected as these freeway corridors experience high traffic volumes. High 

emissions are also observed along the road network near Brandon, a suburban location near 

Tampa. Emissions are somewhat low in the Tampa Downtown area. This may be an artifact of 

not using visitor and freight trips in the model, and is the subject of current study. Overall, these 

results demonstrate the integration of activity-based travel demand (DaySim), dynamic traffic 

assignment (MATSim), and mobile emission (MOVES) models to estimate mobile source 

emissions at a high resolution. 

The next steps of this study include addition of truck trips, followed by completion of the 

concentration and exposure estimation for NOx for the winter season. Ultimately, estimates of 
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population exposure will be obtained for alternative scenarios of urban land-use design and 

transport policies. Exposures will be simulated for the year 2050 under (1) a smart-growth 

oriented compact urban form with significant presence of public transport systems and (2) a 

sprawl-growth scenario with little presence of non-automobile modes of travel.  The smart-

growth scenario includes the availability of a new rail travel mode in the study region along with 

an expanded bus rapid transit service which connects the commercial and residence locations 

with the rail line. The rail mode will be modeled after the Tampa Bay Area Regional 

Transportation Authority’s long term transit vision for the Bay area. Additionally, a stringent 

land use policy that discourages leapfrog urban development will be applied to this scenario. In 

the sprawled-growth scenario, no additional public transportation options will be added to the 

study region and the existing highway network will be expanded. Further, a flexible land use 

policy that allows for leapfrog development will be applied in this scenario. Hence, results 

should help improve understanding interactions between urban transportation design, air 

pollution, and health. 

Figure 2. Diurnal cycle of mobile source NOX emissions in Hillsborough County. 
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