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Abstract: We introduce, validate and demonstrate a new software
correlator for high-speed measurement of blood flow in deep tissues based
on diffuse correlation spectroscopy (DCS). The software correlator scheme
employs standard PC-based data acquisition boards to measure temporal
intensity autocorrelation functions continuously at 50− 100 Hz, the fastest
blood flow measurements reported with DCS to date. The data streams,
obtained in vivo for typical source-detector separations of 2.5 cm, easily
resolve pulsatile heart-beat fluctuations in blood flow which were previously
considered to be noise. We employ the device to separate tissue blood flow
from tissue absorption/scattering dynamics and thereby show that the origin
of the pulsatile DCS signal is primarily flow, and we monitor cerebral
autoregulation dynamics in healthy volunteers more accurately than with
traditional instrumentation as a result of increased data acquisition rates.
Finally, we characterize measurement signal-to-noise ratio and identify
count rate and averaging parameters needed for optimal performance.
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1. Introduction

Blood flow is a clinical biomarker for tissue health because of its importance for oxygen deliv-
ery and clearance of metabolic byproducts, and Diffuse Correlation Spectroscopy (DCS) [1, 2]
is emerging as the non-invasive optical method of choice to measure blood flow in tissues lo-
cated 1−3 cms below the surface [3–7]. Nevertheless, despite attributes such as suitability for
bedside monitoring and sensitivity to tissue microvasculature [2, 3, 5, 8], as well as numerous
clinical applications [6, 7, 9–26], the full potential of DCS as a clinical blood flow monitor will
only be realized when several technical limitations [5, 27] are ameliorated. Methods to remove
the confounding influence of flow in superficial tissues, for example, are under development
but need more validation [22,28–32]. Similarly, methods for absolute calibration of blood flow
have been developed and tested with some success [33–36], but more work is needed.

A third limitation and opportunity for improvement concerns data throughput, e.g., measure-
ment time resolution and acquisition rate. Most DCS measurements of blood flow are slow, with
measurement sampling rates ranging from 0.3 to 1 Hz. Thus DCS has only been used to mea-
sure flow variation over slow time scales, i.e., measurements every minute/hour [10,13,37,38],
or measurements every day [39]. Indeed, fast cerebral blood flow (CBF) measurements
(25−50 Hz) can enable new applications for DCS, such as monitoring cerebrovascular autoreg-
ulation dynamics [40,41] wherein beat-to-beat variability of both blood pressure and blood flow
are used to characterize autoregulation. High temporal resolution measurements will also im-
prove identification of motion artifacts and thereby create potential for measuring tissue blood
flow during exercise [42]. Finally, fast sampling increases measurement throughput and will
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Fig. 1. (A) Schematic of DCS instrumentation in the semi-infinite geometry. Highly coher-
ent single mode laser light is used to illuminate the sample via optical fibers. Red blood
cell motion (e.g., red disks to light red disks in time τ; blood flow F) causes fluctuations in
the intensity of backscattered light that is collected a distance ρ away from the source, and
is directed to single photon counting avalanche photo diodes (APDs). A correlator counts
the arrival of digital TTL pulses generated by the APDs to compute the DCS autocorrela-
tion functions, (B) Sample intensity autocorrelation functions (g2(τ)) highlighting different
flow rates.

enable high spatial resolution imaging with fewer detectors. For example, photons collected
from many (32−48) detector positions can be routed to a few (4−8) photon detectors via an
optical switch. In these cases, besides the obvious cost advantages, fast sampling can reduce the
imaging frame rate to seconds or less (rather than minutes), thus enabling dynamic imaging.

In this contribution we report on the development of a novel software correlator optimized
for continuous, high-speed monitoring of deep tissue blood flow based on diffuse correlation
spectroscopy (DCS). This device uses the ‘shift-and-add’ method [43, 44] to directly compute
the correlation function at a few (40), highly relevant delay times (1µs ≤ τ ≤ 250µs). Lever-
aging this data compression and other technological improvements, we demonstrate sustained
blood flow measurement speeds up to 100 Hz with 8 simultaneous detection channels (and up
to 1 kHz with 2 detection channels). To our knowledge, these experiments represent the fastest
measurements of blood flow with DCS. The fast data streams easily resolve pulsatile heart-beat
fluctuations in blood flow which were previously treated as noise, and they enable us to monitor
cerebral autoregulation dynamics more accurately than with traditional instrumentation.

The remainder of this paper is organized as follows. We first provide context for our work
with respect to traditional flow measurement devices and other software correlators. Next, we
describe the software correlator instrumentation and validate its measurements in vivo with a
hardware correlator. We then highlight the utility of the fast correlator for two in vivo applica-
tions. First, we measure the pulsatile arterial blood flow with DCS; in the process we separate
the tissue blood flow components in the dynamical signal from tissue absorption/scattering
components. Second, we measure cerebral autoregulation dynamics in healthy adults. Finally,
we characterize the effect of averaging and photon count rate on measurement signal-to-noise
ratio.

2. Correlation methods: background and new features

The fast data throughput improvements are best appreciated by comparison to traditional meth-
ods utilized for DCS measurements [2–5]. Briefly, DCS employs coherent near-infrared light
to characterize moving particles (red blood cells) in tissue via temporal light intensity fluctu-
ations. Figure 1 shows a schematic of the typical DCS instrument. Laser light illuminates the
tissue. An optical fiber, placed on the surface ∼ 2−3 cms away from the source, collects light
that has diffused through the tissue and directs it to a photon counting detector that generates
an electrical Transistor-Transistor Logic (TTL) digital pulse for every detected photon. A cor-
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relator records the arrival of TTL pulses and uses the distribution of arrival times to quantify
the temporal fluctuations of detected light intensity. Formally, the correlator calculates the nor-
malized intensity autocorrelation function (g2(τ)) from measurements of the photon intensity,
g2(τ) ≡ 〈I(t)I(t + τ)〉/〈I(t)〉2, where, I(t) is the detected intensity at time t, τ is the correla-
tion delay time, and 〈〉 represent time-averages. Blood flow is estimated by fitting the measured
intensity autocorrelation function to mathematical models appropriate to the measurement ge-
ometry.

The rapid adoption of DCS for clinical flow monitoring was aided by the availability of user-
friendly and convenient hardware correlators (e.g., Correlator.com, Bridgewater, New Jersey;
ALB, Hessen, Germany), but this convenience also limited measurement speed. Traditionally,
correlators employ embedded programming and a multi-tau algorithm [45–47] to compute the
autocorrelation functions over a large range of delay times (from ∼ 1µs up to as much as
1 ∼ 2s); this design follows from early dynamic light scattering (DLS) and diffusing wave
spectroscopy (DWS) experiments in mostly non-biological samples [43–47]. DCS intensity au-
tocorrelation functions from deep tissue blood flow, however, typically decay at a much faster
rates than in DLS experiments [3, 8], and exhibit other slow dynamics at heart rate frequencies
(and even faster). Deep tissue g2(τ) most often decays to 1 at delay times of τ ∼ 250µs or less
(see Fig. 1(B)). Thus, correlation data at delay times greater than ∼ 250µs does not offer sig-
nificant information about tissue dynamics. Furthermore, the autocorrelation function at short
delay times is more sensitive to photons that travel deep into tissue, i.e., the photons we care
about [28,48,49], and blood flow changes can be estimated from DCS autocorrelation functions
at a single delay-time [28]. Thus, many reasons exist for data-set reduction/compression, and by
reducing the number of delay-times in the correlation function calculation, our data acquisition
can be made more efficient and faster.

Unfortunately, reconfiguration of commercial correlators that are pre-optimized for general
applications is nontrivial; reconfiguration involves reprogramming of the embedded correla-
tor circuits with specialized equipment. Nevertheless, some precedence for fast blood flow
measurements exists with hardware correlators, albeit with limitations. Of note is the work
of Dietsche et. al. [50] who used a hardware correlator in the so-called ‘burst’ mode to mea-
sure blood flow at ∼ 40 Hz; the measurement was fast enough to detect pulsatile blood flow
in the human arm and forehead at source-detector separations of 1.4 ∼ 1.9 cm. However, the
measurements required either averaging of correlation functions from many (16−32) detectors
at a single point in space [50], or the use of a dual-mode correlator and 2 detectors gated at the
pulse rate [51]. Importantly, burst mode correlators store rapidly acquired normalized intensity
autocorrelation functions on an internal memory buffer which only has space for approximately
1000 correlation functions [50]. Thus, they are designed for sustained high speed acquisition
over short time intervals (∼ 20 s [50]) and cannot be easily used for continuous long-term
monitoring. Moreover, data transfer interfaces and program drivers employed to transfer the
correlation functions to a computer are not optimized for speed. Therefore, even though actual
computation of correlation functions on the hardware correlator can be fast, programming over-
head issues result in blood flow measurements at speeds only as fast as 1∼ 2 Hz (for standard
correlators).

Computation of correlation functions in software rather than hardware, i.e., the software
correlator, offers a flexible alternative approach that greatly facilitates optimization of the cor-
relation measurement for deep tissue blood flow with DCS. The software correlators also utilize
digital counters to record TTL pulses from the photon counting detectors [43, 44, 52, 53]. In-
stead of computing the correlation function with embedded programming, however, high-level
programs (e.g. LabVIEW, C++) control the counter readout and estimate the correlation func-
tion in the computer’s random access memory (RAM). Proof-of-principle measurements with
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diffuse correlation spectroscopy via the Wiener-Khinchin theorem, i.e., the convolution of the
measured temporal intensity and its time-reversed duplicate have been made with software
correlators [52, 53]. These studies did not optimize the correlation function computations for
measurement speed, and this approach requires a large buffer to store the stream of detected
photon pulses each second, e.g., data sampling rates smaller than 2 µs would fill a typical com-
puter’s buffer in less than a second [52]. Thus, continuous blood flow monitoring over long time
intervals with this approach is not practical (as was the case with the burst mode correlator).

Our approach utilizes the ‘shift-and-add’ method [43, 44], to directly compute the correla-
tion function; this scheme is technically similar to that of hardware correlators. Importantly, we
leverage several technical advances. First, we employ a data reduction/compression strategy,
i.e., the correlation function is measured at only a few biologically relevant delay times (40
delays; 1µs ≤ τ ≤ 250µs). Second, we employ an improved instrument design, i.e., the pho-
ton counters are directly connected to the computer’s PCI-bus, eliminating the need for USB-
software drivers. Finally, our software design substantially reduces data transfer overheads. The
present contribution thus describes an approach to simplify and optimize computation of cor-
relation functions for deep tissue blood flow monitoring with DCS. Importantly, this flexible
solution can be implemented/adapted to any existing DCS system with modest instrumentation
upgrades. The design of this improved software correlator is described in detail below.

3. Real-time software correlator: design and instrumentation

Our real-time software correlator is implemented on a personal computer (Dell Inspiron, In-
tel core i5− 4200M, Dual Core, 8GB RAM) using a dedicated 8 channel PCIe/PXIe6612
counter/timer data acquisition board (National Instruments, Austin, TX) and a custom software
program (LabVIEW, National Instruments, Austin, TX). As shown schematically in Fig. 1(A),
a stream of digital TTL pulses generated by the photon counting APD is directed to an edge-
detecting photon counter on the PCIe6612 data acquisition board. The operation is diagrammed
in Fig. 2(B). Briefly, the counter’s operations are synchronized by an internal timebase (set to
80 MHz by default). At every clock-tick of the timebase, the counter seeks a TTL signal at its
input terminal, and if the TTL pulse is present, then the counter increments and updates its in-
ternal count by 1. The photon counts are then transferred to an internal buffer at a user-defined
sampling clock frequency ( fs = 1/∆t). By generating the sampling clock based on the data
acquisition board’s built-in frequency generator, we ensure that counter timing/sampling is un-
affected by computer processing operations. The counter buffer (N(i)) is allowed to accumulate
counts over a user-defined integration time (tint ), and then nint = fs× tint points of the buffer
are transferred to the computer for calculation of the correlation function. Thus, N(i) represents
the number of counts that have been accumulated through the ith sample interval in the counter
buffer.

Since the counter continuously accumulates photon counts, the quasi-instantaneous photon
count during the small time interval at index i (i.e., n(i)) is calculated as n(i) = N(i+1)−N(i).
The normalized intensity autocorrelation at delay time τ = ∆n/ fs is then estimated from:

g2(∆n = τ fs) =
〈n(i)n(i+∆n)〉
〈n(i)〉〈n(i)〉

(1)

where, 〈〉 represent time averages over navg = nint −∆n points. Notice, the smallest delay time
in the computation of the autocorrelation function is (1/ fs) s, and the correlation function de-
tection frame rate is (1/tint) Hz. In our implementation of the software correlator, fs = 1 MHz,
while tint can vary from 1 ms to 1 s. For a typical in vivo experiment, tint ∼ 40 ms. The custom
software correlator computes the normalized autocorrelation function using Eq. (1) over 40 de-
lay times (1 µs to ∼ 125 µs) from 8 channels simultaneously. Real-time computation of the
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Fig. 2. (A) Block diagram of experiment setup for in vivo studies. Long coherence length
near-infrared light illuminates the tissue. Diffuse light is collected via a 4× 1 bundle of
single mode fibers 2.5 cms away on the surface for detection. Two detection channels are
directed to a commercial hardware and two more to the custom software correlator. (B)
Schematic operation of software correlator. TTL pulses generated by the APDs are counted
using an 80 MHz internal counter time base. Accumulated photon counts are transferred
to a counter buffer (N(i)) at a user defined sampling frequency ( fs = 1/∆t). N(i) denotes
the ith sample in the counter buffer, i.e., the number of counts that have been accumulated
through the ith sample interval.

correlation function is ensured via buffered producer-consumer loops [54].
The high acquisition rate is in part due to more time-efficient software architecture. More-

over, computing the autocorrelation function over a relatively small range of delay times greatly
simplifies the software operations; a smaller range of delay times permits use of the simpler
single-tau correlator design wherein photons do not have to be temporally binned as in multi-
tau correlators [44]. More significantly, the smaller delay-time range permits smaller integra-
tion times. For example, from Eq. (1) one can infer that the minimum number of points, nint ,
required to estimate the correlation function is ∆n+ 1. Computation of the correlation func-
tion at large delay times, i.e., larger ∆n, will necessitate larger nint (and consequently larger
integration times, tint ) to ensure that nAvg� 1. As we have previously described, DCS intensity
correlation functions decay to their minimum value at delay times < 200 µs, and measurements
beyond these time scales are superfluous.

We close this section with a note about timing and sampling considerations. In general, the
temporal response time of the APD will limit the maximum number of photons that can be
detected in one second, while the counter timebase (80 MHz) places a limit on the frequency
of TTL pulses (i.e., photons), that can be counted. The most popular/common single photon
counting APD used for DCS (SPCM-AQ4C, Excelitas, Quebec, Canada) has a temporal re-
sponse time of 25 ns, and a response ‘dead time’ of 50 ns. Thus the maximum photon count
rate that the APD can detect is∼ 13.3 MHz, which is sufficiently small compared to the default
counter timebase of 80 MHz. Nevertheless, the relative differences between the APD response
time and the counter timebase are important design considerations for the software correlator.

4. Experiments and results

All blood flow measurements were carried out using a custom DCS instrument (Fig. 2(A)) [22,
28]. Briefly, a continuous wave, long coherence length (> 5 m) fiber coupled laser
(785 nm, 80 mW, DL785-100-3O, CrystaLaser Inc., Reno, NV) was used to illuminate the
sample via a multimode fiber (200 µm diameter, OZ Optics, Ottawa, Canada). Remitted light
that travelled through the sample is detected by a bundle of single mode fibers (5 µm diameter,
OZ Optics, Ottawa, Canada) located 2.5 cms away from the source. Each detector fiber directs
light to a single photon counting APD (SPCM-AQ4C, Excelitas, Quebec, Canada). For compar-
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Fig. 3. Accurate estimates of blood flow with real-time software correlator. (A) Protocol for
validating accuracy of blood flow measured with software correlator. For these validation
experiments, the probe was placed on subject forearms, and an arm cuff was placed on the
subject’s bicep on the same side of the probe. (B) Representative intensity temporal auto-
correlation functions estimated by the software correlator (40 delay times, solid blue line
with solid blue markers) and a commercial hardware correlator (256 delay times, dashed
red line) using an integration time of 1 s, under baseline conditions. (C) Dynamics of the
tissue blood flow index, estimated by fitting the hardware (dashed red lines) and software
(solid blue lines) correlator data to a diffusion model (Eq. (2), Appendix 1). Vertical dashed
black lines bound the period of arm-cuff occlusion.

ison studies, the outputs of the detectors were split between a commercial hardware correlator
(Correlator.com, Bridgewater, NJ) and our custom software correlators. Correlation functions
derived from the same source-detector separation were averaged. All in vivo experiments were
approved by the Institutional Review Board of the University of Pennsylvania, and a total of
eight subjects were recruited for this study.

4.1. Software correlator provides accurate estimates of flow

We first demonstrate that the real-time software correlator accurately estimates blood flow in
humans under baseline conditions and during an arm cuff ischemia (see Fig. 3(A)). For these
validation experiments, a blood pressure cuff was placed around the subject’s bicep (on the
same arm as the probe). With the subject lying supine on a comfortable bed, an optical probe
with embedded sources and detector fibers (2.5 cm separation) was secured on the subject’s
forearm. A commercial pulse oximeter (Rad-9, Masimo, Irvine, CA) monitored the subject’s
heart rate, and the heart rate data was recorded on the computer. The integration times (alterna-
tively, the correlation function frame rate) of both hardware and software correlators were fixed
at 1 s. After 10 minutes of baseline condition measurements, the blood flow in the arm was
reduced for 3 minutes, by inflating the blood pressure cuff to 180 mmHg using a Tourniquet
system (Zimmer Inc., Warsaw, IN). The experiment concluded with 5 minutes of post-occlusion
data, and 10 minutes of baseline data with the software correlator set to record at a frame rate
of 10 Hz (i.e., increased from 1 Hz).
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The accuracy of the software correlator for estimation of the intensity autocorrelation func-
tion is evident from representative intensity correlation curves in Fig. 3(B). The correlation
function measured with the software correlator overlaps the ‘gold-standard’ hardware correla-
tor values. Note, both correlators average over the 2 detector channels, with an average photon
count rate of ∼ 200 KHz. Also note, the correlation functions decay to a minimum value of 1
at delay times of ∼ 200 µs, which is close to the maximum delay time used by the software
correlator. Correlation measurements beyond these time scales are not useful. Thus, the soft-
ware correlator estimates flow from the intensity correlation functions at the delay times most
sensitive to blood flow changes. We refer the interested reader to Fig. 10 in Appendix 3 for
comprehensive comparisons of blood flow measured with the hardware and software correla-
tors from 8 subjects; differences in the blood flow indices measured by the two devices were
not statistically significant (p = 0.13).

Figure 3(C) shows the blood flow dynamics estimated from hardware and software corre-
lation data. The ∼ 100% reduction in blood flow, due to cuff-ischemia, is clearly monitored
by the software correlator. Tissue blood flow indices were estimated by fitting the intensity
correlation functions to a semi-infinite geometry solution of the correlation diffusion equation
(Eq. (2), Appendix 1). For this representative subject, the baseline tissue optical properties were
measured to be µa = 0.16 cm−1 and µ ′s = 4.28 cm−1, using a frequency domain diffuse opti-
cal spectroscopy instrument (Imagent, ISS Inc., IL, USA). These measurements also clearly
demonstrate that 40 delay times between 1 µs and 125 µs are sufficient (more than sufficient)
to accurately fit for a tissue blood flow index.

4.2. High speed measurements of baseline blood flow reveals pulsatile flow dynamics

We next demonstrate the ability of the real-time software correlator to measure high speed
blood flow dynamics in human subjects under baseline conditions. Figure 4 displays the results
of high-speed blood flow monitoring of baseline flow in the arm (i.e., using the last 10 minutes
of data from the previous experiment, Fig. 3(A)). Figure 4(A), shows representative intensity
autocorrelation functions measured with a total integration time of 1 s. The solid red line is the
correlation function measured by the hardware correlator (1 curve obtained at an integration
time of 1 s). The solid blue circles, represent the correlation function values obtained at dis-
crete delay times (i.e., 40 delay times between 1 µs to ∼ 250 µs) derived over the same time
period with the high speed software correlator (data associated with 10 curves obtained at an in-
tegration time of 0.1 s each). In effect, the hardware correlator smears out the rapid fluctuations
of the intensity correlation function. Figure 4(B) displays the blood flow index estimated us-
ing both the hardware (solid red line) and the high-speed software correlator (solid blue line),
during the baseline period of 10 minutes; flow indices were determined by fitting the meas-
ured intensity autocorrelation functions to a semi-infinite geometry solution of the correlation
diffusion equation (Eq. (2), Appendix 1).

At first glance, the blood flow index estimated using the high temporal resolution software
correlator data appears to be very noisy. However, a more careful observation of the data, such
as shown in the 15 s extracted time-window in Fig. 4(C), reveals significant temporal structure
that corresponds to the pulsatile nature of tissue blood flow. The hemodynamics of the entire
cardiac cycle is captured, including the ‘dicrotic notch’ which is the result of a brief increase
in pressure (and thus flow) following closure of the aortic valve. The resolution of the dicrotic
notch is particularly exciting, since it is rarely observed, i.e., it is seen only when using high
quality high speed instrumentation such as arterial line tracings. Further, as is evident from the
solid red line, the blood flow index estimated using the hardware correlator averages out these
fluctuations. The cardiac pulsatility is further confirmed by frequency spectrum of the data
shown in Fig. 4(D). We refer the interested reader to Fig. 11 in Appendix 3 for comparisons of
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Fig. 4. Pulsatile blood flow measured with the real-time software correlator. (A) Data at
discrete time points from 10 intensity temporal autocorrelation functions obtained with the
software correlator (blue circles, 0.1 s integration time), and one intensity temporal au-
tocorrelation function measured by the hardware correlator over the same duration (solid
red line, 1 s integration time). (B) Natural fluctuations in the tissue blood flow index un-
der baseline conditions as measured with the high speed software correlator (blue) and
the lower speed hardware correlator (red). Blood flow indices were derived by fitting the
measured intensity autocorrelation functions to a semi-infinite solution of the correlation
diffusion equation (Eq. (2), Appendix 1) (C) ∼ 15 s extract of baseline blood flow fluctu-
ations, clearly demonstrating that the fluctuations in the blood flow index are a result of the
pulsatile nature of blood flow. Notice, the entire cardiac cycle is clearly resolved, including
the ‘dicrotic notch’, i.e., the second flow peak of smaller magnitude within the cycle, cor-
responding to aortic valve closure. (D) The frequency spectrum of the baseline blood flow
indices measured with the software correlator, highlighting the heart rate as ∼ 0.9 Hz,
with corresponding harmonics at 1.8, 2.7 and 3.6 Hz.

the heart rates estimated with DCS, and a pulse oximeter from 8 healthy volunteers; statistically
significant differences in the heart rate frequencies measured by the two devices were not found
(p = 0.76).

The clear resolution of pulsatile flow dynamics, and the entire cardiac cycle, is the first sig-
nificant physiological result of our paper. These fluctuations are often misconstrued as noise,
and indeed, researchers have traditionally used integration times of 1 to∼ 2.5 seconds, in order
to average out these fluctuations. Insufficient measurement speed, averages out useful informa-
tion including beat-to-beat variations in blood flow. Moreover, measurements at intermediate
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Table 1. Baseline fluctuations in tissue optical properties over 10 minutes measured on
forearm and brain of 3 healthy volunteers

Subject# Absorption Coefficient Scattering coefficient
(µ0

a ±∆µa) cm−1 (µ ′0s ±∆µ ′s) cm−1

Forearm 1 0.415±0.002 3.763±0.068
2 0.144±0.002 4.928±0.070
3 0.184±0.004 4.120±0.090

Brain 1 0.125±0.002 6.310±0.090
2 0.096±0.001 7.232±0.067
3 0.128±0.002 8.599±0.148

sampling rates (e.g. 1− 2 Hz) do not fully resolve pulsatile dynamics and can lead to aliasing
artifacts. For clarity, we have shown fluctuations in the correlation functions, sampled at 10 Hz
in this characteristic example. In practice, our in vivo data is sampled at 20−50 Hz; the meas-
ured photon count rates have an impact on the signal-to-noise of the measurements. We discuss
these signal to noise considerations in a separate section.

4.3. Fluctuations in DCS blood flow index are primarily due to changes in blood flow

To elucidate the nature and origin of the fast blood flow index fluctuations more precisely,
we carried out clarifying DOS and DCS experiments. In general, the DCS blood flow index
depends parametrically on tissue blood flow and tissue absorption (µa) and scattering (µ ′s) co-
efficients. As such, fluctuations in the tissue optical properties can also generate changes in
the blood flow index. This relationship is quantitatively described by the DCS modified Beer-
Lambert law [28] (see Appendix 2). Briefly, fluctuations in the intensity autocorrelation func-
tion define the variation of a ‘DCS optical density’ (∆ODDCS(τ,ρ)). The changes in the DCS
optical density, in turn, are related to a linear combination of a change in blood flow (∆F), a
change in absorption coefficient (∆µa), and a change in scattering coefficient (∆µ ′s), via Eq. (3)
in Appendix 2. Thus, by independently measuring the scattering and absorption coefficient
changes, we can discern the fraction of the fluctuations in the DCS signal that are due to blood
flow.

Fig. 5. Fractional contributions of flow, scattering and absorption to changes in the DCS
signal measured from the arm (Panel A) and the brain (Panel B) of three healthy subjects.
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Accordingly, the baseline fluctuations in tissue optical properties (µa and µ ′s), were monitored
(at∼ 10 Hz) on the forearm and forehead of 3 volunteers, using a commercial frequency domain
Diffuse Optical Spectroscopy instrument (Imagent, ISS Inc., IL), operating at 788 nm. Then,
the high-speed software correlator was used to record the baseline fluctuations in the intensity
autocorrelation functions from the same measurement spots.

The intensity correlation data gives the variation in DCS optical density. The average de-
viation from baseline of tissue optical properties were calculated from 10 minutes of DOS
data. Table 1 summarizes these tissue absorption (µ0

a ±∆µa), and scattering (µ ′0s ±∆µ ′s) vari-
ations. The absorption and scattering contributions to the DCS optical density, respectively,
are da(τ,ρ)∆µa and ds(τ,ρ)∆µ ′s; they are readily estimated (see Appendix 2 for details) using
the measured fluctuations in optical properties (Table 1). Finally, the fractional absorption and
scattering contributions to the DCS fluctuations were estimated from Eq. (3) in Appendix 2
as ∆ODDCS(τ,ρ)/da(τ,ρ)∆µa, and ∆ODDCS(τ,ρ)/ds(τ,ρ)∆µ ′s respectively. Figure 5 displays
the results of these comparisons for the forearm and the brain. From this analysis, it is apparent
that more than 90% of DCS fluctuations are driven by blood flow changes. This physiological
finding, is the second important result of this paper. Pulsatile variation in the DCS signal reflect
variations in blood flow.

4.4. Real-time software correlator can estimate cerebral autoregulation dynamics

We next explore the utility of the real-time software correlator in the context of a critical clin-
ical application wherein rapid acquisition of blood flow information is needed: measurement
of cerebral autoregulation dynamics [41]. Briefly, cerebral autoregulation (CVAR) refers to the
mechanism by which normal (i.e. healthy) brain maintains relatively constant cerebral blood
flow (CBF) despite fluctuations in mean arterial blood pressure (MAP) [55]. Importantly, CVAR
is often impaired after brain injury; in this scenario, CBF can vary in response to MAP varia-
tion [56, 57]. Moreover, the degree of CVAR impairment correlates with the initial severity of
brain injury and is an independent predictor of outcome [41, 56, 58].

CVAR is typically measured using static or dynamic techniques [40] that rely on the detection
of cerebral blood flow velocity, e.g., derived by trans-cranial Doppler ultrasound. Here, we
showcase the potential for monitoring dynamic autoregulation with DCS using the high speed
real-time software correlator. We employ a standard approach for measuring CVAR dynamics.
In particular, we measure the time-dependent changes in CBF resulting from transient increases
in cardiac output, i.e., following deflation of blood pressure cuffs applied to the thigh [41].

Figure 6(A) details the protocol used to measure dynamic cerebral autoregulation [41] from
one healthy volunteer. With the subject lying supine, the optical probe was placed on the sub-
ject’s forehead, over the frontal cortex. Two blood pressure (BP) cuffs were wrapped around the
subject’s thighs, about 10 cm above the knee. The subject’s blood pressure was continuously
monitored using a non-invasive finger pressure monitor (Finometer Pro, Finapress Medical
Systems, Netherlands), and cerebral blood flow was measured with the real-time software cor-
relator at a data acquisition rate of 20 Hz. After a 5 minute baseline measurement, the thigh
cuffs were both inflated and held at 30 to ∼ 40 mmHg above the subject’s baseline systolic
blood pressure (here 170 mmHg) for a period of 4 minutes. At the end of the inflation pe-
riod, both cuffs were rapidly deflated by disconnecting the pressure pump. Two blood pressure
manipulation trials were carried out, i.e., the thigh cuffs were inflated and deflated twice. The
experiment concluded with 4 minutes of baseline measurements. Typically, cerebral hemody-
namics (i.e., CBF and BP) from multiple thigh cuff ‘trials’ on the same subject are averaged.
Here, we showcase the speed and measurement fidelity of the real-time software correlator, by
estimating cerebral autoregulation dynamics using measurements from a single trial.

Cerebral blood flow (CBF) and blood pressure (BP) were continuously monitored through-
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Fig. 6. Dynamic cerebral autoregulation estimated using the high-speed software correlator.
(A) Protocol for monitoring cerebral autoregulation dynamics with the real-time software
correlator. Here, the probe is placed on the subject’s forehead over the frontal cortex. Two
blood pressure cuffs were placed on the subject’s thighs, about 10 cms above the knees. (B)
Unfiltered measurements of relative cerebral blood flow (solid red lines) and blood pressure
(solid blue lines) from a single bilateral thigh cuff deflation. Vertical dashed black lines in-
dicate the time of cuff deflation. All measurements were normalized to a 10 s pre-deflation
baseline. (Inset) ∼ 5s extract of the baseline period shows a phase difference between CBF
and blood pressure. (C) Filtered relative cerebral blood flow (solid red lines) and blood pres-
sure (solid blue lines) changes due to a bilateral cuff-deflation (dashed vertical black line
at t = 0 s). The change in relative cerebrovascular resistance is also shown (solid magenta
line). The two dashed vertical green lines denote the period of recovery of cerebrovascular
resistance; a linear fit to this data is shown in the inset.

out the experiment at a data acquisition rate of 20 Hz. The relative unfiltered change in CBF
(rCBF =CBF(t)/CBF0) and BP (rBP = BP(t)/BP0) from a single trial of blood pressure ma-
nipulation is displayed in Fig. 6(B). Here, time t = 0 (vertical dashed line) denotes the start of
bilateral cuff deflation, and the solid red and blue lines denote the pulsatile dynamics of CBF
and blood pressure, respectively. Both CBF and BP are normalized to their values during the
10 s pre-deflation baseline period. The sudden cuff deflation, causes a rapid increase in ve-
nous return and cardiac output; these effects produce a transient decrease in BP and CBF. This
∼ 20% and ∼ 40% decrease in average BP and CBF is clearly evident, even in the unfiltered
measurements. Note that the high temporal resolution of the software correlation technique re-
veals a phase difference between CBF and blood pressure (see inset in Fig. 6(B)). Ultimately,
it may be possible to use the dynamics of this phase shift as a biomarker of cerebral autoreg-
ulation [59–61]. We note however, that differences in pulse transit times to cerebral/peripheral
vasculature may lead to ‘offsets’ in the phase-shift between the CBF and BP. Pulse transit times
can potentially be measured by simultaneous blood flow and blood pressure recordings in the
brain and arm. A more complete investigation of these issues is planned; for example, correc-
tion/calibration factors may need to be developed before the absolute value of the phase-shift
can be utilized as a biomarker for cerebral autoregulation.
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Fig. 7. Comparison of measurement of cerebral autoregulation dynamics at different CBF
measurement rates. (A) Reduced data rates were achieved by averaging/integrating high-
frequency software correlator intensity temporal autocorrelation functions (20 Hz, gray)
to 0.5 Hz (blue, a common hardware correlator data rate), 1 Hz (red) and 2 Hz (green).
Measurements at 0.5 and 1 Hz are highly averaged and capture the ∼ 20% baseline fluc-
tuation in CBF. The 1 Hz data rate identifies, but only poorly resolves the heart rate fluc-
tuations. None of lower frequency data can accurately capture the instantaneous decrease
in CBF due to cuff deflation. Note that this form of averaging is an accurate representa-
tion of data integration in the hardware correlators. (B) Reduced data rates achieved by
down-sampling the high-frequency software correlator intensity autocorrelation functions.
Down-sampled CBF data is quite noisy.

In order to quantify dynamic cerebral autoregulation, the measured CBF and BP dynamics
were first filtered to remove heart rate effects using a low pass filter with a cutoff frequency
set to 75% of the heart rate. The filtered autoregulation measurements from a single trial are
displayed in Fig. 6(C), i.e., rCBF by solid red line and rBP by solid blue lines, respectively.
Importantly, Fig. 6(C) also shows the change in cerebrovascular resistance (solid magenta line):
rCV R = rBP/rCBF . The vertical dashed black line indicates the start of cuff deflation.

In combination, the changes in CBF, BP and CVR, describe the autoregulation process. The
sudden decrease in BP and CBF is characterized by an almost instantaneous increase in vascular
resistance, followed by a gradual return to baseline due to the autoregulation process. The rate
of change of rCV R, drCV R/dt, can be estimated from the linear decrease in rCV R between
the two vertical dashed green lines (see inset in Fig 6(B)). Finally, a rate of regulation can
be calculated, ROR = (drCV R/dt)/∆BP, wherein ∆BP is the maximum decrease in rBP from
baseline. For this representative subject, the rate of regulation is 0.66 sec; i.e., a 66% change in
resistance is required per second in order to autoregulate a 1% change in blood pressure. We
emphasize that this entire analysis was carried out from a single trial without averaging.

The utility of the real-time software correlator for measurements of cerebral autoregulation
dynamics is evident from comparisons with lower speed CBF measurements of traditional hard-
ware correlators. We first averaged (Fig. 7(A)) the intensity correlation functions acquired at
20 Hz (gray lines) to CBF measurements at 0.5 Hz (blue lines), 1 Hz (red lines) and 2 Hz (green
lines). For example, for every CBF measurement at 1 Hz, 20 intensity autocorrelation functions
originally measured at 20 Hz were binned and averaged. This manner of averaging simulates in-
creased integration time in hardware correlators. A second approach, down-samples (Fig. 7(B))
the 20 Hz data to a lower data rate.

Once averaged (or down-sampled), a blood flow index was estimated by fitting the averaged
(or down-sampled) intensity autocorrelation function with the solution to the correlation diffu-

#255500 Received 14 Dec 2015; revised 20 Jan 2016; accepted 21 Jan 2016; published 3 Feb 2016 
(C) 2016 OSA 1 Mar 2016 | Vol. 7, No. 3 | DOI:10.1364/BOE.7.000776 | BIOMEDICAL OPTICS EXPRESS 790 



sion equation (Eq. (2), Appendix 1). Figure 7(A) shows the effects of averaging on measure-
ment of cerebral autoregulation dynamics from a single trial. Unsurprisingly, the integrated
CBF measurements at 0.5 Hz and 1 Hz completely average the pulsatile blood flow fluctua-
tions. At 2 Hz, the pulsatile flow is identified, but is aliased and is therefore poorly resolved.
When compared to the filtered autoregulation curves in Fig. 6(C), these averaged measurements
exhibit greater baseline noise, appear to exhibit timing inaccuracies with respect to cuff defla-
tion (i.e. vertical dashed line), and do not show an instantaneous decrease in CBF due to cuff
deflation. These detrimental effects are clearly evident in the down-sampled data (Fig. 7(B))
wherein the fluctuations/noise in CBF measurements are sometimes indistinguishable from
CBF changes due to the thigh cuff deflation. In both cases, additional filtering (or averaging)
can reduce the noise, but such averaging/filtering also temporally broadens the autoregulation
‘signal’, in large part due to reduced temporal resolution. Note, an experiment with the hard-
ware correlator will be affected by averaging and (to a lesser extent) down-sampling, due to
data transfer lags and software overheads.

The best quality data is obtained by measuring CBF dynamics at the highest data rates pos-
sible, i.e., with the real-time software correlator. This observation highlights the value of the
real-time correlator for continuous monitoring of autoregulation. The demonstration of instru-
mentation to monitor cerebral autoregulation dynamics in this manner is arguably the most
important result of this paper.

4.5. Signal-to-noise ratio considerations for fast blood flow measurements with DCS

We conclude this paper with a discussion about signal-to-noise ratio (SNR) considerations for
fast flow measurements with DCS. The ability of the real-time software correlator to detect high
frequency flow dynamics (Fig. 4(A)) has been demonstrated. Ultimately however, the ability to
discern meaningful flow information, i.e., blood flow index variation, will depend on the fidelity
of measured autocorrelation functions, which, in turn, depends on the number of detected pho-
tons, i.e., the detected light intensity, and the amount of averaging i.e., measurement integration
time. The precise dependence of the measurement SNR on light intensity and integration time
can be ascertained using a photon correlation noise model adapted for diffuse light (i.e., DCS
noise model) [62].

To confirm the accuracy of the DCS noise model at the short integration times permitted by
our new software correlator, we systematically characterized correlation noise in a liquid tissue
phantom. The liquid tissue phantom consisted of 21.7 ml/l of 30% Intralipid (Fresenius Kabi,
Uppsala, Sweden) with 1.88 ml/l of India ink (Higgins, Black India 44201, MA) resulting in
optical properties of µa = 0.16 cm−1 and µ ′s = 4.32 cm−1. An optical probe with 1.5 cm source-
detector separation was placed on the liquid surface to simulate a semi-infinite geometry. The
integration time was systematically varied as depicted in Fig. 8(A). Further, the photon count
rate was also systematically varied using an attenuator on the source arm.

Following the conventions of a previous DCS noise model [62], we define ‘noise’ to be the
standard deviation of the measured intensity autocorrelation function, σ(τ) (i.e., σ(τ) is the
standard deviation of g2(τ) measured over the duration of the experiment). We then define the
SNR to be ζ (τ) = (g2(τ)−1)/σ(τ). Here, we make the inherent assumption that fluctuations
in the measured autocorrelation function are due to random noise (appropriate for these tissue
phantom experiments). Figure 8 displays the result of the SNR characterization from the liquid
phantom. In panels (B) and (D), we have plotted the measurement noise as a function of the
integration time of the software correlator at delay times of 20 µs and 80 µs respectively, for
three different photon detection signal levels - 20 kHz (blue circles), 50 kHz (red squares), and
94 kHz (black diamonds). In each case, the measurements are fit to a DCS noise model [62]. In a
similar vein, panels (C) and (E) show the corresponding measurements of signal-to-noise ratio.

#255500 Received 14 Dec 2015; revised 20 Jan 2016; accepted 21 Jan 2016; published 3 Feb 2016 
(C) 2016 OSA 1 Mar 2016 | Vol. 7, No. 3 | DOI:10.1364/BOE.7.000776 | BIOMEDICAL OPTICS EXPRESS 791 



Fig. 8. Estimation of signal-to-noise ratios due to data from a liquid phantom. (A) Sample
intensity autocorrelation values measured at a delay time of 20 µs for different integration
times. Lower integration times are more noisy, since averaging is reduced. Panels (B) and
(D) plot the standard deviation of measured intensity autocorrelation functions versus inte-
gration time and photon count rates, at delay times of 20 µs and 80 µs respectively. Panels
(C) and (E) plot the corresponding signal-to-noise ratios. All measurements are fit to a DCS
correlation noise model [62](solid lines).

For each condition examined in Fig. 8, the measured noise (dots) agrees well with the DCS
noise model (solid lines). Thus, we confirm that the DCS noise model provides a theoretical
framework that would allow an experimenter to pick the right photon count rates, integration
times, and delay times to achieve a desired SNR.

Figures 8(B) and (D) clearly show that the measurement noise decreases with increased
averaging (increased integration times) and improved signal (increased detected photon count
rates). Correspondingly, as is evident from Figs. 8(C) and (E), the signal-to-noise ratio increases
with integration time and photon count rates. From these measurements, one can observe that
a SNR of 1 at acquisition rates of 25 Hz (40 ms integration time), requires a photon count rate
of ∼ 20 kHz. More realistic signal levels of ∼ 50 kHz will permit acquisition rates of ∼ 50 Hz
at SNR of 1.

More practically, this experiment and analysis enables us to estimate optimum operating pa-
rameters for fast in vivo measurements of blood flow. For in vivo experiments, we are interested
in the ability of the correlator to resolve dynamics at particular frequencies. An obvious fre-
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Fig. 9. Optimization of experimental parameters to isolate heart rate with fast blood flow
measurements. (A) Natural fluctuations in blood flow index acquired on the arm are plotted
as a function of time for 19 kHz (solid blue lines) and 182 kHz (solid red lines) photon
count rates and 5 ms integration times. (B) Corresponding frequency spectra of blood flow
index dynamics show a clear peak at the heart rate frequency for the higher photon count
rate data. (C) Scatter plot showing which photon count rates and integration times permit
the identification of the heart rate in in vivo data. Red crosses indicate parameters where
heart rate could not be identified, while solid blue circles indicate parameters where heart
rate was successfully identified.

quency of interest is that of the heart rate, especially because physiological perturbations in
flow are oftentimes slower than the heart rate. With a setup similar to Fig. 2, we measured
baseline blood flow dynamics, at integration times ranging from 1 ms to 100 ms, with photon
count rates manipulated via laser attenuation. Data was collected for a total of 30∼ 40 s at each
setting.

Figure 9(A) shows the representative fluctuations in blood flow index over a period of
30 seconds measured with a 5 ms integration time, at photon count rates of 19 kHz in blue
and 182 kHz in red. Figure 9(B) shows the corresponding frequency spectra; a clear peak at
∼ 1 Hz is visible in the measurements at 182 kHz indicating that the heart rate is well resolved
at the high photon count rate, but not at the smaller signal levels. Figure 9(C) shows the result of
the experiment wherein multiple integration times and photon count rates were tested on sim-
ilar data. The solid blue circles indicate the measurement parameters where the heart rate was
clearly resolved, i.e., the maximum frequency component in the spectrum was between 0.8 Hz
and 1.2 Hz. Red crosses, indicate parameters were the heart rate was not resolved. From these
measurements, we conclude that photon count rates of ∼ 50− 100 kHz are ideal for fast flow
measurements over a large range of acquisition rates. Importantly, this experiment provides a
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practical framework to select an appropriate data acquisition rate for accurate estimation of
blood flow.

5. Discussion

Traditionally, blood flow has been measured with DCS at relatively slow data rates (0.5−1 Hz).
Therefore fluctuations due, for example, to heart beats have often been considered as noise that
should be averaged in the measured autocorrelation function (for example, Fig. 4(A)); this
noise assignment, in turn, prompted the need for increased temporal averaging. Interestingly,
although heartbeat oscillations are well recognized in the NIRS community [63–65], the DCS
community has been comparatively slow to appreciate the full potential of fast blood flow
measurements.

The primary goal of the present contribution is to report development and testing of new,
optimized instrumentation and software that fulfills an unmet clinical need for continuous fast
measurements of blood flow with DCS. Aside from validating the accuracy of the software cor-
relator, the work provides a rigorous overview of timing and sampling considerations. Further,
for the first time, we have characterized the signal-to-noise characteristics of DCS at low inte-
gration times, and in the process we have validated the prevailing DCS noise models for fast
measurements of blood flow. Critically, these characterization experiments provide a frame-
work for the identification of optimum data acquisition parameters.

We demonstrated sustained/continuous blood flow measurements at speeds up to 100 Hz in
vivo at typical source detector separations of 2.5 cm. Measurement speeds are limited only by
the available photon count rates. To our knowledge, the results represent the fastest reported
blood flow measurements achieved with DCS, using either hardware or software correlators.
We have leveraged this high temporal resolution data to learn about new flow physiology, and
to highlight new opportunities for monitoring of cerebral health.

1. We showed that blood flow accounts for over 90% of the pulsatile DCS signal, thereby
identifying the origin of the fluctuations in the pulsatile DCS signal in vivo. This discov-
ery was facilitated by the improved speed afforded by the software correlator.

2. Our work shows that cerebral autoregulation dynamics can be studied using DCS. The
high data rates afforded by the software correlator were critical for this application (see
for example Fig. 7). This demonstration is important because cerebral autoregulation
holds tremendous potential as a biomarker of brain injury, and the use of DCS for this
application will permit non-invasive and real-time monitoring of brain injury.

3. Our measurements of blood flow pulsatility clearly resolve features of the entire cardiac
cycle including the dicrotic notch, demonstrating data quality akin to high speed arterial
line tracings. Such high temporal resolution holds potential for measurements of compli-
ance in cerebrovascular circulation; for example, flow pulsatility measured on arm and
the brain could reveal differences in arterial elasticity. Measurements of cerebrovascu-
lar compliance can potentially identify arterial stiffening or dissection, i.e., information
indicative of diseases such as atherosclerosis, amyloidosis and stroke.

The software correlator we have demonstrated is relatively easy to implement on a stan-
dard personal computer. When compared to the fastest DCS hardware correlators [50], our
measurements are faster, can be sustained for longer durations, and do not require averaging
over many detectors. With the new software correlator design, we adopt a slightly different ap-
proach compared to previous studies, i.e., we use direct computation of the autocorrelation with
the shift-and-add method [44], instead of highly efficient fast Fourier transforms (FFT) [52,53].
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In general, the FFT approach can be fast for large data sets, i.e., when the autocorrelation func-
tion needs to be computed at hundreds of delay times. By limiting the autocorrelation function
computation to 40 delay times, however, our software correlator easily removes this ineffi-
ciency, is arguably faster, and is less memory intensive than the FFT approach. Moreover, we
can readily adapt our correlator for a single delay time operation (which would remove all speed
advantages offered by the FFT method) and use the DCS modified Beer-Lambert law [28] to
estimate blood flow dynamics.

6. Conclusions

We have reported the development of a new real-time software correlator for fast measurements
of blood flow with Diffuse Correlation Spectroscopy. We validated the new device against gold-
standard commercial hardware correlators, and we established timing/sampling and intensity
guidelines for measurements with sufficient signal-to-noise ratios. We also highlighted the po-
tential value for the new device by using it to separate pulsatile blood flow contributions to the
fluctuating DCS signal and to monitor cerebral autoregulation dynamics in vivo.

Appendix 1: solution to correlation diffusion equation

Formally, the transport of the electric field autocorrelation function (E(t)), G1(τ) ≡
〈E*(t)·E(t + τ)〉, is modeled by the Correlation Diffusion Equation (CDE) [2, 8]. The nor-
malized electric field autocorrelation function (g1(τ) = G1(τ)/G1(0)) is related to the meas-
ured (normalized) intensity autocorrelation function (g2(τ)) via the Seigert relation [66];
g2(τ) = 1+β |g1(τ)|2, and a tissue blood flow index (proportional to blood flow) can be esti-
mated by fitting g1(τ) to a geometry dependent solution of the Correlation Diffusion Equation.
In the clinically relevant semi-infinite geometry, with illumination and detection at a single
point separated by a distance ρ (e.g., Fig. 1), the solution to the CDE is given by [2, 8]

g1(τ,ρ) =
rb exp(−κD(τ)r1)− r1 exp(−κD(τ)rb)

rb exp(−κD(0)r1)− r1 exp(−κD(0)rb)
(2)

Here, κD(τ)
2 = [3µa(µa+µ ′s)(1+2µ ′2s k2

0Fτ/µa)] and F is the blood flow index to be estimated.
r2

1 = (l2
tr +ρ2), r2

b = ((2zb+ ltr)2+ρ2), ltr = 1/(µa+µ ′s) and zb = 2ltr(1+Re f f )/(3(1−Re f f ))
are constants dependent on the tissue absorption (µa) and scattering (µ ′s) coefficients. Re f f is
the effective reflection coefficient accounting for the refractive index mismatch between the
tissue (n) and the medium (nout ), and k0 = 2πn/λ , is the magnitude of the light wave vector in
the medium.

Appendix 2: DCS modified Beer-Lambert law

We recently introduced a DCS modified Beer-Lambert law [28], that allows rapid computation
of changes in blood flow by solving a system of linear equations. In this approach a ‘DCS
Optical density’ is computed in the baseline (OD0

DCS(τ,ρ)≡− log(g0
2(τ,ρ)−1)) and perturbed

(ODDCS(τ,ρ) ≡ − log(g2(τ,ρ)− 1)) states, and the change in blood flow is determined from
the change in DCS optical density (∆ODDCS(τ,ρ) =ODDCS(τ,ρ)−OD0

DCS(τ,ρ)) and the DCS
Modified Beer-Lambert law for flow:

∆ODDCS(τ,ρ) =− log
(

g2(τ,ρ)−1
g0

2(τ,ρ)−1

)
≈ dF(τ,ρ)∆F +da(τ,ρ)∆µa +ds(τ,ρ)∆µ

′
s. (3)

Here, ∆F , ∆µa and ∆µ ′s are the changes in flow, absorption and scattering from their baseline
values of F0, µ0

a and µ ′0s respectively. The multiplicative weighting factors dF(τ,ρ), da(τ,ρ),
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and ds(τ,ρ) are evaluated by computing the appropriate derivative of the DCS optical density
for the baseline state, i.e., dF(τ,ρ)≡ ∂OD0

DCS/∂F , da(τ,ρ)≡ ∂OD0
DCS/∂ µa , and ds(τ,ρ)≡

∂OD0
DCS/∂ µ ′s [28].

Notice that the relative contributions of blood flow, tissue absorption, and tissue scattering
changes to the total DCS signal change can easily be determined with the DCS modified Beer-
Lambert framework (e.g., blood flow changes are responsible for (dF ∆F/∆ODDCS)×100 per-
cent of the signal change).

Appendix 3: Validation of blood flow indices and heart rates estimated with software cor-
relator

We found excellent agreement between the baseline blood flow indices measured with the hard-
ware and software correlators in 8 subjects (Fig. 10). Figure 10(A) shows the result of a lin-
ear regression analysis between the blood flow indices measured using the software correlator
(BFIs, x-axis) and the hardware correlator (BFIh, y-axis). The regression line (solid red line)
with slope of 0.967 and an excellent goodness of fit (R2 = 0.9729) clearly demonstrates that
both instruments measure the same blood flow. Further, a Bland-Altman plot of the difference
between the two blood flow indices versus their mean reveals no significant difference between
the two techniques (p= 0.13, see Fig. 10(B)). Therefore, the software correlator technique does
accurately measure the tissue blood flow index.

Our hypothesis that temporal fluctuations in the DCS autocorrelation functions are the result
of arterial pulsation was validated by comparing the frequency of these temporal fluctuations
against the heart rate measured with a commercial pulse oximeter (Fig. 11). For each sub-
ject, the frequency spectrum of the blood flow index dynamics was computed; the first peak
in the spectrum was used to estimate the subject’s baseline/average heart rate (see for exam-
ple Fig. 4(C)). Figure 11(A) displays the result of linear regression analysis on the heart rate
estimated using the software correlator (x-axis) versus the ‘gold-standard’ heart rate measure-
ment from a commercial pulse oximeter; a regression slope of 1 and a goodness of fit of 0.998

Fig. 10. Comparisons of blood flow indices measured using software and hardware cor-
relators under baseline conditions from 8 subjects. (A) Scatter plot of blood flow indices
estimated using the software correlator (BFIs, x-axis) and hardware correlator (BFIh, y-
axis). Solid blue circles represent each measurement, the dashed green line is a 1 : 1 line,
and the solid red line is a line of linear regression line. The slope of the regression line is
0.967 denoting good agreement between the two techniques. (B) Bland-Altman plot that
represents the average (x-axis) and difference (y-axis) of the estimated blood flow indices.
All measurements are within the 95% confidence lines (dashed horizontal black lines) in-
dicating good agreement between the techniques.
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Fig. 11. Comparison of heart rates estimated using the software correlator (e.g. from fre-
quency spectrum in Fig. 4(C)) and a commercial pulse oximeter, under baseline conditions
from 8 subjects. (A) Scatter plot of heart rate estimate estimated using the software cor-
relator (HRDCS, x-axis) and commercial pulse oximeter (HROximeter, y-axis). Solid blue
circles represent each measurement, the dashed green line is a 1 : 1 line, and the solid red
line is a line of linear regression line. The slope of the regression line is 1 denoting ex-
cellent agreement between the two techniques. (B) Bland-Altman plot that represents the
average (x-axis) and difference (y-axis) of the estimated heart rates. All measurements are
within the 95% confidence lines (dashed horizontal black lines) indicating good agreement
between the techniques.

show excellent agreement between the two measurements. This agreement is confirmed in a
Bland-Altman analysis, Fig. 11(B), which clearly shows no significant difference between the
two techniques (p = 0.76).
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