Deadlock Avoidance In Mixed Capacity Flexible Manufacturing Systems

Sridhar Mohan

A thesis submitted in partial fulfillment
of the requirements for the degree of
Master of Science
Department of Industrial and Management Systems Engineering
College of Engineering
University of South Florida

Co-Major Professor: Suresh Khator, Ph.D.
Co-Major Professor: Ali Yalcin, Ph.D.
Tapas K. Das, Ph.D.

Date of Approval:
July 8, 2004

Keywords: real time control, colored petri nets, polynomial complexity

(© Copyright 2004, Sridhar Mohan

DEDICATION

To all my friends and family

ACKNOWLEDGEMENTS

I would like to thank Dr. Suresh Khator and Dr. Ali Yalcin for their patience and
assistance in completing this thesis. I would like to express my grateful thanks for the help
and advice given by Dr. Ali Yalcin who has been my inspiration. He is a great teacher in
his style of teaching, a great mentor in influencing his students, and a great friend in his
interaction. It is a great experience working with him and I look forward to learn many
more things, with him as an example.

I owe my sincere thanks to Dr. Suresh Khator, for his guidance, encouragement, support
and for helpful comments on the text. I would like to give special thanks to Dr. Tapas
Das, for accepting to be on my committee, for his valuable suggestions on the problem and
for being very cooperative.

I would like to express my thanks to my friend, guide and also, senior at the graduate
school, Viswanath Sairaman for his discussions on the work, for motivating me in various
ways, and for all the fun we shared during our graduate years.

I would like to make a special note of my friend Radhika Poolla, for all the care, great
guidance, encouragement and support, all these years of my graduate studies at Tampa.

A hearty thanks goes to my best friend, Ashok Murugavel for all the great times shared,

for all the fun and most of all, for being very dependable.

TABLE OF CONTENTS

LIST OF TABLES
LIST OF FIGURES
ABSTRACT

CHAPTER 1 INTRODUCTION
1.1 Representation of an FMS
1.2 Deadlock
1.3 Practical Perspective on Deadlock Avoidance Controller
1.4 Summary of Remaining Chapters

CHAPTER 2 LITERATURE REVIEW
2.1 Deadlock Prevention
2.2 Deadlock Detection and Recovery
2.3 Deadlock Avoidance

CHAPTER 3 PROPOSED RESEARCH
3.1 Research Objectives
3.2 Colored Petri Net Architecture
3.3 Modeling the Deadlock Avoidance Controller
3.3.1 Generating the System Neighborhood Matrix
3.3.2 State Vector

CHAPTER 4 CONTROLLER SOFTWARE DESIGN

4.1 Controller Implementation

4.1.1 Physical Systems

4.1.2 Object Definition

4.1.3 Object Classes and Attributes
4.2 System Simulation

4.2.1 Simulation Inputs

4.2.2 Simulation Logic

4.2.3 Simulation Results

CHAPTER 5 PERFORMANCE EVALUATION OF SYSTEMS CONTROLLED

WITH THE NHDAP

5.1 Experiment 1: Performance Comparison of the NHDAP with

a Deadlock Avoidance Policy that Minimizes Makespan

1ii

v

S AN N~

O © N

12
12
13
19
21
23

27
27
28
28
28
31
31
31
32

34

34

5.1.1
5.1.2
5.1.3

Experimental Design
Experimental Results
Effects of Part Dispatching

5.2 Experiment 2: Effect of Capacity Representation in NHDAP

5.2.1
5.2.2
5.2.3
5.2.4

Design of the Manufacturing Cell

Experimental Design

Experimental Results

Alternate Representation of Manufacturing System
Resource Capacity

CHAPTER 6 CONCLUSIONS AND FUTURE RESEARCH
6.1 Conclusions
6.2 Future Research

6.2.1
6.2.2
6.2.3
6.2.4

REFERENCES

APPENDICES
Appendix A
Appendix B
Appendix C
Appendix D

Machine Breakdowns and other Uncontrollable Events
Modeling the Material Handler Separately

Improving the CPN Model

Improvements for the Software Implementation

Petri Net

Colored Petri Net

Process Plan for Test Case

Externally Controlled Simulation Tool for FMS

ii

35
36
37
37
38
38
39

40

44
44
45
45
46
46
46

47

51
52
55
57
59

Table 3.1
Table 3.2
Table 5.1
Table 5.2
Table 5.3
Table 5.4
Table 5.5
Table C.1
Table C.2
Table C.3
Table C.4
Table C.5
Table C.6
Table C.7
Table C.8
Table C.9

Table C.10

LIST OF TABLES

Vect() Values for Processors

The Neighborhood Matrix for Example 2
Process Plan for Single Routing
Different Part Dispatching Rules
Process Plans

Expermiental Results

Changing the Mathematical Representation
Test Case 1

Test Case 2

Test Case 3

Test Case 4

Test Case 5

Test Case 6

Test Case 7

Test Case 8

Test Case 9

Test Case 10

iii

15

23

36

37

38

39

40

57

57

57

58

58

58

58

58

58

58

Figure 1.1
Figure 1.2
Figure 1.3
Figure 3.1
Figure 3.2
Figure 4.1
Figure 4.2
Figure 4.3

Figure 5.1

Figure 5.2

Figure 5.3
Figure A.1

Figure A.2

LIST OF FIGURES

Deadlock

Circular Wait

Maximally Permissive Control Policies

Petri Net Modeling of the CPN Architecture
Cell Controller

Relationship Between the Objects

Classes Used in OO Model of FMS

Flow Chart of the Simulation

Mixed Integer Formulation for Minimimizing Makespan and
Avoiding Deadlock

Automated Flexible Manufacturing Cell Considered in Exper-
iment 2

Changing the Mathematical Representation
Petri Net

Reachability Tree

iv

13

20

29

30

33

42

42

43

53

54

DEADLOCK AVOIDANCE IN MIXED CAPACITY FLEXIBLE
MANUFACTURING SYSTEMS

Sridhar Mohan

ABSTRACT

This research addressed the design and implementation of a polynomial-complexity
deadlock avoidance controller for a flexible manufacturing cell modeled using Colored Petri
Nets. The cell model is robust to changes in the part types to be manufactured in the sys-
tem and is automatically generated using the interaction of the resources in the cell and
the technological capabilities of the machines. The model also captures dynamic routing
flexibility options. The framework introduced separates the cell model from the control
logic allowing the system designer to implement and test various control algorithms using
the same cell model. The controller adopts the neighborhood deadlock avoidance policy
to resolve deadlocks and control the resource allocation decisions within the system. The
evaluation of the performance of systems controlled by not maximally permissive algo-
rithms is important in determining the applicability of the control algorithms. There are
many polynomial time deadlock avoidance algorithms proposed for the control of general
resource allocation systems. However, the permissiveness of these algorithms is not quan-
tified and the applicability of these algorithms in terms of effective resource utilization
remains unanswered. The performance of automated manufacturing cells controlled using
the neighborhood deadlock avoidance policy is benchmarked by comparing its performance

with other control policies .

CHAPTER 1

INTRODUCTION

A typical Automated Flexible Manufacturing Cell (FMS) consists of a set of Computer
Numerically Controlled (CNC) machines and an automated transportation system, which
connects the CNC machines. An FMS is capable of producing multiple part types efficiently
in low to medium volume. The unfinished parts in an FMS are stored either in a centralized
buffer of the FMS or local buffers of the machines. In an FMS, a job is first loaded into the
cell from loading station and each operation of the job is performed by a CNC machine.
When a machine required by the job is busy, the job waits either in the local input buffer
of the machine or in the centralized buffer. When all the operations associated with the
job are finished, the job is unloaded from the cell at the unloading station. An FMS is
a type of a Resource Allocation Systems (RAS). An RAS is defined as a discrete event
system with its entities referred to as resources. Ferreira, et. al. [32] defines 4 types of

RAS as given below.

A Single Unit RAS requires a single resource at each stage of its operation.

A Single Type RAS requires one or more resources of the same type at each stage of

its operation.

A Conjunctive RAS requires one or more resources of any type at each stage of its

operation.

A Congunctive/Disjunctive RAS requires one or more resources of any type at each

stage of its operation with any sequence.

1.1 Representation of an FMS

Modeling FMS facilitates in understanding the interaction and the resource sharing
between concurrent processes. An FMS can be modeled using Petri Nets [35, 8, 26, 7, 36,
40], Directed Graphs [37, 5, 10, 12, 42, 13], Finite State Automata [24, 41].

Petri Nets [19] are widely used for modeling [9, 3, 43] and analysis [6, 15, 14] of discrete
event systems. Petri Nets capture the precedence relationships, synchronization concepts
and concurrency associated with these system. A detailed literature review is presented in
Chapter 2. Colored Petri Nets [7, 36, 16, 9] are extended Petri Nets in which the tokens
have a color information attached to it. Each place in the Petri Net model is associated
with a type, which determines the kind of color it may contain. A detailed explanation of

Colored Petri Net is given in Appendix B.

1.2 Deadlock

Concurrent flow of multiple parts competing for limited amounts of resources in a
manufacturing system may lead to deadlock situations which hinders automation of man-
ufacturing systems. Deadlock is a situation, where parts in a set require a resource, which
is currently used by another part in the same set. Due to this situation, the normal system
operation is disrupted. Consider two machines M1 and M2 as shown in Figure 1.1, where
the input and output buffers of both machines are occupied and the machines are busy. If
the job on machine M1 requires M2 and the job on M2 requires M1, then the system is
said to be in deadlock (neither of the parts can move). This type of deadlocked state is
called circular wait state, where a job is waiting for a resource being held by another job,
while occupying a resource required for the completion of the other job. This state can
propagate and lead to a chain reaction where the whole system is in a circular wait state.

It has been shown in the literature [32] that the sufficient conditions for a deadlock are:

1. Mutual Exclusion. The resource are shared by the parts in the system for processing.

2. Hold and Wait. All parts hold the resource until the next resource for the part is

available.
3. No Preemption. Parts cannot be forced to leave the resource until the process is over.

4. Circular wait. Here a set of parts forms a circular chain, where each part waits for a

resource that the next part in the chain holds, this is shown in Figure 1.2.

The FMS considered in this work cannot avoid the first three conditions given above.

Therefore deadlock resolution can be achieved by addressing the last condition.

Parts from M1 requires M2

Machine M1 Machine M2

~_

Parts from M2 requires M1

Figure 1.1. Deadlock

Machine 2

Machine 1 Machine 3

Machine 4

Figure 1.2. Circular Wait

The following methods are proposed to avoid such a condition.

1. Deadlock Prevention. Static rules are applied to control the resources in the FMS

such that the system never reaches a deadlocked state.

2. Deadlock Detection and Recovery. The system is allowed to reach a deadlock state
after which the deadlock is detected and recovered using deadlock recovery proce-

dures.

3. Deadlock Avoidance. The allocation of parts to the resources is done in real time
based on the current state of the system avoiding any possible deadlocked state by

looking into the future.

In the case of deadlock prevention, static rules are used to prevent deadlock and the
flexibility of the system is reduced. Viswanadham, et. al. [35], show that the prevention
policy can be used only for the smaller system, since, the policy works on the reachability
graph of Petri Net. In the case of detection/recovery, special hardware system or buffer
systems are needed to recover the system from deadlock. Deadlock avoidance works in a
real time environment by considering the current state of the system. This technique works
by allowing a subset of safe states in the systems to be reached, but finding all safe states
in a system is proved to be a NP-Hard problem. A safe state is defined as a state which

will not eventually reach deadlock.

1.3 Practical Perspective on Deadlock Avoidance Controller

Consider an FMS and a set of parts that has to be processed, under specified criteria
such as due date completion, shortest makespan. The specification of the parts and the
machines (used in the FMS) are stored in a database. The specification of a part gives
information about the operations that have to be performed on the part. The specification
of machine describes the operations that can be performed on it. Considering that the
parts are sent in a pre determined sequence into the FMS, the deadlock avoidance policy
acts as a controller and controls the movement of the parts in the system. Control is

achieved by checking whether the resulting state of the FMS is safe, when a part is moved.

The controller determines the safety of the resulting state by building a graph using
the routing plan (from the specification obtained in the database) of the parts according to
a look ahead policy. The controller makes sure that the FMS never reaches a deadlocked
state. However the problem with such a method arises due to the computational complexity
involved in the look ahead policy. Once the look ahead policy exceeds two steps, the state
space becomes computationally intractable. Since the controller can consider only one
or two step look ahead, the FMS may eventually reach deadlock. This kind of deadlock
situation is referred to as impending part flow deadlock.

Deadlock avoidance policies work by enabling only a subset of possible events in a given
state of the system in order to prevent the system from reaching deadlock or unsafe state.
This is shown in Figure 1.3. A deadlock avoidance policy that allows for all the safe states
of the system to be visited is said to be maximally permissive. Maximally permissive
policies are desirable since these policies do not further restrict the cell other than to avoid
deadlock. Under the supervision of a maximally permissive deadlock avoidance control
policy any desired deadlock free schedule is executable, allowing for maximum utilization
of the resources for varying objectives. On the other hand, under more restrictive policies,
these allocation sequences may not be executable, adversely affecting the performance of the
system. A maximally permissive approach to deadlock avoidance becomes computationally
intractable as the capacity of the system increases. This difficulty has channeled a lot of the
research effort in this area into deadlock avoidance policies that are based on structural
properties of the models and are polynomial in complexity, which compromise maximal
permissiveness for tractable computational complexity.

This research designs a polynomially complex deadlock avoidance controller (based on
the Neighborhood deadlock avoidance policy) for a system modeled using Colored Petri
Nets. Different from the approaches in the literature that measures restrictiveness based
on the state space allowed by controller, the restrictiveness of a deadlock resolution policy

is measured based on the systems performance. In this chapter we discussed FMS and

nsafe states: Deadlocked
or leading to inevitable
deadlock

Safe states: Maximally
A Non maximally permissive Permissive Controller allows for
allows a subset of the safe states all safe states to be visited

Figure 1.3. Maximally Permissive Control Policies

the formalism used to model such systems and their controllers. We also discussed the

conditions under which these systems can be in a state of deadlock.

1.4 Summary of Remaining Chapters

The rest of the thesis is organized as follows, Chapter 2 is the literature review, which
discusses the existing work on deadlock resolution techniques. Chapter 3 discusses the
research objectives and the Colored Petri Net architecture and the controller based on the
Neighborhood Deadlock Avoidance Policy. Chapter 4 describes the software implementa-
tion of the FMS and controller models that will be used to study the effectiveness of the
Neighborhood Deadlock Avoidance Policy (NHDAP). The performance of the deadlock
avoidance policy is tested and the results are discussed in Chapter 5. Chapter 6 deals with

the conclusions and future work.

CHAPTER 2

LITERATURE REVIEW

This chapter summarizes the previous research efforts in the area of automated flexible

manufacturing control systems grouped by deadlock resolution approaches.

2.1 Deadlock Prevention

Petri Net modeling of FMS’s as Simple Sequential Process with Resource (S®PR) nets
has been introduced by Ezpeleta, et. al. [8]. The Petri Net model is based on the
arrangement of machines, rather than on the working process of the parts. In order to
avoid the deadlock, a deadlock prevention method based on the concept of siphons has
been introduced. It has been shown, that, for an FMS to be deadlock free, the Petri Net
structure should be free of unmarked siphons. In their work Ezpeleta, et. al. [8], prevent
the unmarked siphons by adding new control places, which results in a deadlock free Petri
Net.

Abdallah and Barkaoui [3] provide another structural control policy for the same S*PR
net for removing the unmarked siphons by adding control places. The resultant structure
is not guaranteed to be deadlock free. So, the initial marking of the net is modified,
resulting in independent siphons, which are not empty. The prevention policy in [3] has
been compared to a detection and recovery policy in [11] by Barkaoui, et. al. [17].

Yiseng, et. al. [15], improved the deadlock prevention method in [8], by implementing
a Mixed Integer Programming (MIP) technique for finding the unmarked siphons in the
net. This method proves more efficient in finding the unmarked siphons than the method
introduced by Ezpelta, et. al. [8]. Yiseng, et. al. [15], use two main stages in order

to remove the unmarked siphons from the model, namely, siphon control and augmented

siphon control. The siphon control adds a control place to the original net, to avoid the
unmarked siphons and the augmented siphon control makes sure that the newly added
place doesn’t introduce a new unmarked siphon.

The policy proposed by Yiseng, et. al [15], was extended to another class of Petri Nets
called ES®PR net [14]. Here, the deadlock is detected by the siphons and prevented by
the control policy based on Yiseng, et. al [15].

Feng and Xiao-Lan [6] prove that the availability of an empty siphon (potential dead-
lock) is the necessary condition for a Petri Net to be deadlock free. In order to find the
empty siphons a mixed integer programming approach is used.

The Petri Net architecture defined by Ezpelta, et. al. [8], has been subsequently
extended to a Colored Petri Net in [7]. Here, the concept of the coloring policy was
introduced to identify the process plans of the parts in the system. Each part is given
a color based on the process plan and the last machine visited by the part. With this
information, one can identify the process plan of the part in a system. For the Petri Net
architecture in [1], a new type of coloring policy is introduced by Yalcin and Boucher [40].
In the coloring policy proposed by Ezpelta, et. al. [7], the process plans of the part should
be pre defined. Based on these process plans, the colors of the parts are defined. In Yalcin
and Boucher [40], the color of a token indicates only the next operation to be performed
on the part type and not the process plan as Ezpelta, et. al. [7]. This coloring concept is
explained in detail in Section 3.1.

A set of two diagraphs, working procedure diagraph and transition diagraph are used to
represent the manufacturing system by Fanti,et.al. [12]. The working procedure diagraph
represents the sequence of each part in the system and the transition diagraph represents
the parts in each resource and the parts requesting access to the resources. The transition
diagraph is updated dynamically when a part leaves or acquires a resource in real time. A
condition called deadlock of a system can be identified using a diagraph and controlled by
applying control laws, called restriction policies. The restriction policies enable or disable

certain transitions based on the current system state and are applied on the dynamically

changing diagraph. Based on this restriction policy, a deadlock avoidance policy has been
developed by Fanti, et. al. [9]. This policy was applied to an extended Colored Petri
Net model proposed by Ezpelta, et. al. [8]. Fanti, et. al. [11], concluded that, when the
resources are being heavily utilized, the prevention method is a more favorable method
than the detection or recovery method.

Abdallah and ElMaraghy [1] modeled an FMS by SR nets and the deadlock resolution
techniques they used were based on the siphon controls in the Petri Net. The prevention
method was used to prevent the unmarked siphons in the net and the avoidance method

was used to minimize the occurrence of the unmarked siphons.

2.2 Deadlock Detection and Recovery

Wysk, et. al. [37], modeled the Flexible manufacturing cell with the transporting
system by the graph theoretic tool. An algorithm based on the structure of the system
was proposed to detect the deadlock. Hyuenbo, et. al. [5], modeled FMS by Digraph and
the deadlock is detected by the properties of the diagraph. The recovery or the avoidance
method was used to avoid the deadlock based on the factors such as part processing time
and buffer space. The detection and recovery method proposed by Wysk, et. al. [38], has
been extended to accommodate multiple resources by Fanti, et. al. [10]. The FMS here

was modeled by the diagraph.

2.3 Deadlock Avoidance

Viswanadham, et. al. [35], show that the deadlock avoidance methods can be used
in real time, unlike the deadlock prevention policy. Here, it was shown that the deadlock
prevention can be used only for small systems, where we can find the reachability graph
and for the larger systems, deadlock avoidance policy is used. Banasazak and Krogh [2]
proposed a Deadlock Avoidance Algorithm (DAA) for a class of Petri Net models, which

imposes restriction policies on the resource allocation. This type of Petri Net modeling of

FMS has been extended to Colored Petri Nets by Ezpeleta and Colom [7] and a deadlock
avoidance policy is proposed for the particular kind of Petri Net.

Wu [36] suggested a Petri Net model called, Colored Resource Oriented Petri Net
(CROPN), which takes care of concurrent resource contention and production processes
necessary for deadlock control. But this model can be applied, only, when the part types
and their respective process plans are known. The CROPN initially drawn would not be
able to take care of the situation wherein new types of parts arrive or the process plan of
certain parts suddenly change. Hence to model this new situation, a new CROPN should
be drawn and the control policy should be applied. This kind of modeling cannot take care
of the dynamics of the situation. Moreover, it gets more cumbersome and tedious because,
whenever, there is a change of state a new Petri Net model needs to be drawn. Therefore
the problem here is to model such a kind of dynamic real time situations with efficacy,
using Petri Net and dictate a control policy such that the system is deadlock free.

Lawley, Reveliotis, and Ferreira [18] introduced the concept of Resource Upstream
Neighborhood (RUN) deadlock avoidance policy. According to them the deadlock avoid-

ance policy should posses the following characteristics [33]
e Correctness. The DAP should posses a correct deadlock free operation.
e Scalability. The policy should be computationally scalable.

e Operational Flexibility. The policy should not reduce the operational flexibility since

this decreases the performance of the resources.

e Configurability. The policy should adapt easily as the system changes.

As described in Chapter 1, the authors have also classified Resource Allocation Systems
into four types called 1) the single unit resource allocation system (RAS); 2) the single-type
RAS; 3) the conjunctive RAS; and 4) the disjunctive/conjunctive RAS(C/D-RAS). The
flexibility issue is taken care only in C/D-RAS. The RUN policy is based on the concept
that the machines with higher capacities can act as a buffer for the parts in the system.

The time required to find the safe state by this policy is a polynomial function of system

10

size (i.e. the number of resource types and the distinct route stages of the process running
through the system) [32, 31]. First the RUN policy is applied to the SU-RAS [18, 24, 30]
which is an automated manufacturing system and it is modelled as an FSA. Which is then
extended to C-RAS [25] where the system considered is an FMS and modelled as a Petri
Net. In C/D RAS [27, 28, 29], the considered FMS is modelled by a Petri Net called
S3PGR? net, since this type of Petri Net has ability to model the flexibility involved in
the FMS. The RUN policy is also referred as a NHDAP. In order to make the policy less
restrictive, an IP formulation[21] is proposed. This formulation reduces the unit entries in
the neighborhood matrix, which represent the resources allocated by the NHDAP for each
parts processing stage. This IP formulation becomes complex as the neighborhood matrix
grows. These are explained in detail on the following chapters.

Deadlock prevention techniques are based on static rules and hence cannot be applied
to real time applications. Deadlock detection and recovery require special hardware in
some cases and hence adds to the complexity of the recovery process. Deadlock avoidance
techniques are based on the state of current system conditions and hence can be applied
to real time applications. The major drawback of the models used in deadlock avoidance
techniques is the necessity for remodeling the complete system, for simple changes in the
process plan of the part types. Yalcin and Boucher [40] using a Petri Net coloring policy
have overcome the above drawback, but the model lacks controller to prevent deadlocks.
The objective of this work is to extend the CPN architecture proposed by the authors [40]

with a real time deadlock avoidance policy.

11

CHAPTER 3

PROPOSED RESEARCH

3.1 Research Objectives

The proposed research includes several extensions to the CPN architecture proposed

by Yalcin and Boucher [40]. These are:

1. The architecture introduced by the authors only models the physical manufacturing
system and part movements within the system. The formalism does not include
any means to deal with the deadlock problem prevalent in limited capacity resource
allocation systems. In this research a deadlock avoidance policy is implemented that

will be used to control resource allocation decisions to avoid deadlock.

2. The proposed deadlock avoidance policy is implemented as an external controller
that controls the firing of an enabled transition based on the current markings of the

system model.

3. The Petri Net architecture proposed in [40] is extended to accept more than one

resource of same type for a processing stage of a part.

4. The system performance measure (makespan) is collected. This is done to compare

the NHDAP with the maximally permissive policy.

The rest of the chapter is organized as follows, Section 3.2 summarizes the CPN architecture
for modeling FMS in [40], Section 3.3 explains the deadlock avoidance policy addressing
extension 1. Several motivating examples are included at the end of this chapter to illustrate
the application of the deadlock avoidance policy to the Colored Petri Net model. The basics

of the Petri Net and the Colored Petri Net are being described in Appendices A and B.

12

3.2 Colored Petri Net Architecture

A brief description of the Colored Petri Net model described by Yalcin and Boucher [40]
is given in this section. The Petri Net architecture which describes the physical location
of the machines, robots and the connections between them is an ordinary Petri Net. An

example of this type of Petri Net is shown in Figure 3.1.

RM1 RM3

' @ = 0 ‘
pi_M1 pi_M3
MIR / M3R
\ pi_R

pi_M2 pi_M4

rc_ M4 o

Figure 3.1. Petri Net Modeling of the CPN Architecture

In the Petri Net model each part entering into the system and the number of remaining
resources are represented by tokens. The places in the Petri Net represent the resources
and the transitions represent the flow of parts between the resources. There are two types
of places, rc_X represents the remaining capacities of a resource X and pi_X represents the
usage of a resource X. For example the place rc_M1 has three tokens, which indicates the
remaining capacity of machine M1 and the place pi_M1 represents the usage of the resource.
The marking shown in Figure 3.1 is the state where all the resources are idle. There are

three types of transition in this Petri Net model, representing the loading, unloading and

13

the flow of parts in the system. In Figure 3.1 I1 and O1 represent the input and output
transitions. The transition RM1 models the flow of parts between the robot and Machine
M1, and M1R models the reverse flow. The notation is followed for all the transitions in
the Petri Net. This ordinary Petri Net model for the manufacturing system is formally
defined as ,

S=(Pgr U Pg,Tr UTy UTp, Pre, Post, m,)

where,

Pp, - set of places modeling the process of the part by the resource, pi_r

Px - set of places modeling the remaining resources,rc_R

Ty - set of places modeling the flow of parts among the resources

Ty - set of places modeling the loading of parts in the system

To - set of places modeling the Unloading of parts from the system

Pre, Post - functions for the movement of tokens in the Petri Net.

m, - initial marking of a petrinet

Note that the ordinary Petri Net model does not include any information regarding the
operations performed on the machines or the process plan of the part. The following
definitions facilitate the description of operations performed by the machines in the cell.
Definition 1: The set C represents all possible combinations of the operations that can be
performed in the cell. Each member of set C is an n digit binary number, where n is the
number of operations performed in the cell. For the automated flexible manufacturing cell
with 4 operations, C=0000, 0001, 0010,..., 1111.

It is assumed that each machine can undertake a subset of all the possible operations
performed in the manufacturing system. This information is represented by a function that
associates each operation place of a resource (p € Pg) with a binary number that is 1 for
each operation that can be performed by the machine and 0 otherwise.

Definition 2: Let vect()P, — C be the function that maps each machine in the system

to the operations it can perform.

14

An example of such a function for the cell in Figure 3.1 is shown in Table 3.1. Vect
(pi-M1)= 0001 represents that the machine M1 can perform opl and vect (pi-M4)= 1100
indicates that machine 4 can perform op3 and op4. Note that the operations are assigned
to digits from right to left instead of left to right. This convention allows a more robust
implementation of the architecture where the new operations added to the system do not
require modifications to the vect () values of those machines that do not perform the new
operation. For example, if a 5" operation (10000) is to be included in the cell and M4
does not perform this operation, the decimal equivalent of 011009 = 244y is the same as
11002 = 2419. On the other hand, if the operations were to be assigned from left to right
the decimal number representing the capabilities of M4 would have to be changed from
0011 (619) to 00110 (1219). The only modification required to the vect () function of the
machines that are capable of performing the operation would be adding 2X to the existing

decimal equivalent of the vect () function for the K** new operation.

Table 3.1. Vect() Values for Processors

P, | vect(pi_processor)
piMT 0001
pi M2 0100
pi_ M3 0010
pi_M4 1100

The parts are represented as tokens and the information on the process plan is stored
by means of color. The color of a token has 2 components, first is the part identification
number (unique to each part entering into the system) and the second is the set of possible
next operations, determined from the process plan of the part. The set of all operations and
precedence relationship between the operations to be performed on the part are represented
by a vector and a matrix. The (1 x n) vector describes the operations required by the
part type i denoted by S;, where n is the total number of operations to be performed in
the cell. The (n x n) matrix denoted by D; describes the precedence relationship of the
operations required by the part type i. The initial color of a token that represents a part
is determined by,

Cya = (y.7, 8y — (SyDy)) (3.1)

15

Where, x represents, the identification number and y the part type. The color of the

token changes, when the token moves from one process place to another.

Example 1. Consider an example of 2 Jobs, Job A and Job B and a set of machines
M={M1, M2, M3, M4}. Job A has to perform opl-op3-op2 and Job B has to perform op2-
op4-opl. The S; and D; matrices for the parts are formed below following the formalism

described by Yalcin and Boucher [40],

opd op3 op2 opl
Sa=
0 1 1 1

and
opd op3 op2 opl
opd 0 0 0 0
Da= op3 0 0 1 0
op2 0 0 0 0
opl O 1 0 0

In S4, the required operations for the job are represented as '1’ and all the other columns

bl

are represented by ’0’. ’

In the precedence matrix D4, ’1’ in the intersection of operation
2 column and operation 3 row, indicates that the operation 3 should be performed before
operation 2. The initial color of Job A, with the identification 1 and the values of Sy,
D4 found from the Equation 1 will be C4.1 = (A.1,(0001)). This indicates that the next
operation required for Job A is operation 1. The color of the Job gets updated as the Job

moves in the system. The same procedure is followed to find the initial color of Job B with

532(1 0 1 1)

an identification as 2,

and

16

00 01

0000
Dp =

1000

00 00

and Cpo = (B.2,(0010)). The vect()P, — C function, used to map the machines and
operations is given in Table 3.1.

The Colored Petri Net model is described by

S=(Pgr U Pk,Tr UTr UTp, Pre, Post, m,, C, Cf)

where,

C is a set of colors represents all possible operations in the sytem

Cf is a color function defined from Pg into C (This is represented as vect() P, — C function)

The three types of transitions represented in the Petri Net model is explained below,
Transitions representing unloading of a finished part
The transitions that unload the cell [Tp = O1] are only enabled by a token with color 0000
which corresponds to a part that has completed all its processing and is ready to leave the

cell. Therefore,

YVt € Ty
Ct = (c|c € Cand|c| = 0)

where, |c| is the magnitude of c.

Transitions representing loading of a part on a machine

Color domains of transitions that load machines are assigned so that a machine will only be
loaded with a part, if operation(s) currently required by a part can be performed by that
machine. The vect () function is used to identify the operations that can be performed in
a particular machine. The color domains of transitions that load machines include colors
that result in a value not equal to 0 when the token color is compared with the vect ()
function of the machine.

Transitions representing loading of a part on a transporter

17

When assigning color domains to transitions that load transporters it is important to make
sure that before a transporter is loaded with a part, it can either unload the part from
the cell or load the part onto another machine which can process it. In the special case of
single transporter, since all parts must be moved by the centralized transporter, the color
domains of the transitions that load the transporter is the set C.

The color change of the token is explained as follows. Let us consider a token of color
(A.1,(0001)) representing part type A with ID 1. Assume that the token is in place pi.R
and ready to perform operation 1 [op-1]. In this case only the transition RM1 will be
enabled, because from the Table 3.1, we can see that only Machine M1 can perform the
operation 1. If the token moves from the place Pi_R to Pi_M1, a token will be returned
to the place rc_R and a token will be removed from the place rc_.M1 and deposited in the
place Pi_M1. When a token moves from one place to another, the initial color of the part
is updated and the next operation to be performed on the part is identified. These two
things are being performed by Modify Color function as shown below,

Function Modify_Color (place, color, part_type_id)
Spart_type_id = Spart_type_id - (color X wvect(place))

Modify Color = Spart_type_id — (Spart_type_id * Dpart_type._id)
if(|ModifyColor x vect(place)| > 0)

Modify Color = Modify Color (place, Modify Color, part_type_id)
Endlf

End Function

The Modify Color function is applied to Job A with ID 1 as explained above,

Spart_type_id = Spart_type_id - (color x vect(place))
Spart_type_z'd = (0111) - ((0001) X (0001))
=(0111) - (0001) = (0110)

18

00 0O

0010
Modify Color = (0110) - | (0110)

0 00O

0100

— (0110) - (0010)
— (0100)

Modify Color function finds the next operation to be performed on the part, from the new
color of the token and the precedence relationship between the operations. Now the token

color changed from (A.1,(0001)) to (A.1,(0100)).

3.3 Modeling the Deadlock Avoidance Controller

Limited capacity resource allocation systems require controllers that regulate resource
allocation decisions considering the capacity of the resources and the future resource re-
quirements of the entities (parts) in the system to avoid deadlocks. The architecture
described in Section 3.2 does not incorporate any control decisions in routing of the parts
in the system. One approach to incorporating the deadlock avoidance requirement is gen-
erating the reachability graph of the CPN model and disabling those events that lead
to deadlocks [16]. However, this approach is not applicable for real-time control of large
systems. The number of states in the reachability graph increases exponentially as the
capacity of the systems increases. There are several polynomial complexity control algo-
rithms described in the literature that are based on structural properties of the Petri Net
models of the manufacturing system [36, 21, 29, 8, 2, 7]. These models require a process
plan based Petri Net model of the underlying system and are not readily applicable to the
architecture outlined in Section 3.2.

In this section, we describe the design of a controller that adopts the NHDAP developed
in [21, 29, 18] to control a manufacturing system modeled based on the CPN architecture
described in Section 3.2. In the process plan based models, each processing stage is modeled

by a unique place in the system model. However, in the CPN architecture, processes

19

performed by the same machine are modeled using one place which leads to more than
one processing stages corresponding to the same place. Colors of the tokens are utilized
to differentiate between the processing stages corresponding to the same place in the CPN
model. The underlying CPN is not a process plan based model, but a model that is based
on the physical layout of the system as described in Section 3.2. In this manner, the control
model is separated from the physical system model and exercises control over the cell as

illustrated in Figure 3.2.

Allow/Disallow ©

Enabled Event ©

Figure 3.2. Cell Controller

According to the NHDAP, the number of parts in the neighborhood of a machine should
not exceed the capacity of the machine. The number of parts in the neighborhood of a
machine is determined by multiplying the system neighborhood matrix with the state vec-
tor. The system neighborhood matrix is a (machine x processing stage) matrix, describing
the neighborhood of the processing stages. The system neighborhood matrix is found by
combining all the neighborhood matrices of all the parts process plans. The state vector is
a (processing stage x 1) vector representing the number of parts in a particular processing
stage.

The formal definition of the neighborhood policy is a linear constraint,
NM x S < C(M),

where NM = System Neighborhood Matrix, S = State Vector, C(M) = Capacity Vector.

The system neighborhood matrix is determined off-line based on the processing require-

20

ments of each part. The state vector changes dynamically as parts move from one resource
to another and is determined from the current marking of the CPN model in real time.
The capacity vector reflects the total capacity of all the resources. The capacity of the

system resources is assumed to be constant.

3.3.1 Generating the System Neighborhood Matrix

The System Neighborhood Matrix of each part type is described by the following for-
malism. Let p, = P(p) : Pr— > {1,...|Pg|} be any partial resource ordering imposed
on the processing places of each resource, where |Pg| is the number of resources. Let py,
be the place occupied by the token representing a part of the part type for which the

neighborhood matrix is created. Let
Te ={t|t € (pm) AcNCy #0} (3.2)

where C} is the color domain of transition t as described in Table 2. (p,,)' represents the
set of transitions that input from p,, and c is the color of the token in p,,. In other words,
T, is the set of transitions process enabled by the token representing a part when it is in
place p,,. Also, let

R.={qlqg € (T.) N K} (3.3)

where (T;) represents the set of places that transitions in 7, output to. The set of places
R, is the set of places that represent processing places of the machines where the part can

be processed next. Further, let

L. = R. A p, = min p, 3.4
{qlq € Pq yelgp} (3.4)

The set of places L. is a subset of R, such that the places in L, have the minimum p value

among the places in R.. Finally, let

Ne = {pm} U{dlg € Uver.No A pm < po} (3.5)

21

where N, specifies the set of places that the part would traverse in the system in future and
the current place. The set of places is determined based on each places p value through
recursion as shown in the above formulae (the p value of the future places should be greater
than or equal to the p value of the current place). Calculating the parameters associated

with the above definitions is illustrated in Example 2.

Example 2. Consider Example 1 with 2 types of jobs, Job A, Job B and a set of
resources M = {R,M1, M2, M3, M4}, where R is a material handler and their capacities
are, C = {1,3,4,2,1} (found from the initial marking of the Petri Net Figure 3.1). The
partial resource ordering is ppi g = 1, ppi_m1 = 3, Ppi_m2 = 4, Ppi_m3 = 2, ppi_ma = 1 based
on the capacities of the resources. Let us consider a token of color (0100) representing a
part of type A in place pi_R. The part’s next required operation, op3, can be performed in

M4 or M2. The process enabled transitions are
T, ={RM4,RM2}
The places that represent the processing of this are,
R. = {Pi_M4, Pi_M2}
By comparing the r value of the places pi_ M2 and pi_M4,
L. ={Pi_M4|min(4,1) = 1}

The set of places in N, are calculated using recursion as indicated before. The N, set also
includes pi_M3, because the p value of the pi_M3 is equal to the current place pi_R. The

set N, includes,
N, = {Pi_R,Pi_M4, Pi_M3}

These results are used to populate column P43 of the Neighborhood Matrix. The rows
corresponding to the places in N, in column P43 have a value of ”1” and ”0” otherwise.
The same process is repeated for each processing stage of each part type to generate the

complete neighborhood matrix which is shown in Table 3.2.

22

Table 3.2. The Neighborhood Matrix for Example 2

Py | Pas | Pag | Paa | Pas | Pas | Par | Pas | Pp1 | P2 | Pp3s | Ppa | Pps | Ps | Pt
R1 1 0 1 0 1 1 0 1 1 0 1 1 1 0 1
M1 1 1 0 0 0 0 0 0 1 1 1 1 0 1 0
M2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
M3 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0
M4 0 0 1 0 1 0 0 0 1 0 1 1 0 0 0

3.3.2 State Vector

The state vector represents the number of parts in the system and the corresponding
processing stages the parts are in. This vector is dynamic and changes as the state of the
system changes. In process plan based models, each processing stage is modeled by a unique
place in the underlying system model and the state vector of the neighborhood deadlock
avoidance algorithm is determined from the number of tokens in that place. On the other
hand, in the CPN architecture, the processing places (Pr) are unique to resources; not
processing stages. Therefore, two tokens in the same processing place may correspond to
different processing stages. Furthermore, a token can have the same color in two different
processing places when alternative routings and material handlers are considered. The
different processing stages of the parts in the system are identified by considering the
(color x place) combination of the tokens representing the parts.

To create a state vector, let us consider that there are 2 of part type B in the system, both

are in the first process stage, i.e., Machine 3 . This is represented in state vector as follows,

23

N O O O o o o o o o

S o o o o

Ve

7

According to NHDAP, System Neighborhood Matrix x state vector < capacity as shown

below,
10101101101 1101 0 \ 1
1100000011 11010 2 3
000100O0O0DO0OO0O0O0OO0OO0O0]|xs=]0]|Z]4
000011 101100°0O00O0 2 2
0010100O01011O0O00O0 0 1}

The output vector, which is a (machine x 1) vector gives the number of parts being
occupied in the machine starting from machine 1. The row value of the matrix corresponds
to the machine number, if the row value is 1 then the machine number is 1. Here a value
of 2 in the machine 1 place of the output vector indicates that 2 parts are being operated
in that machine, since there are 2 parts of type B are being processed in Machine 1. The

value of 2 in Machine 3 location represents that 2 places in Machine 3 are being reserved for

24

this process, these places are allocated according to Neighborhood Policy. Let us consider
that a new Job A is being loaded in the robot, after finishing its first operation. Job A
is now in process stage P13, the Job can either go to machine 2 or machine 4 to perform
its next operation. If this Job moves to machine 4, it leads to a deadlock, because Job B
in machine 3 requires machine 4 and the part type A in the machine 4 requires machine
3 as its next operation. The deadlock avoidance policy should not allow Job A to enter
machine 4 to perform its next operation. It should instead allow the job to enter machine

2. This is shown below,

0

0

0

0

1
1010110110111°01 0 (1) 1)
1100000011 11010 0 2 3
00010000000000°¢0|x|o0o]|=]0f<]4
000011101100°000 0 9 2
001010001011000 0 1 1

0

2

0

0

0

The condition System Neighborhood Matrix X state vector < capacity is violated when a

part type A is loaded onto the machine 4.

25

0

0

1

0
101011011011101 0 0 [1
11000000111 1010 0 2 3
000100000000000 |x]o]|=|1[<]4
000011101100000 0 2 2
001010001011000 0 0 1

0

2

0

0

0
As shown above, the condition of NHDAP is not being violELted when the part is loaded
onto the machine 2.

In this chapter a design of a controller for the Petri Net architecture summarized
in section 3.2 is described. We adopt and implement the NHDAP to control the system
modeled using the CPN architecture. The design of the controller proposed in this research
is not the process plan based which differs from previous approaches. Formal methodologies
to extract the necessary information for the control policy from the underlying system
model are described in Section 3.3. The simulation of the FMS, based on an object oriented

design approach is described in the next chapter.

26

CHAPTER 4

CONTROLLER SOFTWARE DESIGN

An object oriented design approach for the simulation of the automated flexible man-
ufacturing system is described. An object oriented approach facilitates the link between
the analysis and specification of a real system and the design and implementation of an
action model for that real system where the structure and behavior of entities are readily
modeled as objects. An object, in an object-oriented paradigm, is a collection of data
(attributes) together with all the operations (methods), which access or alter that data
[4]. Some or all of these operations could be used to provide a uniform external interface
to other parts of the system. Other objects in the system can interact with this object
only through requests for the object to execute its operations. The ability of the object-
oriented paradigm to provide a direct representation for real world objects comes with four
unique features associated with it, namely, encapsulation, data abstraction, inheritance
and dynamic binding [4, 34].

In this research C++4, an object oriented extension to the C programming language is
used to develop the controller software. This chapter provides a detailed description of the

controller software design. The FMS and the controller are modeled as different objects.

4.1 Controller Implementation

This section describes the various classes that are used in simulating the controller and
their interrelationship. The physical system considered by the controller is described first,

the classes and their relationships are explained later.

27

4.1.1 Physical Systems

The physical system considered is a fully automated flexible manufacturing system that
has a number of single or multi capacity machines with a centralized material handling
device, that interconnect these machines. There is an input and an output buffer where
parts can be loaded and unloaded to and from the cell via material handling device.

The controller (NHDAP) connected to the automated flexible manufacturing system
coordinates the movements of the parts. The movement can be either from a machine to
another machine, from a machine to buffer of from a buffer to a machine. The controller
monitors the movement of the parts for deadlock situation with signals. The signal is given
to allow or disallow a movement. Based on these signals provided by the controller, the

automated flexible manufacturing system’s state (location of the parts) changes.

4.1.2 Object Definition

The proposed object oriented design approach contains: 1. Part types, 2. Machines
3. Cell Model, 4. Controller. The modeling of the cell includes the creation of machines,
robots, input and output buffers and their interactions with the parts. The supervisory
control is used to control the cell. Each movement in the cell is notified to the controller,
based on the signal provided by the controller (allow/disallow), the movement is allowed

or disallowed.

4.1.3 Object Classes and Attributes

The physical characteristic of the manufacturing system is separated from the con-
troller. In this manner, different control strategies can be applied to the manufacturing
system for testing of deadlock situations. This type of separation can be easily imple-
mented in the object oriented model by creating classes for the physical system and the
control separately. Different combination of cell models and control strategies could be
experimented by creating different instances of the corresponding classes and varying the

values of their attributes.

28

The attributes and methods of all the classes used in the controller are shown in Figure
4.2 and the interactions between the classes are shown in Figure 4.1. A detailed explanation

on each class is given below,

PART CLASS MACHINE CLASS

MATERIAL
‘ PART 1 ‘ ‘ PART 2 ‘ ‘ PARTN‘ HANDLER ‘ MACHINE 1 ‘ ‘ MACHINE 2 ‘ ‘MACHINEM

CELL MODEL CLASS

MANUFACTURING SYSTEM

a

ow/disallow alow/disallow

CONTROLLER CLASS

[suPervisoRY conTROL |

Figure 4.1. Relationship Between the Objects

e Part Type Class
This class represents the parts manufactured in the cell, with the S vector and D
matrix as attributes. The update color function, finds the color of the part from the
S vector and D matrix and stores in an attribute named color. When the S vector of
the part changes, as the part moves in the system, the update color function executes

automatically.

e Machine Class
This class represents the machines, the central material handler and the input and
output buffers. At any time in the simulation, a machine keeps track of the number
of parts present in it by the parts_present attribute. The job type of each job present
in the machine can be identified by its identification number. A machine is in either

busy or idle (processing a part or occupied by a part to be unloaded) state.

e Cell model Class:

The cell class represents the machines, buffers, material handler and the parts that

29

Part Class Machine Class Cell Class
Aloues Attributes Attribtes
rix :
D Matrix Capacity Number_of _machines
Vect
color Number_of parts
part type parts_present
part number Methods: Methods:
Methods: Machine(): Create machines():
part (); generate color(); Create parts():
Update Color() ; Create A_Matrix();

Controller Class
Attributes;
neighborhood matrix

state vector
capacity matrix

Methods:
Create neighborhood matrix();
Create State Vector();

Find enabled transition();
Find deadlock();

Figure 4.2. Classes Used in OO Model of FMS

are being considered in the FMS. The methods associated with this class includes
create machines (), create parts (). This class creates an interaction between the
machine, buffer and the material handler. This interaction is shown in the form of A
matrix, corresponding to the incidence matrix of the Colored Petri Net model of the

cell.

Controller Class:

The controller represents the logic used to prevent the system from reaching a dead-
locked state. When there is a request to move a part from one machine to another
or from a buffer to a machine, the controller class uses find deadlock () method to
evaluate the presence of the deadlock. This method captures the current state of
the FMS, in the form of state vector and uses the NHDAP to find the presence of

deadlock. The neighborhood matrix used in the deadlock avoidance policy is created

30

by the create neighborhood matrix () and the state vector is created by create state

vector() method.

4.2 System Simulation

This section describes the working procedure of the controller. It also explains the
input parameters required to run the simulation of a manufacturing firm and the output

produced by it.

4.2.1 Simulation Inputs

The input files to the simulation describe the sequence of the parts to be processed,
the routing plan of the parts and the machine’s capabilities. There are two types of
files, mach.dat represents the number of machines being considered in the simulation and
part.dat represents the sequence of parts present in the manufacturing cell. Each machine
and part in turn has a separate input file, which represents their corresponding specifica-
tions. The machine specification file has two parameters, one is the vect() function (as
shown in Table 3.1) of the machine and the other is the capacity of the machine. The part
specification file has three parameters, first the S matrix of the part, second the D matrix

and the third is the time required to perform each operation that the part requires.

4.2.2 Simulation Logic

The simulation logic is implemented in the object-oriented model through the updating
of the attributes of the component objects and the interactions among these components
are modeled through the message-passing facility in the object-oriented approach. The
cell model monitors the movement of the parts and relays appropriate event signals to the
controller class. The controller evaluates the request based on the current state of the
system and sends back the decision to allow/disallow the request made by the cell model.

The flow chart in the figure 4.4 outlines the control process.

31

At initialization, the CPN model of the cell is generated based on the machines tech-
nological capabilities. The neighborhood matrix for the part types is also generated offline
at this stage. Parts to be processed during the simulation are loaded into the system by
updating the marking of the CPN model. The cell model is used to determine the set of
enabled transition. As the simulation starts with the arrival of parts to the input buffer,
the transitions become enabled. As a transition becomes enabled, the deadlock avoidance
policy is used to allow/disallow the transition. If the transition is allowed, it is fired in
the cell model and the CPN model’s marking and the state vector are updated. If the
transition is disallowed, it is queued to be considered again when the state of the system
changes after the execution of the next allowed transition. Once all the scheduled parts
are processed and unloaded from the system, the simulation terminates. The installation

procedure for running the simulation is given in Appendix D.

4.2.3 Simulation Results

The output of the simulation is captured in a data file, which includes event trace
information and system performance information. The trace information includes a trace
of events ordered by time for understanding the behavior of the system. The system
performance includes the makespan of each part and the throughput.

In this chapter we have described an object oriented approach for the simulation of
automated flexible manufacturing system and a controller to control the FMS. The model-
ing of the controller is separated from the physical system. In this manner various control
policies can be tested on the same physical system. The results obtained by simulating the
FMS considered in Section 3.2 with the NHDAP implemented as the controller is discussed

in the next chapter.

32

Input Machines and

Cadlculate the cell

operations

Input the Part Types

CPN model

'

Calculate the Neighborhood Matrix

to be processed

'

Calculate the Initial Marking

Input the Partsto be
processed

Exit
Simulation

Check for an enabled
transition in the CPN
model

Add transition to

the pending
events queue

Allow/Disallow

using Control Palic

Disallow

Update State V ector
and CPN Marking

Check for
transitionsin pending
eventsin queue

NO

YES

Figure 4.3. Flow Chart of the Simulation

33

CHAPTER 5

PERFORMANCE EVALUATION OF SYSTEMS CONTROLLED WITH
THE NHDAP

This chapter compares the NHDAP to policies suggested by other researchers for test-
ing the restrictiveness and the performance of the policy. The NHDAP is not maximally
permissive policy but of polynomial complexity. This results in disabling some events even
though they do not lead to deadlock. Since the NHDAP is not maximally permissive, it
is necessary to establish the restrictiveness of the policy compared to one that is maxi-
mally permissive in terms of control policies effects on performance of the system. This
comparison is shown in the first part of this chapter.

The second part of the chapter focuses on comparing the performance of the NHDAP
in a constrained cell design. In this design the pool of part types are selected to balance
the workload in the cell and there is a bottleneck machine that limits the performance of
the system. This refers to the case where a cell has an expensive resource that is required

by all processes and requires long processing time.

5.1 Experiment 1: Performance Comparison of the NHDAP with a Deadlock

Avoidance Policy that Minimizes Makespan

In 18], an IP formulation is proposed to calculate optimal partial resource ordering (p,
values described in Section 3.2), which minimizes the capacity reserved by the NHDAP
and is shown to increase the permissiveness of the NHDAP compared with random partial
resource ordering. The objective of the IP formulation is to choose the ordering of the
machines in a manner that results in reducing the unit entries of the neighborhood matrix

and increases the allowable state space of the control policy. In [21], it is shown that an

34

optimal partial resource ordering leads to better system performance in terms of minimizing
makespan when compared with random resource ordering under different dispatching rules
such as FIFO, LPT, SPT. Our objective here is to compare the performance of a system
controlled by the NHDAP with optimal performance measures using the controller design
described in Chapter 3.

Figure 5.1 shows the formulation that minimizes makespan and avoids deadlock in
an automated manufacturing cell based on [23] and [20]. Equation 5.1 ensures that the
makespan is minimized. Equation 5.2 represents the processing time and the routing
information of each job, and ensures that the difference between the completion time of
the current operation and the immediately previous operation of a job is at least as long as
the processing time of the current operation. Equations 5.3 and 5.4 restrict each machine
to process one job at a time. Equations 5.5 and 5.6 ensure that a job leaves a machine

only when it has found space on the next machine.

5.1.1 Experimental Design

We consider 10 test cases, first five cases have 3 machines and 4 part types each with 3
operations, and the last five cases have 4 machines and 3 part types each with 4 operations.
The processing times of the operations are generated randomly. The processing plans of
the test cases are listed in Appendix C. Using the formulation in Figure 5.1, deadlock-free
schedules that minimize makespan are determined. Based on the part loading sequence of
the optimal schedule, parts are released into the cell and processed to completion using
the NHDAP. A First-Come-First-Served resource allocation policy is used to resolve re-
source allocation conflicts. In the implementation of the NHDAP, we considered two cases.
The first case implements a partial ordering of the resources equal to the capacity of the
resources. For the second case, we calculated the optimal partial resource ordering that
maximizes the permissiveness of the NHDAP. It should be observed that the part loading
sequence found from the IP formulation is based on the assumption that the number of

parts that are to be processed is known and available in apriori. In systems where there

35

are random arrivals of parts into the system, calculating an optimal schedule every time
a new part arrives to the system may not be possible during real time operational control

due to the high computational requirements of the problem.

Table 5.1. Process Plan for Single Routing

Integer programming Neighborhood control policy

Test | Makespan Part Optimal Random

Case dispatching | resource resource

ordering ordering
1 359 1-3-2-4 374 624
2 312 3-1-2-4 368 459
3 482 3-1-2-4 522 767
4 363 1-3-2-4 442 570
5 335 1-3-2-4 369 514
6 242 2-3-1 307 387
7 406 2-3-1 501 718
8 357 1-3-2 415 660
9 273 1-3-2 328 469
10 372 1-3-2 438 646

5.1.2 Experimental Results

The performance of the optimal resource ordering compared to the random resource
ordering (based on the capacity of the resources) for the NHDAP is shown in the Table
5.1. The results indicates that the performance of the optimal resource ordering is better
compared to the random resource ordering. The optimal resource ordering case results
were within 4% to 23% of the optimal makespan values.

Table 5.1 also shows the results for the optimal solutions based on the Mixed Integer
Programming given in Figure 5.1, with random resource ordering. Closer examination of
the simulation outputs revealed that the neighborhood control policy allowed only one part
at a time in the cell leading to makespans that were equal to the sum of the processing
times of all parts. In the two cases of neighborhood deadlock avoidance with optimal and
random resource ordering, the part dispatching sequence (the sequence in which the parts
are release into the system) are the same as the dispatching sequence determined by the

optimal solution using the mixed integer programming approach.

36

5.1.3 Effects of Part Dispatching

It is observed that the alternative part dispatching sequence results in shorter makespans
compared with part dispatching sequence of the MIP formulation. These results are shown
in the Table 5.2. It is noted that 4 of 10 cases resulted in a better makespan, when the
part dispatching sequence changes. Note that the minimum makespan obtained using the
NHDAP had the same part dispatching sequence for all the test cases in each of the two
system setups. This indicates a possible correlation between the neighborhood matrix and

the part dispatching sequence that may be utilized to improve system performance.

Table 5.2. Different Part Dispatching Rules

Integer programming Neighborhood control policy | Neighborhood control policy
using alternative part
dispatching sequence

Test | Makespan Part Optimal Makespan Part
Case dispatching resource dispatching
ordering
1 359 1-3-2-4 374 - -
2 312 3-1-2-4 368 345 1-3-2-4
3 482 3-1-2-4 522 517 1-3-2-4
4 363 1-3-2-4 442 - -
5 335 1-3-2-4 369 - -
6 242 2-3-1 307 272 1-3-2
7 406 2-3-1 501 492 1-3-2
8 357 1-3-2 415 - -
9 273 1-3-2 328 - -
10 372 1-3-2 438 - -

5.2 Experiment 2: Effect of Capacity Representation in NHDAP

The objective of this experiment is to evaluate the different mathematical representa-
tions of manufacturing system capacities. The NHDAP is based on RUN, which states that
the machines with higher capacities can act as buffer for the parts. We project that the
performance of the NHDAP will improve if identical machines are represented as a single
group with capacities equal to the sum of the capacity of the individual machines rather

than individual machines with lower (single) capacity.

37

5.2.1 Design of the Manufacturing Cell

In this experiment we consider an automated flexible manufacturing cell, which has 6
machines and a robot for material handling as depicted in Figure 5.2. The operations and
their processing times are shown in the same figure. As seen in the Figure 5.2, Machine
M5 is identical to M2 and Machine M6 is identical to M3. We will assume that there are
5 part types and each part requires 4 different operations in the cell. The routing plan
for each part type is shown in the Table 5.3. Note that the requirements for drilling and
turning operations, which can be performed on M2 or M5 and M3 or M6 respectively, have
been assigned to parts in a manner to balance the workload in the cell. For example P1
and P2 require M2 and M3 and P2 and P4 requires M5 and M6 for drilling and turning

requirements.

Table 5.3. Process Plans

Part Type | opl | op2 | op3 | op4
pl M1l | M2 | M4 | M3
p2 M1l | M6 | M5 | M4
p3 M2 | M3 | M1 | M4
p4 M6 | M5 | M4 | M1
P> M4 | M5 | M1 | M3

The IP formulation [18], used to determine the optimal resource ordering for the
NHDAP is computationally complex in the system that we have considered. The num-
ber of parts considered in this experiment is 25 with 4 operations. The complexity arises,
because the IP should capture the processing stages of each part (25 x 4 = 100 constrains)
and the relation with the other processing stages (100 x (100 -1) constrains). Due to this
complexity the random resource ordering is being used. Both the NHDAP and the maxi-
mally permissive policy follow a first come first serve resource allocation policy to resolve

resource allocation conflicts.

5.2.2 Experimental Design

Twenty replications were run, by generating a pool of 25 parts (generated randomly

from the 5 part types in Table 5.3). Since each sample used a different random number

38

seed, the 20 replications provided 20 unique sequences of 25 randomly selected parts. The
average makespan found from the experiment is shown in Table 5.4. Note that due to the
bottleneck machine, the theoretical lower bound of the makespan to process 25 parts is 25

x 40 = 1000 time units and the theoretical upper bound is 25 x 100 = 2500 time units.

5.2.3 Experimental Results

The Table 5.4 shows the performance of the FMS controlled by the maximally permis-
sive deadlock avoidance policy [39] and NHDAP. It is observed that the NHDAP increases
the makespan by 100%. From the results it is observed that the makespan obtained from
the NHDAP is close to the theoretical upper bound makespan, which infers that only one
or two parts are being allowed into the system at all times.

The FMS considered for this experiment has single capacity machines. The NHDAP
which we used to test the result performs better when the system has multiple capacities
compared to the system with single capacity machines. The reason for this is the neighbor
deadlock avoidance policy is based on the concept of resource upstream neighborhood
(RUN), which states that the machines with higher capacity can act as a buffer for the
parts. That is, for each processing stage of a part, a buffer location is allocated by the
deadlock avoidance policy, unless the machine processing the part is the higher capacity
machine in the routing plan of the part. The single machine environment causes the
NHDAP to allow one or two parts into the system at all states. It would be interesting to
find out how the policy performance changes in the presence of multiple capacity machines.

This experiment is discussed in the next section.

Table 5.4. Expermiental Results

Control Policies Makespan
Maximally permissive 1074
NHDAP 2317

39

5.2.4 Alternate Representation of Manufacturing System Resource Capacity

Let us consider the same example, where the two drilling and turning machines are
represented as a drilling and turning machine with capacity two. This representation is
shown in Figure 5.3. Technically the capacity of the manufacturing system doesn’t change,
it is the mathematical representation that changes. The performance of the NHDAP is
much better with this representation compared to the earlier scenario. This is shown
in Table 5.5. It is noted that the average makespan of the NHDAP is half when the
manufacturing systems mathematical model changes. Due to the presence of the resources
with two capacities, the NHDAP allocates two parts in those machines neighborhood. This
results in allowing more than one part into the system at all times. From this it can be
concluded that the NHDAP performance is lower for a system with single capacity machine

compared to a system with multiple capacity machine.

Table 5.5. Changing the Mathematical Representation

Policies Machine Capacities | Makespan | Avg. Flow Time | Max. Flow Time | Throughput

M3 = 1;M4 = 1;
M5 = 1;M6 = 1

Single Capacity MI= ;M2 = 1; 2317 298.23 520.8 0.01078

Mathematical Representation M3 =2;M4 =1

With changing M1 = 1;M2 = 2; 1164 253.28 498.2 0.02147

M5 = 1;M6 = 1

Maximally permissive M1 =1;M2 =1; 1074 235.48 439.5 0.023292

NHDAP predicts the resource requirements for a part and attempts to reserve these
resources needed beforehand. Though there is a guarantee of avoiding deadlocks, there
is also a tendency to be restrictive. This nature of the NHDAP forces the cell model to
have a significant effect on the utilization of the resources. Capacity variations of a single
resource type in isolation lower the restrictiveness of the policy, while variations of the
resource capacities for multiple resources in relatively comparable amounts promotes the
working of the policy. This leads to an observation that, instead of replicating machines,
increasing their capacity would lead to a better performance for the NHDAP.

In this chapter, numerical results obtained by applying the developed NHDAP on two

different test problems have been presented. The single unit resource allocation system

40

(SU-RAS) has been taken as the test bed to compare the developed deadlock avoidance
policy solution with the optimal solution. The second experiment in this chapter compares
the NHDAP’s performance when the mathematical representation of the manufacturing

system changes. The experiments reported in this chapter indicates that,

1. Optimal resource ordering leads to better system performance compared with random

resource ordering.

2. The optimal partial resource ordering case results were within 4% to 23% of the

optimal makespan values.

3. The system performance can be improved with changing the part dispatching se-

quence.

4. By changing the mathematical representation of the system, the performance of

NHDAP can be improved.

5. Instead of replicating machines, maintaining their capacity equally would lead to a

better utilization, when the NHDAP is used.

41

Minimize M

S.t
M-x., 20 Viel (5.1)
L T Viel (5.2)

- - ; 53
X xqu+g(1 yprqsg > [: qe ; , (p,9) ei (5.3)
Xosi™ Xpr THVprgs) = s €. (pa)e
L— xqu+H(1-yprqi) >E Vjel Vel D
X (s 11 prj+H(yprqu) >E Viel,V(p,g) el
where
X completion time of last operation K of job i
X completion time of job i operation k on machine j
Gk processing time of job i operation k on machine j
Yorgsi =1 if job p operation r follows job q operation s on machine j. 0 otherwise
H large positive number
E small positive number
I set of all jobs
J set of all machines
M makespan

Figure 5.1. Mixed Integer Formulation for Minimimizing Makespan and Avoiding Deadlock

110

i Turning
Milling M1 M6
PT:40 PT:30

Drilling M2 M5 Drilling
PT:20 PT:20

M3 M4

Turning Punching
PT:30 PT:10

Figure 5.2. Automated Flexible Manufacturing Cell Considered in Experiment 2

42

110

Capcity:2
i Drilling Capcity:2
PT:40 PT:20
Capcity:1

Turning Punching
PT:30 PT:10
Capcity:2 Capcity:1

Figure 5.3. Changing the Mathematical Representation

43

CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

6.1 Conclusions

The FMS must be reconfigured when the sequence of a part changes or a new part
type is added. Yalcin and Boucher [40] overcome this problem by modeling the system
based on physical layout and technological capabilities of the machines, rather than the
process plans of the parts. The described model in [40] lacks a controller that controls
part movements to avoid deadlock. Incorporating a controller for the model would permit
application of the policy to FMS in a real time deadlock free control environment.

Finding a maximally permissive deadlock avoidance policy for a mixed capacity FMS is
proved to be computationally intractable. This thesis attempts to evaluate the performance
of a polynomially complex deadlock avoidance policy for a FMS. Results obtained using
the polynomial time deadlock avoidance policy have been presented.

The Petri Net model in [40] has been extended to handle mixed capacity systems. The
control to the extended architecture is implemented by adopting the NHDAP. The design
of the controller differs from previous approaches in the fact that the underlying system
model is not process plan based, but draws on the technological capabilities of the system
resources. In this research the systems performance is measured based on the variations in
makespan rather than the state space allowed by the NHDAP.

Two experiments are conducted to evaluate the performance of the NHDAP. The
first experiment is a comparison between the performances of a system controlled by the
NHDAP and the maximally permissive policy. The results indicate that the performance

of the NHDAP with optimal partial resource ordering is comparable to the performance

44

of the maximally permissive policy. However the IP formulation used to determine the
optimal resource ordering is computationally intractable for large systems. It is observed
that part dispatching sequence have an impact on the system performance. This variations
need to be investigated further. The second experiment is the performance comparison of
NHDAP in different scenario’s, where the representation of the capacities changes. It is con-
cluded that NHDAP’s performance increases when the multiple single capacity machines
are represented as a group rather than an individual one’s.

The controller described in this thesis can handle an extended Petri Net model of Yalcin
and Boucher [40] using a single type resource allocation system with a centralized material
handling system.

Finally an object oriented approach is used to design the tool for FMS simulation. This
tool allows the implementation of system model independent of the control logic. Different
control policies can be evaluated by the design engineer on the same system model and
performance can be estimated. The object modeling of the simulation tool allows capturing

dependencies between resources, which are difficult to identify in real time.

6.2 Future Research

In this section we identify the important research directions that improve and extend
the modeling capability of the Colored Petri Net architecture and the object oriented

simulator.

6.2.1 Machine Breakdowns and other Uncontrollable Events

The Petri Net model described in Section 3.2 works under the assumption that all
the machines and the transporting devices are available at all times. It is important
to determine the performance of the FMS and the deadlock avoidance policy in these

situations.

45

6.2.2 Modeling the Material Handler Separately

The results indicate that the centralized material handler implementation reduces the
performance of the deadlock avoidance policy. The alternative approach can be modeling
the material-handling device separately from the machines. More details in this topic can

be found in[22].

6.2.3 Improving the CPN Model

The Petri Net model defined in the Section 3.2 can model single type resource allocation
systems. The model may be extended where more than one type of resource can be used
for processing a single operation such as Conjunctive RAS or Conjunctive / Disjunctive

RAS.

6.2.4 Improvements for the Software Implementation

The simulator described in Chapter 4 works under the assumption that there is only
one type of transporting device available in the manufacturing system and the sequence
of the parts that has to be processed is known aprior. The simulator can be extended
to handle more than one type of transporting device and the dynamic sequencing of the

parts.

46

[1]

[10]

[11]

REFERENCES

Abdallah, I. B. and ElMaraghy, H. A. Deadlock prevention and avoidance in FMS: A
Petri net based approach. International Journal of Advanced Manufacturing Technol-
ogy, 10(4):704-715, September 1998.

Banaszak, Z. A. and Krogh, B. H. Deadlock avoidance in flexible manufacturing
systems with concurrently competing process flows. IEEE Transactions on Robotics
and Automation, 6(6):724-734, December 1990.

Barkaoui, K. and Ben Abdallah, I. A deadlock prevention method for a class of FMS.
In IEEE Transactions on Systems, Man and Cybernetics, volume 5, pages 4119-4124,
1995.

Booch, G. Object-Oriented Analysis and Design with Applications. Benjamin-
Cummings Publishing Co., Inc., Redwood City, CA, USA.

Cho, H., Kumaran, T. K. and Wysk, R. A. Graph-theoretic deadlock detection and
resolution for flexible manufacturing systems. IEEE Transactions on Robotics and
Automation, 11(3):413-421, June 1995.

Chu, F. and Xie, X. Deadlock analysis of Petri nets using siphons and mathemat-
ical programming. IEEE Transactions on Robotics and Automation, 13(6):793-804,
December 1997.

Ezpeleta, J. and Colom, J. M. Automatic synthesis of colored Petri nets for the control
of FMS. IEEE Transactions on Robotics and Automation, 13(3):327-337, June 1997.

Ezpeleta, J., Colom, J. M. and Martinez, J. Petri net-based deadlock prevention policy
for flexible manufacturing systems. IEFE Transactions on Robotics and Automation,
11(2):173-184, April 1994.

Fanti, M. P. and Turchiano, B. Deadlock Avoidance Policies Applied to Flexible Manu-
facturing Systems Modelled by Colored Petri Nets. In IEEE International Conference
on Emerging Technologies and Factory Automation, volume 2, pages 1099-1106, 1999.

Fanti, M. P., Turchiano, B. and Maione, B. Deadlock detection and recovery in flexible
production systems with multiple capacity resources. 1:237-241, 1996.

Fanti, M. P., Turchiano, B. and Maione, B. Diagraph Theoretic Approach for Deadlock
Detection and Recovery in Flexible Production Systems. In Studies in Informatics and
Control, volume 5, 1996.

47

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Fanti, M. P., Turchiano, B. and Maione, B. Event-based feedback control for dead-
lock avoidance in flexible production systems. IEEE Transactions on Robotics and
Automation, 13(3):347-363, October 1997.

Fanti, M. P., Turchiano, B. and Maione, B. Comparing digraph and Petri net ap-
proaches to deadlock avoidance in FMS. IEFEE Transactions on Systems, Man and
Cybernetics, 30(5):783-798, October 2000.

Huang, Y., Jeng, M., Xie, X. and Chung, S. A Deadlock Prevention Policy For Flexible
Manufacturing Systems Using Siphons. In International Conference on Robotics and
Automation, volume 1, pages 541-546, 2001.

Huang, Y., Jeng, M., Xie, X. and Chung, S. Deadlock Prevention Policy Based on
Petri nets and Siphons. International Journal of Production Research, 39(2):283-305,
January 2001.

Jensen, K. . An introduction to the theoretical aspects of colored Petri nets. Lecture
Notes in Computer Science, 803:230-272, June 1993.

Kamel, B., Alloua, C. and Rabah, B. Performance of alternative strategies for dealing
with deadlocks in FMS. 1:281-286, 1997.

Mark, L. Flexible manufacturing system structural control and the Neighborhood
Policy, Part.1 Correctness and scalability. IIE Transactions, 29(10):877-887, May
1997.

Murata, T. Petri Nets:Propoerties, Analysis and Applications. IEEE Transactions on
Automatic Control, 77(4):1344-1357, October 1989.

Nabil Z. Nasr. Scheduling of Job Shop Type Machining Systems with Alternative
Machine Tool Routings. PhD thesis, Rutgers University, 1990.

Park, J. Structural Analysis and Control of Resource Allocation Systems Using Petri
Nets . PhD thesis, Georgia Institute of Technology, 2000.

Park, J., Reveliotis, S. A., Bodner, D. and McGinnis, L. F. A Distributed, Event-
Driven Control Architecture for Flexibly Automated Manufacturing Systems. In In-
ternational Journal of Computer Integrated Manufacturing, volume 15, pages 109-126,
2002.

Ramaswamy, S. E. and Joshi, S. B. Deadlock-Free Schedules for Automated Manufac-
turing Workstations. IEEE Transactions on Robotics and Automation, 12(3):391-400,
October 1996.

Reveliotis, S. A and Ferreira, P. M. Deadlock avoidance policies for automated man-
ufacturing cells. IEEE Transactions on Robotics and Automation, 12(6):845-857, De-
cember 1996.

Reveliotis, S. A. and Ferreira, P. M. Deadlock avoidance policies for flexible manufac-
turing systems: the conjunctive case. In IEEE International Conference on Robotics
and Automation, volume 1, pages 533 —538, 1996.

48

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Reveliotis, S. A. and Park, J. Deadlock avoidance policy for petri net modelling of flex-
ible manufacturing systems with shared resources. IEEE Transactions on Automatic
Control, 41(2):289-295, February 1996.

Reveliotis, S. A. and Park, J. A polynomial-complexity deadlock avoidance policy for
sequential resource allocation systems with multiple resource acquisitions and flexible
routings. In IEEE Conference on Decision and Control, volume 3, pages 2663-2669,
2000.

Reveliotis, S. A. and Park, J. Algebraic deadlock avoidance policies for conjunc-
tive/disjunctive resource allocation systems. In IEEE International Conference on
Robotics and Automation, volume 1, pages 70-76, 2001.

Reveliotis, S. A. and Park, J. Deadlock avoidance in sequential resource allocation
systems with multiple resource acquisitions and flexible routings. IEEE Transactions
on Automatic Control, 46(10):1572-1583, October 2001.

Reveliotis, S. A, Lawley, M. A and Ferreira, P. M. Deadlock avoidance policies for re-
source allocation systems with applications to FMS. In IEEFE Conference on Emerging
Technologies and Factory Automation, volume 1, pages 42 —48, 1996.

Reveliotis, S. A, Lawley, M. A and Ferreira, P. M. On the complexity of optimal
deadlock avoidance in flexible manufacturing systems. In Proceedings of the American
Control Conference, volume 2, pages 1008-1012, 1997.

Reveliotis, S. A, Lawley, M. A and Ferreira, P. M. Polynomial-Complexity Deadlock
Avoidance Policies for Sequential Resource Allocation Systems. IEEE Transactions
on Automatic Control, 42(10):1344-1357, October 1997.

Reveliotis, S. A, Lawley, M. A and Ferreira, P. M. A correct and scalable deadlock
avoidance policy for flexible manufacturing systems. IEEFE Transactions on Robotics
and Automation, 14(5):796-809, October 1998.

Rumbaugh, J., Blaha, M., Lorensen, W., Eddy, F. and Premerlani, W. Object- Oriented
Modeling and Design. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Viswanadham, N., Narahari, Y. and Johnson, T. L. Deadlock prevention and deadlock
avoidance in flexible manufacturing systems using Petri net models. IEEE Transac-
tions on Robotics and Automation, 6(6):713-723, December 1990.

Wu, N. Necessary and sufficient conditions for deadlock-free operation in flexible man-
ufacturing systems using a colored Petri net model. IEEE Transactions on Systems,
Man and Cybernetics, 29(2):192-204, May 1999.

Wysk, R. A., Yang, N. S. and Joshi, S. Detection of deadlocks in flexible manufacturing
cells . IEEE Transactions on Robotics and Automation, 7(6):853-859, December 1991.

Wysk, R. A., Yang, N. S. and Joshi, S. Resolution of Deadlock in Flexible Manu-
facturing Systems:Avoidance and Recovery Approaches. Journal Of Manufacturing
Systems, 13(2):128-138, June 1994.

49

[39]

[40]

[41]

[42]

[43]

Yalcin, A. Architectures for automated manufacturing cells with routing flexibility.
PhD thesis, Department of Industrial and Systems Engineering, Rutgers University,
2000.

Yalcin, A. and Boucher, T. O. An architecture for flexible manufacturing cells with
alternate machining and alternate sequencing. IEEE Transactions on Robotics and
Automation, 15(6):1126-1130, December 1999.

Yalcin, A. and Boucher, T. O. Deadlock Avoidance In Flexible Manufacturing Systems
Using Finite Automata. IEEE Transactions on Robotics and Automation, 16(4):424-
429, August 2000.

Yim, D. S., Kim, J. I. and Woo, H. S. Avoidance of deadlocks in flexible manufac-
turing systems using a capacity-designated directed graph. International Journal of
Production Research, 35(9):2459-2475, September 1997.

Zhou, M. C., McDermott, K. and Patel, P. A. Petri net Synthesis and Analysis of
a Flexible Manufacturing System Cell. IEEE Transactions on Systems, Man and
Cybernetics, 23(2):523-531, March 1993.

50

APPENDICES

o1

Appendix A Petri Net

A Petri Net model consists of a set of places (P) and a set of transitions (T), in which
the places correspond to the states of the model and the transitions represent the actions
related to the states of the model. The places and transitions are connected by a set of
directed arcs (A). An arc can only connect a transition with a place or vice-versa. An arc
directed from a place to a transition is called an input-arc and an arc from a transition
to a place is called an output-arc of the transition. A transition is said to be enabled,
if there are enough tokens in each of the input places as specied by the arcs connecting
the input places to the transition. An enabled transition can fire if the other conditions
associated with the transition are satisfied. The initial state of the Petri Net is called its
initial-marking. The current state of a Petri Net is the distribution of tokens to the places
in the Petri Net. By firing the enabled transitions, the state(distribution of tokens in the

places) of a Petri Net can be changed.A Petri Net is defined mathematically as,

N = (P, T, A, M,) (A1)

where,

p = set of places

T = set of transitions

A = set of arcs

M, = initial marking of the Petri Net.

The set of input transitions of a place in a Petri Net is represented by ‘p and the output
transitions of a place is represented by p-, in the same way the set of input places of a
transition is represented by 't and the output places of a transition is represented by .
A Siphon as defined in [19], is a subset of places in Petri Net where 'S C S- i.e., every
transition that has an output to S also has an input to S. A Trap [19] is also a subset of
places in a Petri Net, where S- C -S| i.e., every transition having an input place in S has

an output places in S. In order to prove the Petri Net to be free of deadlock it should be

52

Appendix A (Continued)

proved that the Petri Net is live.A Petri Net is said to be deadlocked, when a marking is
reached where the firing of a transition is impossible. Liveness guarantess a deadlock free
Petri Net.If each marking of a Petri Net corresponds to a state in a system, then starting
with the initial marking we can find all the possible markings(state) in the system. This
is represented in form of a tree, called Reachability Tree. Consider a system shown in

Fig.A.1, the corresponding reachability tree is shown in fig.A.2. For more detail on the

theory of Petri Nets the reader is referred to [19].

'

Figure A.1l. Petri Net

53

Appendix A (Continued)

(1,0,00 Mo

lTl
0,1,1)

T T2

(1,01 (11,0

T l T3
Mo
Figure A.2. Reachability Tree

54

Appendix B Colored Petri Net

In this section we will provide some definition and terminology regarding Colored Petri
Net. The Colored Petri Nets, have type and color(C) information attached to places and
tokens in the net. The color set determines the types, operations and functions that can
be used in the net. It is assumed that the color sets have at least one element each. The
arcs have expressions attached to them called arc-ezpressions (E). A transition in a CP-
net is enabled if it is possible to bind the variables in such a way that the arc-expressions
of all the input arcs evaluate when tokens are present at the corresponding input places.
The transition can, in addition, have Boolean expressions called Guard-ezpressions (G),
that are needed to evaluate to ”true” in-order that the transition fires. The node function
N maps each arc into a tuple where the first element is the source node and the second
element is the destination node, the color function C maps the place p to a color set X,
the guardfunction (G) maps the transition ¢ to the boolean function and the arcezpression
function (E) maps the arc, a to an expression. The initialization function (I) specifies the

initial state of the Petri Net.A CP-net (CPN), can be defined mathematically as,

CPN = (%,P,T,A,N,C,G,E, I (B.1)

where,
(i) X is the color set,
(ii) P is a finite set of places,
(iii) T is a finite set of transitions,
(iv) A is a finite set of arcs such that, PNT =PNA=TNA=0,
(v) N is a node function, defined from A into PxT U TxP,

(vi) C is the color function defined from P into X,

95

Appendix B (Continued)

(vii) G the guard function,
(viii) E is an arc expression function,

(ix) I is the initialization function.

56

Appendix C Process Plan for Test Case

Table C.1. Test Case 1

M1 M2 M3

J1 [1(11) 1 2(15) | 3(54)

J2 | 2(87) | 1(97) | 3(31)

J3 | 1(74) | 2(36) | 3(80)

T2 | 3(54) | 2(76) | 1(9)

Table C.2. Test Case 2

MI | M2 | M3

J1 | 1(23) | 2(5) | 3(14)
J2 | 2(38) | 1(97) | 3(11)
J3 | 1(43) | 2(93) | 3(49)
J4 | 3(36) | 2(7) | 1(43)

Table C.3. Test Case 3

MI | M2 | M3

J1 | 1(61) | 2(31) | 3(57)
J2 | 2(9) | 1(97) | 3(93)
J3 | 1(72) | 2(61) | 3(97)
J4 | 3(83) | 2(25) | 1(81)

o7

Appendix C (Continued)

Table C.4. Test Case 4
M1 M2 M3
J1 | 1(31) | 2(57) | 3(35)
J2 | 2(4) | 1(24) | 3(95)
J3 | 1(73) | 2(62) | 3(2)
Ja | 3(83) | 2(16) | 1(96)
Table C.5. Test Case 5
M1 M2 M3
J1 | 1(36) | 2(18) | 3(30)
J2 | 2(92) | 1(98) | 3(8)
J3 | 1(74) | 2(29) | 3(15)
J4 | 3(17) | 2(19) | 1(78)

Table C.6. Test Case 6

MI | M2 | M3 | M4
J1 | 2(5) | 1(11) | 3(36) | 4(31)
J2 | 1(14) | 2(43) | 3(7) | 4(57)
J3 | 3(38) | 2(93) | 4(43) | 1(9)

Table C.7. Test Case 7

MI | M2 | M3 | M4

J1 | 2(93) | 1(89) | 3(15) | 4(31)
J2 | 1(72) | 2(25) | 3(54) | 4(74)
J3 | 3(61) | 2(81) | 4(87) | 1(36)

Table C.8. Test Case 8

MI | M2 | M3 | M4

J1 | 2(54) | 1(57) | 3(95) | 4(83)
J2 | 1(76) | 2(35) | 3(73) | 4(16)
J3 | 3(9) | 2(4) | 4(62) | 1(96)

Table C.9. Test Case 9

Mi | M2 | M3 | M4

J1 | 2(32) | 1(57) | 3(62) | 4(10)
J2 | 1(75) | 2(26) | 3(1) | 4(10)
J3 | 3(55) | 2(26) | 4(87) | 1(28)

Table C.10. Test Case 10

Ml | M2 | M3 | M4

J1 | 2(55) | 1(87) | 3(33) | 4(90)
J2 | 1(67) | 2(42) | 3(22) | 4(60)
J3 | 3(39) | 2(55) | 4(30) | 1(66)

o8

Appendix D Externally Controlled Simulation Tool for FMS

This object-oriented based simulation software, developed in C++4, models a Flexible
Manufacturing System, with deadlock avoidance policy acts as an external controller. This
controller acts in real time environment with the FMS to avoid deadlocks. The FMS and
the supervisory controller are all modeled as objects. The software provides the user with
the flexibility to observe the states of various parts and resources in the simulated plant
at any time during the simulation and also accumulates into files, the desired performance
measures at the end of the simulation. Software Requirements The following software is
needed to run our simulation programs: UNIX operating system with GNU C++ compiler
Installation

The software consist of the following c++ files,

1. Part Type .h

2. Machine .h

3. Cell model .h
4. Controller .h

5. Global .h

6. Header .h

7. Matrix .h

8. Petri Net .cpp
9. Rand .cpp

10. Run .sh

Running the Simulation
Step 1: Create input files to describe the FMS and the parts that are being considered

The input to the program is given thro files. Two types of files are being present, one to

99

Appendix D (Continued)

represent the number of machines being considered in the system (mach.dat) and the other
for the number of parts being present in the system (part.dat). Each machine and each
part in turn have a separate input file, which represents their corresponding specification.
The machine specification file should have two parameters, one is the vect() function of the
machine and the other is the capacity of the machine. The part specification file should
also have three parameters, first is the S matrix of the part, the second D matrix of the
part and the last is the times required for each operation.

Step 2: Change the sequence of the parts
The simulation works by creating random sequence for the parts as specified by the user.
The parts, present in the sequence should be inputted by user. This input is present in the
Rand .cpp file. The user can change the part number in Rand .cpp file, so the program
generates the random number accordingly.

Step 3: Change the simulation run
The simulation can be run for any number of times, for the same manufacturing system
to test the efficiency. This information is stored in the Run .sh program. The default
simulation run is 1. Each time when the simulation runs, the sequence of the parts are
created randomly by rand .cpp program.

Step 4: Running the program
Run the file called, run.sh, by typing in the UNIX screen as ”"run”.

Outputs
The results of the simulator are displayed in an output file, called output.dat. This file is
based on the simulation runs. If the simulation is run for 2 times, then 2 output files called
outputl.dat, output2.dat will be present. The outputl.dat gives the results from the first

simulation run and the output2,dat gives the output from the second simulation run.

60

