Concurrent Engineering (CE)

Outline
- Introduction
- Rationale For Implementation
- Benefits
- Teams
- Communication Models
- Implementation
- Tools
- Misconceptions & Pitfalls
- Summary

Introduction
- Concurrent Engineering
 - Loosely: Using A Multi-Disciplinary Team To Conduct Conceptual Thinking, Product Design, & Production Planning All At One Time
 - Simultaneous Or Parallel Engineering
- Sequential Engineering
 - “Throw-It-Over-The-Wall”

Rationale For Implementation
- Decrease In Time-To-Market
- Design Changes Increase Lead Times
- Shorter Lead Times Respond To Customers
- Shorter Lead Times Increase Cash Flow
- Change During Testing Costs 10 Times More Than During Design
- Designs Product Within Prod. Capabilities
 - Lower Reject & Scrap Rates
 - Customer Returns & Rework Costs Decrease
 - 60-95% Of Cost Determined During Design

Product Development Flowchart

Product Development Time Line
Benefits

- Significant Decrease In Time To Market
- Faster Product Development
- Better Quality
- Less Work In Progress
- Fewer Engineering Change Orders
- Increased Productivity

Teams

- Goals From Conceptual Design To Sales
 - Prior Experience
 - Emphasize Early High Quality Decisions
 - Support Fulfillment Of Customer Req.
- Members
 - R&D, Design, Production, Testing, Quality, Service
 - Marketing, Finance, Logistics, Sales
 - Suppliers, Customers

Communication Models

- Sequential Engineering
 - Communication In Series
- Concurrent Engineering
 - Communication In Parallel
- Information Flows Up & Downstream
- Communication Paths Are Open
- Employees Are Empowered

Traditional Organizational Structure (Information Paths)

CE Organizational Structure (Information Paths)

Implementation

- Dedicated Project Teams
 - Stays Together Project-To-Project
 - Liability - Develop Stableness & Settling
- Co-Locating Team Members
 - Engineering, Business, Production
 - Liability - Taken Out Of Functional Unit
- Computer Network Technology
Tools

- Chronology
- Organizational
- Product Development
- Production
- Statistical
- Pitfalls Of CE Tools

Chronology Of CE Tools

- Prime Mover
 - Computer Technology (Desktop)
- Typing To Word Processing
- Drafting To CAD
 - Aircraft Manuf. (1970s)
 - Desktop (1980s)
- Finite Element Analysis
 - Aircraft Manuf. (1970s)
 - Desktop (1990s)

Organizational Tools

- Total Quality Management (TQM)
- Computer Networks
- ISO 9000
- Quality Function Deployment (QFD)

Product Development Tools

- Computer-Aided Drafting (CAD) Software
- Solid Modeling Software
- Finite Element Analysis (FEA) Software
- Rapid Prototyping Techniques
- Design For Manufacture & Assembly (DFMA)

Production Tools

- Computer-Aided Manufacturing (CAM)
- Computer Numerical Control (CNC) Tools
- Continuous Process Improvement (CPI)
- Just-In-Time (JIT) Production

Statistical Tools

- Design Of Experiments (DOE)
- Taguchi Methods
- Statistical Process Control (SPC)
Pitfalls Of CE Tools
- No Negatives To Implementing CE Tools
- Employees Need
 - Experience With Tools
 - Expertise With Tools
- Proper Training & Education
 - Avoids Dangerous Mistakes
- Resources & Time Needs To Be Allocated
 - Start-Up Costs & Time Can Be Prohibitive

Misconceptions Of CE
- Not simultaneous Design & Production
 - Just The Opposite
- Not A Quick Fix Or Magical Formula
 - Way Of Thinking
- Does Not Require Multiple Tests
 - One-Pass Design
- Not Inspection Techniques
 - Designed Within Process (SPC)

Pitfalls Of CE
- Employees Assigned To Departments
 - Loyalty To CE Team
- Do Not Eliminate Sequential Eng.
- Avoid Unobtainable Schedules
- Avoid Tight Tolerances To Obtain One-Pass
- Avoid Changing Product Definition & Specs.
- Avoid “Business As Usual”
- Simply Product Development
 - Avoid Automating Product Development

Summary
- Eliminates “Throw-It-Over-The-Wall”
- Communication Paths
- Decreases Time-To-Market
- Multi-Disciplinary Teams
- CE Tools