FERROUS METALS

Outline

- Wrought Iron (Prehistoric Era to 1500 AD)
- Pig Iron & Molten “Cast” Iron
- Blast Furnace
- Mineral Fuels
- Puddling Furnace
- Bessemer & Thomas Processes
- Basic Oxygen Process
- Siemens Process & Open-Hearth Furnace
- Electric Furnaces

Classifications

- Open-Hearth Iron & Wrought Iron
 - Few Hundredths Of 1% Carbon
- Steels
 - 0.04 to 2.25% Carbon
- Cast Iron, Malleable Cast Iron, & Pig Iron
 - 2 to 4% Carbon
- White-Heart Malleable Iron
 - Virtually No Carbon

Iron Characteristics

- Fourth Most Abundant Element In World
- Iron Ores
 - Dusty Reddish-Brown Rock
 - Mixture Of Iron & Oxygen (Iron Oxide)
 - Iron, Iron, Strong Affinity For Oxygen, -- Oxy-
 - Carbon, Iron, Strong Affinity For Oxygen
 - Carbon, Iron, Virtually No Carbon
 - Small Quantities Of Other Elements
 - 25 to 75% Iron

Wrought Iron (Before 1500 AD)

- Beginnings - Speculation (Absence Of Facts)
 - Accidental Smelting Of Iron Ores
 - Iron, Ore, Stones, Reduced To Iron, By Wood Fire
 - Forced, Benefit, High, Wind
 - Hammering, Iron, White, Hot, To Produce Tools
- Iron Implements - Egypt (3000 BC)
- Hardening By Heat Treatment - Greeks (1000 BC)
- Spread To Europe & Britain (1000 BC)
- Fibrous Structure - Like Wood
- Shaped & Welded By Hammering While Hot

Wrought Iron (Before 1500 AD)

- Early Production - Bloomery
 - Small Furnace Made Of Clay
 - Heated By Charcoal Fire
 - Forced Bellows
 - Charcoal & Iron Ore Fed Through Aperture At Top
 - Oxygen In Ore & Carbon Formed Gas That Burned a Blue Flame
 - After Oxygen Burnt Off Ore, Tapped From Bottom
 - Bloom - Small, Spongy Ball Of Iron Produced
 - Hammered On Anvil
 - Drive, Beat, Shape, Weld, & Consolidate Iron
Wrought Iron (Before 1500 AD)
- Bloomery
 - Never Operated On A Large Scale
 - Produced Iron Containing About 3% Slag & 0.1% Other Impurities
- Accidental Production Of Steel
 - Heat wrought iron & charcoal in clay boxes for several days
 - Absorbed carbon to produce true steel

Early Blast Furnace
- First Great Step in Iron Production
 - Introduced in Liege, Belgium (Late 1400s)
 - Reached England in 1500s
 - Short square chimney built of brick or stone
 - 10 to 16’ high
 - Similar to Bloomery, only bigger
 - Operated at higher temperature
 - Higher ratio of charcoal to ore
 - Iron absorbed more carbon from blast of air
 - Produced molten (cast) iron

Early Blast Furnace
- Molten (Cast) iron accumulated at bottom
 - Tapped at intervals
- Molten (Cast) iron channeled to form “Pigs”
 - Pig iron
- As charcoal & iron are used, more is added at top
- Limestone was added - “Flux”
 - Combined with waste materials
 - Formed molten waste - “Slag”

Pig Iron
- As produced from blast furnace, contains
 - Iron, 92%
 - Carbon, 3 to 4%
 - Silicon, 0.5 to 3%
 - Manganese, 0.25 to 2.5%
 - Phosphorous, 0.04 to 2%
 - Sulfur, trace amounts

Molten “Cast” Iron (1500 - 1700)
- Few uses - must be cast on site at time
 - Cast iron cannons - Sussex (1543)
- Molten iron went through second process
 - Finery
 - Produce wrought iron
 - Rational was increased production
 - Blast furnace could make 10 times Bloomery
 - Finery - Furnace
 - Charcoal as fuel & waterwheel-driven bellows
 - Cast iron re-melted to drive off carbon

Finery
- Produced large pieces of wrought iron
 - Led to problems
 - Ironworkers needed long thin bars
- Power hammer (Late 1500s)
 - Waterwheel-driven
 - Pounded iron into flat thin slabs
- Slitting mill (Late 1500s)
 - Cut slabs into strips
- Rolling mill
 - Sketch - Leonardo da Vinci (1486)
Mineral Fuels

- Till 1700, Charcoal Was Used As Fuel
 - Made By Burning Large Heaps Of Wood
 - Impurities Burn Off In Smoke
 - Cool Quickly With Water
- Coal Was Tried Unsuccessfully In Furnace
 - Patent - Dud Dudley (1600s)
 - Contains Sulfur
 - Sulfur Easily Unites With Iron - Iron Sulfides
 - Makes Iron Brittle When Hot Or Cold

History Of Blast Furnaces

- 1600
 - 85 Charcoal-Fired Blast Furnaces In Britain
- 1788
 - 53 Coke-Fired Blast Furnaces In Britain
 - 24 Charcoal-Fired
- Early 1800s
 - No Charcoal-Fired Furnaces Still Operating

Developments Of Blast Furnaces

- Preheating Of Air Blast - J.B. Nelson (1828)
 - Increased Production
 - Preheat: -- 8 Tons. Coal For 1 Ton. Iron
 - After: -- 2.25 Tons. Coal For 1 Ton. Iron
 - Increased Quality
- Reshaping Furnaces - John Gibbons (1832)
 - Round Hearth - 33% More Productive
- Use Of Waste Gas
 - Inflammable Gas In Produced
 - Preheating Of Hot Air Blast

France

- Montcenis-Le Creusot
 - 1785
 - First French Coke-Fired Blast Furnace
 - Very Slow Dissemination Of Technique From Britain

Developments Of Blast Furnaces

- Bell & Hopper (Cup & Cone) - G. Perry (1850)
 - Multiple Hopper Prevent Loss Of Gas
 - Increasing Oxygen Content Of Hot Air Blast
- Pressurizing Furnaces
 - Throttling The Flow Of Gas From Furnace Vents
 - Increases Pressure To 1.7 atm
 - Better Combustion
 - Post W.W.II
International
Le Creusot, 1865
Gluwitz, Silesia, 1830
Pontypool, 1865

Typical Ironworks
- Mechanically-Charged Blast Furnace
- Corby, Northhamptonshire
- 1900

Typical Blast Furnace
- Components
 - Cylindrical Steel Shell Lined With Refractory
 - No metallic substance, -- Firebrick
 - Approximately 1000, High
 - Shell Is Tapered At Top & Bottom
 - Creates Heat Effect
 - Lower Portion Is Called Bosh
 - Taphole, Opener, Collar, Tapree. -- Hot Air Blast
 - Holes At Bottom Are Tapped
 - Dumper, slag
 - Issue -- Molten Pig. Iron. To Foundry
 - Top Portion Lets Gases Escape (Vent)

Operation
- Operate Continuously
- Small Charges Are Introduced At 10-15 Minutes
- Spontaneous Combustion Of Charge
- Slag Is Tapped Every 2 Hours
- Molten Iron Tapped Five Times A Day
- Hot Air Enters At 1000 To 1600°F
- Waste Gases Are Recirculated?