Puddling Furnace

- Low Arched Roof With Two Chambers
- Molten Iron & Combustion Chamber Are Separated

Bessemer Process

- Sir Henry Bessemer
 - Inventions
 - Stump, That, Could, Not, Be, Forged
 - Improved, Land, Penet 11., T. Pattern, E, Type
 - Bes., Way, Of, Melting, Bronze, Powder
 - Machinery, For, Crushing, Sugar, Cone
 - Melting, Plate, Glass
 - Guns, Fur, England
- Bessemer Process (Beginning 1855)
 - Worked, Beginning, Of, Steel Age

Bessemer Process (Continued)

- Very Simple Idea
 - Dismissed At First By All So-Called Experts
 - Observation
 - Walls, Iron, Reacted, On, the, Surface, With, Air
- Process
 - Recall, To Convert Molten "Cast" Iron To Wrought Iron, The Carbon Must Be Removed
 - Bessemer Blew Cold Air Through The Molten Iron
 - Though He Produced Wrought Iron
 - However, He Produced Malleable Iron "Steel"
 - What We, Call, Mild, Steel.

Bessemer Process (Continued)

- Numerous Patents (1855 To 1856)
- Experimental Setup
 - 770 lb Iron (1/3 Ton) & Required 30 Minutes
 - Converted To 550 lb In, Puddling Furnace. For, 2, hrs
 - Ordinary Air - 21% Oxygen
 - Converter (Pear) Tilted For Charging & Pouring
- Produced Mild Steel
 - Could Be Bent & Formed Without Heat
- Process Difficulties
 - Bessemer Licensed Process
 - Licensees Could Reproduce Quality Of Steel

Bessemer Process (Continued)

- Iron Gets Hotter As Cold Air Passes Through It
 - Experts Thought It Would Cool Iron
 - Like A Volcano
 - Most Spectacular Sight In Iron & Steel Industry
 - Clear Flame Finally From Converter
 - Shown - 25 Ton

Bessemer Process (Continued)

- Experimental Plant At St. Pancras
 - Ore Mined At Blaenavon, Gwent (No Phosphorous)
- Bessemer Plant At Sheffield (1905)
 - Made A Fortune
 - Steam Boilers (1860)
 - Railway Rails (1863)
Thomas Process

- P.G. Thomas, Police-Court Clerk & Scientist
- Removed Phosphorous Problem
 - Lined Converter With Dolomite
 - Chemically Basic
 - Used With Phosphorous
 - West Away, Mull slag
 - Sold As Agricultural Fertilizer
- Thomas Process Spread Quickly To Regions With Phosphorous Iron Ores (Most Abundant)

Basic Oxygen Process

- Advancement Of Bessemer & Thomas Process
- Air Is Replaced With High Pressure Stream
 - Pure Oxygen
 - Oxygen Lance (Water-Cooled Tip)
 - Supersonic Speed
- 275 tons Per hour

Siemens Process

- C.W. Siemens, Germany
 - Improving Furnaces For Glass Making
 - By 1857, Saved 75% Of Fuel Need To Make Glass
 - Waste Gases Used To Heat Air Needed To Burn Fuel
 - First Applied To Steel Making In France
 - Emile Pierre Martin (1855)
 - Siemens Set Up Iron Works In Birmingham (1865)
 - Company At Savannah, Producing 75 Tons A Week
- Siemens Process
 - Phosphorous & Non-Phosphorous Molten Iron
 - Cost
 - Bessemer Was Cheaper (No Fuel) But Required Molten Iron
 - Siemens Required Fuel
 - Speed
 - Bessemer - 30 min
 - Siemens - 10 hours
- Could Melt Scrap Iron

Siemens Process (Continued)

- Phosphorous & Non-Phosphorous Molten Iron
 - Cost
 - Bessemer Was Cheaper (No Fuel) But Required Molten Iron
 - Located Near Blast Furnace
 - Siemens Required Fuel
 - Speed
 - Bessemer - 30 min
 - Siemens - 10 hours
 - Could Melt Scrap Iron

Open-Hearth Furnace

- Process Of Producing Steel
 - Furnace Can Be Charged With
 - Pig Iron (Molten Or Cold)
 - Scrap Steel
 - Iron Dross
 - Carbon Content Is Lowered By
 - Silicon
 - Impurities Combine With Limestone As Slag
 - Silicon, Phosphorous, Magnesia, & Sulfur

Open-Hearth Process

- Derived From Siemens’s Process
- Components
 - Rectangular Brick Hearth (20’x30’x8’)
 - Regenerative Preheating
- Operates At 3000°F
 - Steel Melts At 2500°F
- Produces 100 tons Per hour
Open-Hearth Furnace

Electric Furnaces
- Electric Arc Or Electric Induction
- Primary Use Is Alloy & Specialty Steels
 - Charge Is Usually Scrap
 - Limestone & Iron Ore Are Added In Small Amounts
 - No Contamination From Fuel
 - Alloying Elements Are Added In Charge Or Later
- Electric Arc
 - Refractory Lined Vessel Of Drum Shape
 - Heat Is Generated By Electric Arc
- Electric Induction
 - Electric Current Induces Secondary Current In Vessel

Electric-Arc Furnace

Classifications Of Steels
- Carbon Steels
- Alloy Steels
- High-Strength Low-Alloy Steels
- Stainless Steels
- Tool Steels

Carbon Steels
- 90% Of All Steels
- Composition
 - Varying Amounts Of Carbon
 - Less Than 1.65% Manganese
 - Less Than 0.60% Silicon
 - Less Than 0.60% Copper
- Uses
 - Auto Bodies, Machines, Structural Steel For Buildings, Ship Hulls, Etc.

Alloy Steels
- Composition
 - Certain Percentages Of Vanadium, Molybdenum, Or Other Elements
 - Larger Amounts Of Manganese, Silicon, & Copper Than Carbon Steels
- Uses
 - Auto Gears & Axles, Knives
High-Strength Low-Alloy Steels
- Called HSLA
- Combination Between Carbon Steels & Alloy Steels
- Cost Less Than Alloy Steels
- Stronger Than Carbon Steels

Stainless Steels
- Composition
 - Chromium
 - Nickel
 - Other Alloying Elements
- Properties
 - Corrosion Resistance
 - Hard & Strong

Tool Steels
- Composition
 - Tungsten
 - Molybdenum
 - Cobalt
 - Other Alloying Elements
- Properties
 - Hardness