NON-FERROUS METALS

Non-Ferrous Metals
- Copper
- Tin & Bronze
- Lead & Silver
- Brass & Zinc
- Nickel
- Aluminum & Magnesium
- Beryllium & Titanium
- Niobium & Columbium
- Cobalt, Tantalum & Chromium
- Platinum

Categories
- Precious Metals
 - Gold, Silver, Platinum
- Base Metals
 - Old: Iron, Tin, Copper, Zinc, Lead
 - New: Nickel, Magnesium, Cobalt, Aluminum
- Specialty Metals
 - Niobium, Chromium, Beryllium, Titanium, Tantalum
- Pure Alloys
 - Bronze, Brass

Processing Considerations
- Melting Point
- Boiling Point
- Specific Gravity
- Atomic Bonds
- Reactivity
- Solubility

Copper
- General
 - Element, Cu
 - Melts At 1981°F
 - Boils At 2567°F
 - Specific Gravity = 8.9
 - Brownish-Red Color
- History
 - Prehistoric People
 - Egypt, Asia Minor, China, Cyprus, Crete, Am. Indians

Copper (Continued)
- Properties
 - Conducts Electricity & Heat
 - Resists Corrosion
 - Malleable & Ductile
 - Tensile Strength - 60 ksi
- Uses
 - Coins
 - Wire
 - Ornamental
 - Sheathing
Copper (Continued)

- Metallurgy
 - Native Copper
 - Crushed, Washed, & Smelted InChars
 - Ores Are Reduced With Carbon
 - Sulfide Ores (Chalcopyrite & Bornite)
 - 1% Cu, 12% Fe
 - Furnace Yields Crude Metallc Copper
 - Impure
 - Electrolysis Produces 99.9% Purity

Copper (Continued)

- Melted Native Copper
 - Heat From Above By Charcoal Fire
 - Lens-Like Ingot In Clay Lined Saucer Beneath Fire Bed
 - Forced Draught Or Chimney
 - Crucible Furnaces
 - Vertical Cylindrical Clay Shaft
 - Crucible Surrounded By Charcoal In Shaft
 - Free Draught
 - Used For Casting

Copper (Continued)

- Earliest Known Crucible Furnace
- Reconstruction
 - 3300 - 3000 BC
 - Chalcolithic Site
 - Abu Matar, Beersheba
 - Perrot (1951)
- Natural Draught Furnace
- Remelting Impure Copper

Copper (Continued)

- Melting & Casting Native Copper
 - Originated In Anatolia, Turkey (5000 to 4000 BC)
 - Spread From Asia Minor
 - First Copper Artifacts In Sialk, Iran (4500 BC)
 - Egyptian Artifacts (5000 to 4000 BC)
 - Supplies Of Native Copper Became Inaccessible To Supply Demand
 - Copper Artifacts After 3500 BC Contained Base Metal Impurities
 - Thus, Extracted From Ore

Copper (Continued)

- Smelting Of Oxide & Carbonate Copper Ores
 - Easily Smelted In Primitive Furnaces
 - Separate Copper, Iron & Other Unwanted Ores
 - Chalcolithic Smelting Furnaces At Timna (3000 BC)
 - Ho, Tap, Hoes, & Ho, Ingots, Found
 - Metal, Over, Separated From, Slag
 - Egyptians At Timna (1200 BC)
 - Reached Zenith At Timna (1100 BC)
 - Smelting Of Sulfide & Arsenic Copper Ores

Copper (Continued)

- Egyptians At Timna
 - 1200 BC
 - Reconstruction Of Remains Of Smelting Furnace
 - Copper Settles To Bottom Of Furnace Below Slag
 - Plane-Convex Ingots
Copper (Continued)
- Timna (1200 BC)
- Heated From Above
- Copper & Slag Tapped Simultaneously To Bed Of Sand
- Tap Hole For Slag

Heated From Above

Copper & Slag Tapped Simultaneously To Bed Of Sand

Tap Hole For Slag

Tin
- General
 - Element, Sn
 - Melts At 450°F
 - Boils At 4100°F
 - Specific Gravity = 7.28
- History
 - Tombs Of Ancient Egyptians
 - Exported From Cornwall, England

Tin (Continued)
- Properties
 - Highly Malleable & Ductile > 212°F
- Uses
 - Tin Plating
 - Tin Cans
 - Alloying
 - Bronze, (tin, & copper)
 - Solder, (tin, & lead)
 - Wt. Titanium

Metal Working
- Annealing
 - About 5000 BC
 - Heat Up Metal, Hammer, Cool Down (Repeat)
 - Used Ordinary Wood Fires
 - Without Heat Metal Becomes Too Hard & Brittle
- Smelting
 - Reduce Copper Ores To Copper
 - Two-Chamber Pottery Kiln
- Alloying
 - Result of Smelting Process (About 3000 BC)
 - Ores Bearing Different Metals

Bronze
- History - Well Established By 1500 BC
 - Arsenic Coppers Decline (3000 BC)
 - Iran - 2.5% Tin (3000 BC)
 - Sumeria - 8 to 10% (3000 - 2500 BC)
 - Egypt - 8 to 10% (2500 - 2000 BC)
 - Thailand - 8 to 10% (2000 BC)
 - China - 8 to 10% (2800 BC)
 - England (2200 BC)
 - Italy (1850 BC)
 - Spain (1700 BC)

Bronze (Continued)
- Uses In Ancient World
 - Weapons & Cutting Tools
 - Swords
 - Spears
 - Arrowheads
 - Shields
 - Axes, & Axes
 - Bowls & Cauldrons
 - Furnishing - Greece & Rome
 - Bed, & Table, Frames
 - Tripods, & Lamp, Stands
Bronze (Continued)
- **Casting Techniques**
- **Rocking Crucible**
- **1600 - 1200 BC**
- **Greek Islands**
- **Sinai Region**

Chinese Bronzes
- **Shang Dynasty (1500 BC)** to **Ch’in Dynasty (206 BC)**
- **Artistic Vessels**
 - Snakes, Dragons, Etc.
 - **Angyang (1400 - 1027 BC)**
 - Weight > 1.6 tons
 - **Multi-part Mold**
 - Pre-fired Clay Segments

Lead
- **General**
 - Element, Pb
 - Melts At 662°F, Boils At 3164°F
 - Specific Gravity = 11.34
- **History**
 - Obtained From The Ore Galena
 - Also From Cerussite & Anglesite
 - Anatolian - 6500 BC
- **Uses**
 - Batteries, Cable Sheathing, X-Rays, Shielding
 - Radioactive Material

Silver
- **General**
 - Element, Ag
 - Melts At 962°F
 - Boils At 2212°F
 - Specific Gravity = 10.5
- **History**
 - Extracted From Lead (About 4000 BC)
 - Silver-Rich Lead - Aegean Area
 - Valuable Material Till Roman Empire

Silver (Continued)
- **Properties**
 - Lustrous (High Polish)
 - Most Malleable & Ductile
 - Excellent Electrical Conductivity
- **Uses**
 - Jewelry
 - Electrical Components
- **Processing**
 - Smelting Silver Ores
 - Chemically Precipitating Metallic Silver

Brass
- **Origins Are Uncertain (Like Bronze)**
- **Accidentally From Smelting Process Of Zinc-Bearing Cooper Ores**
- **Zinc Not Naturally Found With Copper**
- **Artifacts**
 - **Cyprus (2000 BC)**
 - Copper, Zinc (4%), B. Th
 - **China (2000 BC)**
 - Copper & Zinc (5%)
 - **China (1200 BC)**
 - Copper & Zinc (10%)
Zinc

- **General**
 - Element, Zn
 - Melts At 788°F
 - Boils At 1665°F
 - Specific Gravity = 7.14
 - Silver-White Color
- **History**
 - Ores Known Since 1000 to 2000 BC
 - Element - Andreas Sigismund Marggraf (1746)
 - German Chemist

Zinc (Continued)

- **Properties**
 - Brittle
 - Insoluble In Water
 - Soluble In Alcohol, Acids, Alkalies
- **Uses**
 - Protective Coating
 - Galvanizing
 - Alloying With Copper
 - Die Castings

Zinc (Continued)

- Transform Ores To Oxides By High Temp
- Zinc Boils & Distills In Retort
- Also Can Be Subjected To Sulfuric Acid And Electrolyzed

Nickel

- **Paktong - Chinese**
 - Unknown Composition Till 1822 (Fyffe)
 - Copper-Nickel Alloy
 - Copper, Zinc, & Nickel
 - Chinese Used In 1st Century AD
 - Used In Coins & Cutlery
 - Shipped To England 1700s In Ingot Form
 - Unable To Produce In England
 - Metals Not Identified

Nickel (Continued)

- **General**
 - Element, Ni
 - Melts At 2651°F
 - Boils At 2730°F
 - Specific Gravity = 8.9 (Same As Copper)
 - Silver-White Color
- **History**
 - Discovered By Axel Cronstedt (1751)
 - Isolated Metal From Niccolite Ore
Nickel (Continued)

- Properties
 - Hardness
 - Malleable & Ductile
 - Magnetic Below 653°F
- Abundance
 - Largest Supplies In Quebec, Canada
 - Cuba (Meteors), Soviet Union, China, & Australia
 - No Reserves In US

Nickel (Continued)

- Uses
 - Coating - Protective & Ornamental
 - Iron, Steel
 - Electroplating In Nickel Solution
 - Alloy
 - Steel, Hardness, Strength
 - Automobile, Parts, Axes, Crankshafts, Etc.
 - Armor, Plate
 - Coins - 25% Nickel, 75% Copper
 - Batteries
 - Nickel-Cadmium

Nickel (Continued)

- Processing
 - Ores Are Smelted In Blast Furnace
 - Ingot, Of, Copper, & Nickel, Sulphide
 - Electrolytic Process
 - Copper, Nickel, Are, Separated
 - Different, Voltages, To, Different, Electrolyte
 - Mond Process (Ludwig Mond, England, 1889)
 - Copper, Recovered, In, Dikes, Sulfuric Acid
 - Nickel & Residues, Recovered, Impure, Metallic, Nickel
 - Carbon, Monoxide, Added, To, Produce, Nickel, Carbonyl
 - Gas, Heated, To, 392°F, Decomposes
 - Produces, Pure, Metallic Nickel

Aluminum

- General
 - Element, Al
 - Melts At 1220°F
 - Boils At 4473°F
 - Specific Gravity = 2.7
 - Silver-White Color
- History
 - Isolated By: Hans Christian Orsted (1825)
 - Danish Chemist
 - Chemical Process Involving Potassium Amalgam

Aluminum (Continued)

- Properties
 - Malleable & Ductile
 - Extremely Reactive
 - Aluminum, Nitride
 - Reactions, Corrosion
 - Alumina, Br. Hart
- Abundance
 - Most Abundant Metallic Compound In The World
 - Never Found Pure
 - Aluminum, Silicates
 - Bauxite, Impure, Hydrated, Aluminum, Bauxite

Aluminum (Continued)

 - Containers & Packaging, 31%
 - Building & Construction, 20%
 - Transportation, 24%
 - Consumer Products, 9%
 - Miscellaneous, 16%
- Production - 4 Million tons (1989)
- Cost - $1 Per Pound
Aluminum (Continued)

- Processing
 - Electrolytic Processing (1850s to 1870s)
 - Required Lumps, Anodes, DC Electrical Power
 - Decomposing Compounds, Repeated, As, Alumic, Bands
 - Heat, Obtained, Metals, Such as Na, Al, Ca, Be, Fe, Sulfate, Voltages
 - Hall & Heroult Simultaneously Discovered Electrolytic Process For Aluminum
 - Bayer Process

- Charles Martin Hall
 - 1886
 - Alumina Dissolved In Fused Cryolite (Natural Fluoride of Al & Na)
 - Sugar In Water Solution
 - Alumina/Cryolite Solution Is Good Conductor
 - Current Maintained Temperature
 - Separated By Electric Current & Cooled

Aluminum (Continued)

- Paul Louis Heroult
 - 1886
 - Same Process As Hall Except He Added Heat
 - Heat Not Necessary
 - Cryolite Is Not Consumed

Magnesium

- General
 - Element, Mg
 - Melts At 1200°F
 - Boils At 2025°F
 - Specific Gravity = 1.74
 - Lightest Stable Metal
 - Silver-White

- History
 - Isolated By Sir Humphry Davy (1808)
 - Brit. Chemist

Magnesium (Continued)

- Properties
 - Malleable & Ductile When Heated
 - Reactive With Acids
 - Reacts With Oxygen Above 1472°F

- Abundance
 - 6th Most Abundant Metallic Compound In The World
 - Found In Carnallite, Dolomite, & Magnesite

Magnesium (Continued)

- Uses
 - "Milk Of Magnesia"
 - Textiles - Refractory & Insulating Material
 - Epsom Salt
 - Cosmetics
 - Alloys
 - Castings
 - Artificial Limbs
 - Lamps, Indicators
 - Pure
 - Flash, Powders, In Aircraft, Bombs, Signal Flares
Magnesium (Continued)

- Similar To Aluminum Process
- Molten Magnesium Is Lighter Than Electrolyte

Beryllium

- General
 - Element, Be, Melts At 2349°F
 - Specific Gravity = 1.85 (Lightweight)
 - Called Glucinium (Sweet Tasting)

- History
 - Discovered By Frederick Wohler (1828)

- Uses
 - High Strength Per Weight
 - Corrosion Resistance At High Temperature
 - Space Applications - Structure & Propellant
 - Nuclear Reactors - Captures Neutrons

Titanium

- General
 - Element, Ti
 - Melts At 3020°F
 - Specific Gravity = 4.5
 - Also Called Menachite

- History
 - Discovered By William Gregor (1791)
 - Brittle, Fragile

- Uses
 - Pure Titanium Is Very Brittle When Cold
 - Aerospace Applications

Niobium Or Columbium

- General
 - Element, Nb
 - Melts At 4474°F
 - Specific Gravity = 8.57
 - Steel-Gray

- History
 - Discovered By Charles Hatchett (1801)
 - Brittle, Charcoal

- Uses
 - Alloying Metal For Stainless Steel
 - Corrosion Resistance At High Temperature

Cobalt

- General
 - Element, Co, Melts At 1495°F
 - Specific Gravity = 8.9
 - Low Strength, Low Ductility, Hardness

- History
 - Discovered By George Brandt (1735)
 - Soderberg, Chemist

- Uses
 - Permanent Magnets - Cobalt Steel
 - Tool Bits - Tungsten Carbide

Tantalum

- General
 - Element, Ta
 - Melts At 5425°F
 - Specific Gravity = 16.6

- History
 - Discovered By Baron Jons Jakob Berzelius (1820)
 - Soderberg, Chemist

- Uses
 - Corrosion Resistance, Compatibility, & Reactivity
 - Weight, Alloys, Wear, Electrical Cells
 - Human Body, - Pin, & Joints
 - Surgery & Dental Instruments
Chromium

- General
 - Element, Cr
 - Melts At 3375°F
 - Specific Gravity = 7.2
- History
 - Discovered By Louis Nicholas Vauquelin (1797)
 - French Chemist
- Uses
 - Corrosion Resistance, Compatibility, & Reactivity
 - Alloy, -, Hardness, Strength, Corrosion, Resistance
 - Stainless Steel

Platinum

- General
 - Element, Pt
 - Melts At 3222°F
 - Specific Gravity = 21.45
 - Weight & Hardness
 - Powder Metallurgy
- History
 - Discovered By William Brownrigg (1750)
- Uses
 - Chemically Inert - Surgical & Dental
 - Jewelry