DOUBLE ACTING ENGINE

Steam Inlet Mechanism

- Large Engine of Watt Used Condenser
 - For Cost Reasons
 - Steam Entered Steam-Jacket
 - Entered and Evacuated at Bottom
 - Exited Towards Condenser
 - Condenser Connected to Suction Pump

Steam Distribution Device

- Watt (1778)
 - Steam Enters Cylinder at Bottom - Piston Rises
 - Steam Evacuated To Condenser - Piston Lowers
 - Newcomen (7 psi), Watt (10 psi)
- Watt (1780)
 - Led to Double Acting - Reversed Operation
 - Constant Steam Pressure Under Piston
 - Alternating Pressure & Vacuum Above Piston
 - Did Not Change Operating Principle
 - Vacuum, Not, Still Driving Force
 - Not Satisfactory - Led to Double Acting

Double Acting Engine

- Steam Inlet Mechanism & Distribution Device
- Experiments by Other Inventors
- Principle of Double Acting
- Planet Gear & Parallel Motion
- Cutoff Valve & Governor
- Industrial Uses of Steam
- Summary - Development of Engine

Inlet Mechanism - Single Acting Engine

Steam Distribution - Watt (1778)
Steam Distribution - Watt (1780)

Experiments by Other Inventors
- Jacob Leopold (1724)
 - Two Newcomen-Type Cylinders
 - Four-Way Cock
 - Steam Pressure Higher Than Atmospheric
- Jonathan Hull (1736)
 - Paddle Wheel in Continuous Motion
 - Ratchet Mechanism
 - Opposite Direction With Counter Weight

Experiments by Other Inventors (continued)
- Continuous Movement (competing with Watt)
 - Keane Fitzgerald (1759)
 - John Stewart (1777)
 - Matthew Washborough (1779)
 - James Pickard (1780)
 - Thompson (1793) & Sherrats (1794)
 - Double Acting - Two Alternating Cylinders
- E. Cartwright (1797)
 - Closed Circuit
 - Two Gears - Flywheel

Atmospheric Engine - Leopold (1724)

Atmospheric Engine - Hull (1736)

Rotary Engine - Cartwright (1797)
Planet Gear & Parallel Motion
- Planet Gear - Watt (1781)
 - Crankshaft & Connecting Rod
 - Matthew Boulton, (1779)
 - James Pickard, (1780)
 - Epicyclic Gear Train
 - Watt’s Sun and Planet Gear
- Parallel Motion - Watt (1784)
 - Tried Rack & Pinion
 - Chains Previously
 - “O” is Center of Beam
 - “A” is Fixed
 - “B” & “C” are Attached to Piston Rods

Planet Gear - Watt (1781)

Parallel Motion - Watt (1784)

Cutoff Valve
- Previously Steam Pressure Was Used Throughout The Stroke
- Watt (1769)
 - Stop Supply Of Steam Before End Of Stoke
 - Utilize Steam Expansion For Last Portion Of Stroke
 - Absorbed Shock of Piston At End Of Stroke
 - Total Power of Engine Decreased
 - Economy Of Steam To Produce Same Work
- Patent - Watt (1782)

Governor
- Last Of Watt’s Great Inventions
- Speed Governor
 - Limited Opening Of Valves
 - Controlled Steam Flow
 - Slowed Down Engine
- No Patent - Used In A More Primitive Form In Grain Mills

Governor With Fly-Balls (1784)
Industrial Uses of Steam

- Boulton & Watt (1773 - 1800)
 - Soho Factory - Built 500 Engines
 - 1/3 Were Pumping Engines
 - 2/3 Were Double Acting
 - Averaged 15 hp
 - After 1800 Watt's Patents Went Public
- Great Britain & Ireland (1817)
 - 20,000 hp in Cotton Mills
- Glasgow (1825)
 - 310 Steam Engines

Double Acting Rotative Engine - Boulton & Watt (1787 - 1800)

Summary of Development of Steam Engine

- Papin (1690)
- Savery (1698)
- Newcomen
- Watt - Condenser (1769)
- Watt - Double Acting (1784)
- Woolf - Double Expansion (1803)