RAILROADS

Railroads

- Tracks
- Steam Traction
- Development of Railroads

Ice Railroad Tracks

- Wooden Rails
- Cast-Iron Rails
- Wrought Iron & Steel Rails
- Rail Size & Capacity
- Evolution Of Rails
- Joints
- Track Gauge

Wooden Tracks

- Also Called
 - Wagonways
 - Tramroads - Tram Was Originally A Coal Wagon
- First Wagonways Built In England As Early As 16th Century
 - Coal, Ore, & Stone From Mines Or Quarries
- First Rail Size & Capacity
- Evolution Of Rails
- Joints
- Track Gauge

Modern Rails

- First Cast-Iron Rails
 - British Foundry (1767)
- Toothed Rail
 - Patent - British Coal Miner (1811)
 - Rack & Pinion On Third Rail
 - Still Used - Pikes Peak & Swiss Mountains
- Modern Rails
 - Evolved From Edge Rails in Northern England
 - Early, 19th Century
 - Flange, On Inside Of Wheel

Modern Rails (Continued)

- Prototype
 - Flat-Footed “T” Rail
 - Robert Livingston, Stevens, (1835)
 - President Of, Camden & Amboy, Railroad
 - Still Used
 - Bridge Rail
 - Inverted “U” Shape
 - Longitudinal Timbers
 - Great Western Railway - England Till 1892
Modern Rails (Continued)

- Bullhead Rail - Also Called Double-Headed
 - Evolved From "I" Shaped Rail From 1835
 - Thicker, Wider Head Than "I" Rail
 - Also Called Double-Headed Rail
 - Can Be Inverted In Theory

Wrought-Iron & Steel Rails

- Wrought-Iron Rails
 - Introduced In England In 1820s
- Steel Rails
 - Manufactured In US in 1865
 - Transverse Fissures Inside
 - Controlled Cooling & Inspection
 - Hardened Ends

Rail Size & Capacity

- Early Railroads
 - 40 lb/yd, 3 ft
- Early 20th Century
 - 60 lb/yd, 30 ft
- 1930s
 - 100 to 130 lb/yd, 40 ft
- Today
 - 152 to 155 lb/yd, 45 to 60 ft

Evolution Of Rail Shapes

- Joints
 - Problems
 - Joint Is Weak Spot - Lengthen Rail
 - Expansion & Contraction - Buckling
 - Butt Welded Joints - Up To 0.25 miles
 - Bars Bolted To Sides - Stevens
 - Wider Tie Plates
 - Anticreepers
Gauge
- Distance Between Inner Edges
 - Measured 0.626" Below Head
- Standard - 56.5"
 - US, Canada, GB, Mexico, Sweden, Europe
- Standard - Speculation
 - From Early Tramroads
 - Accommodate Wagons With Axle Length = 60"
 - Head Width - 1.75" On Early Rails
- Narrow Gauge In US - 3 ft
 - Fills & Clearances, Lighter Rails, Tighter Turns
 - 917 miles In US (1871)

Gauge (continued)
- Third Rail ?
- Central & South America - 66 inches
- Spain & Portugal - 66 inches
- Former Soviet Union - 60 inches
- Ireland - 64 inches
- South Africa & Japan - 42 inches
- India - 66 inches
- Australia - Various Gauges

Steam Traction
- Early Developments
 - Trevithick, Rack Locomotive, Puffing Billy, Walking Locomotive, Stephenson
- Early Railroad Lines & Companies
- Rainhill Competition
- Railroads In France
- Railroads In United States
- Evolution of Locomotive
- Increased Speed
- Advancements

Trevithick’s Attempts
- Richard Trevithick
 - Pioneer Of All Locomotive Builders
- 5 Ton Locomotive (1804)
 - Pulled 20 Tons @ 5 mph
 - Cylinder
 - 1.75. B Mtnter
 - 51. State
- Fractured Cast-Iron Rails
- 8 Ton Locomotive (1808)
 - 12 mph

Rack Locomotives
- John Blenkinsop (1811)
- Cogwheel & Rack
- Advantages
 - Heavier Load
 - Steeper Grade
- Colliery Railways
 - Middleton - Leads (1812)
 - Coxlage - Tyne (1813)
- Double-Acting Cylinders

Puffing Billy
- William Hedley (1813)
 - Concerned With Weight/Pull Ratio
 - Too Heavy For Rails
 - Converted to 8 Wheels
 - 1815
 - Converted Back to 4 Wheels
 - 1830
Walking Locomotive

- Brunton Of Butterly
- Built In 1812
- Tried to Solve Weight/Pull Problem

Stephenson’s Blucher (1814,1815)

- George Stephenson
 - Worked In Colliery
- Two Vertical Cylinders
 - 8” diameter, 24” Stroke
- Pulled 30 tons @ 4 mph
 - 8 Times Weight, 2/900 Grade
- Innovations
 - Flanged Wheels
 - Connecting Rod
- Patent (1815)
 - Suspension Using Pistons & Steam Pres. On Pillow Blocks

Early Railroad Lines & Companies

- Stockton - Darlington
 - Opened 1821
 - 12 miles Long
 - Chief Engineer
 - George Stephenson
 - Leader In Production
 - Locomotive (1825)
 - R.l.ton, 50 tons, 5 mph
 - Lancashire, W. (1825)
 - 7 tons, 50 tons, 8 mph
 - Passengers
 - Em. (1825)
 - Em. – 2d. Prov. (1825)

Manchester - Liverpool

- Major Traffic
 - Liverpool – Port (1829)
 - Manchester – Preston
- Railway
 - Liverpool, 1824
 - Manchester, 1830
- Reduced Time
 - 56. Hours, 3d. Tunnel
 - 5. Hours, Up, Rail
- First Railroad Bridge
- 21 Stationary Engines
 - Pulled Cable

Rainhill Competition (1829)

- 500 Pounds Plus Cost Of Engine
- Conditions
 - Pull 3 Times Weight, 10 mph, 15 miles
- Stephenson’s Rocket
 - 4.25 tons, Pulled 12.75 tons, Averaged 13.8 mph, Maximum 24.1 mph, Light Load 31 mph
- John Braithwaite’s Novelty
 - 7.7 tons, 13.8 mph, Broke Down
- Timothy Hackworth’s Sans Pareil
 - 4.77 tons, 16 mph, Broke Down
- Two Other Entries

Stephenson’s Rocket

- George & Robert
- Two Inclined Cylinders
 - 6” Bore, 12” Stroke
 - 50” Diameter Front Whe
- Fire Tube Boiler
 - 25 Copper Tubes
 - 3” Diameter
- Exhaust Steam Injected
 - At Base Of Smokestack
 - Advantage ?
Railways In France
- Lagged Considerably Behind Great Britain
- Mine Owners In France Pushed Development
- Saint-Etienne to Andrezieux (1828)
 - 9.5 miles
 - Horses, Carriages, & Cables
- Saint-Etienne to Lyon (1832)
 - United Loire & Rhone
 - Steam, Horses, & Cables
 - Included Tunnel (1st) & Two Bridges
 - 2 hours, 35 minutes (40 miles)

Marc Seguin
- First Builder Of Suspension Bridges
- Built Fire-Tube Boiler For Steam Boat
 - Hot Gases From Firebox
- Patent - 1828
- Copy Of Stephenson's

Marc Seguin
- Bought Engines From Stephenson & Copied Design
- Added Fan & Bellows
 - Increased Draft
 - Shorter Smokestack
 - 36 minutes To Build Up Pressure
- 4.5 tons
- Pulled 15 tons

Evolution Of Locomotive
- Rocket
 - Tubular Boiler, Separate Firebox, Direct Drive Without Gears, Better Steam Distribution
 - Vertical Cylinders Unstable At High Speeds
 - Horizontal cylinder Inside Boiler
 - Increased Number Of Tubes

Planet Locomotive
- Stephensons (1832)
- Built For Liverpool-Manchester Railroad
- 8 tons

Lancaster
- Matthias Baldwin (1834)
- Built For Charleston-Hamburg Railroad
- Front Swiveling Truck
Railroads In United States
- Started Same Time As In England & France
- United States Was Industrially Underdeveloped
 - 13,000,000 People, 5 Cities Greater Than 25,000
- Cost Per Mile
 - 1/4 Of European
 - 1/7 Of British
- Miles
 - 23 miles By 1830
 - 2818 miles By 1840
 - Erie Canal Opened In 1825

First Locomotive Built In US
- Peter Cooper (1830)
 - Built For Baltimore & Ohio Railroad

Best Friend
- 1830
- Built By Westpoint Foundry Association
- Built For South Carolina Railroad

Grasshopper
- 1834
- Built By Cullingham & Winans
- Built For Baltimore & Ohio Railroad