
Causal Probabilistic Input Dependency Learning for
Switching Model in VLSI Circuits

Nirmal Ramalingam
Dept. of Electrical Engineering

University of South Florida
Tampa, Florida-33620.

munuswam@eng.usf.edu

Sanjukta Bhanja
Dept. of Electrical Engineering

University of South Florida
Tampa, Florida-33620.

bhanja@eng.usf.edu

ABSTRACT
Switching model captures the data-driven uncertainty in logic cir-
cuits in a comprehensive probabilistic framework. Switching is a
critical factor that influences dynamic, active leakage power, cou-
pling noises in CMOS implementations. In this work, we model the
input-space by a causal graphical probabilistic model that encapsu-
lates the dependencies in inputs in a compact, minimal fashion and
also allows for instantiations of the vector-space that closely match
the underlying dependencies, with the constraint that the reduced
vector-space captures the dependencies in the larger dataset accu-
rately. Results on ISCAS benchmark show that average error is
limited to 1.8% while we achieve a compaction ratio of 300.
Categories and Subject Descriptors: B.8.2
General Terms: Performance
Keywords: Vector compaction, Power Estimation, Cross-talk Es-
timation. Bayesian Networks, Probabilistic Learning.

1. INTRODUCTION
Switching model of a VLSI circuit is a comprehensive represen-

tation of switching behavior of all the signals in the circuit. At
each signal we store the state at time t and the state at time t − 1.
The dependency among all the switching variable can be captured
as a joint probability distribution function. One might look into
switching model as a way to establish the role of data as inputs
to the circuits. In essence, the switching model captures the data-
driven uncertainty in VLSI circuits in a comprehensive probabilis-
tic framework. Needless to say that, modeling inputs become an
integral part of the switching model, even though a handful of prior
work in power or switching analysis, has modeled inputs efficiently.
Even analysis that are vector driven (simulation and statistical sim-
ulation) have mostly assumed input priors as random inputs. In this
work, we take a look into modeling inputs through a causal graph-
ical probabilistic approach which models input space in a compact
way.

Note that the switching model is extremely relevant of both static
and dynamic component of power as shown in Eq. 1. In this equa-
tion, Pdg represents the dynamic component of power at the output
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of a gate g. The impact of data on dynamic component of power
is encapsulated in α, the singleton switching activity. The static
component of power Psg is dominated by Pleak,i , leakage loss in
a leakage mode i. It has to be noted that each leakage mode is
determined by the steady state signals that each transistor in the
gate would be in. For example, in a two input (say A and B)
NAND gate, the gate would have four dominant leakage mode (i=4:
A@0B@0,A@0B@1,A@1B@0 and A@1B@1). β is the probability of
each mode i. Probabilistically α and β are singleton probability of
switching and joint probability of multiple signals in a gate respec-
tively and are dependent on the input data profile. The switching
model is affected by various factors such as the topology of the
circuit, the input statistics, the correlation between nodes, the gate
type, and the gate delays, thus making the estimation process a
complex procedure.

Pt = ∑gPtg = Pdg+Psg

= 0.5α fV2
ddCload+wire +∑i Pleak,iβi

In this work, we focus on modeling the input space and generate
a probabilistic structure among the inputs that can be used to study
the behavior of internal nodes. Even though estimation of single-
ton switching has been discussed in great depth and many of the
procedures are input driven (simulative and statistical simulative),
inputs are studied in a limited set of works [9, 11, 12].

Eq. 1 demonstrates the effect of input model. Let Xi be an in-
termediate signal which could be singleton switching variable rep-
resenting switching states (0t−10t ,0t−11t ,1t−10t and 1t−11t ), of a
signal or Xi could be composite signals (A,B) in a transistor stack
and can have composite states namely A = 0t−10t , B = 0t−10t . In
estimating Xi , as shown in Eq. 1, we have two components, namely
the set P(Xi |{I j}), {I j} denoting the primary inputs of the circuits,
where j is the jth input and P({I j}) a prior probability of the in-
put space. The first component can be analyzed by probabilis-
tic measure considering a joint pdf of the entire signals through
a probabilistic framework as in [13, 5]. The second component
P({I j}) however, is important for both stimulus-sensitive approach
and stimulus-free approach where we need to model the depen-
dency structure of the inputs and then either use it in the joint pdf
of the signals for probabilistic methods or use it to generate repre-
sentative specific input samples for measurement-based estimates.
The theme of this work is to obtain correct priors in the input space
P({I j}) and then to generate samples that closely emulate the be-
havior of the input space or to fuse the prior on to an existing proba-
bilistic set-up. Note that, we do not concentrate on compaction, but
our claim is that the samples are so close to the actual distribution
that the sample requirements are really low and a high compaction
ratio is automatically achieved.



P(Xi) = P(Xi |{I j}).P({I j}) (1)

Note that input modeling is not a simple task and can be useful
in other areas like test vector and pattern generation. This work is
an effort to learn a causal structure in the input data. Causal struc-
tures are common to obtain for real-life data and have been proven
successful in modeling complex data-sets like gene-matching and
speech processing. A causal model can encapsulate two additional
independencies (induced dependency among the cause of a com-
mon child, and weakly nontransitive dependency) over and above
their undirected Markov models that makes it specially attractive in
reducing the structure. Even though, BN based model for intercon-
nected logic is already proposed [5], this work is novel in learning a
probabilistic causal structure from data and to our knowledge, this
is the first model where causality in the data is utilized in learning
a structure of uncertainty in the input-space.

Bayesian networks (BN) are directed acyclic graph (DAG) rep-
resentations, whose nodes represent random variables and the links
denote direct dependencies, which are quantified by conditional
probabilities of a node given the states of its parents. This DAG
structure essentially models the joint probability function over the
set of random variables under consideration in a compact manner.
The attractive feature of this graphical representation of the joint
probability function is that not only does it make conditional de-
pendency relationships among the nodes explicit but also serves as
a computational mechanism for an efficient probabilistic walk gen-
erating samples.

We use a Bayesian Network to generate vectors that closely match
the underlying probability distribution function such that even only
a handful of vectors converges to the correct estimates using an effi-
cient simulator (HSPICE in our case). We first convert the graphical
probabilistic structure into an intermediate tree structure (junction
tree) where we could use computation between neighboring nodes.
Nodes of this tree structure are a subset of original variables of in-
terest. We then use stochastic sampling in one of the cliques of
the junction tree to obtain the necessary samples based on the un-
derlying probabilistic framework. The variables that are common
between the neighboring cliques are then updated. The neighbor-
ing cliques are then sampled conditional to the common variables
already updated. If we represent a Bayesian network by a sample
of m deterministic scenarios s=1, 2,.....m and Ls(x) is the truth of
event x in scenario s, then uncertainty about x can be represented by
a logic sample. Also, since we start every time at an arbitrary clique
and then instantiate an arbitrary node in that clique, this sampling
is extremely pattern insensitive.

The contribution of this work is two-fold. First, we arrive at a
probabilistic graphical model in the inputs that is (i) edge-minimal
(ii) exact in terms of dependence and (iii) easy to learn. Second, it
is elegant as a model and also acts as a source of generating samples
from the graphical probabilistic structure that closely resemble the
dependency in the inputs and a few samples converges to the mean
of the underlying distribution.

The salient features of the proposed Bayesian Network (BN)
learning model for inputs are as follows.

1. It generates an edge-minimal structure that models depen-
dency exactly under a causal data environment.

2. The computations are easy and learning algorithms are O(N2)
to O(N4) in terms of number of inputs.

3. The dependency model of the inputs can be fused with graph-
ical structure of the internal circuit making the estimation
stimulus-free and insensitive to measurements.

4. The dependency model can be probabilistically efficiently sam-
pled such that samples closely emulate the dependencies in
the inputs for statistical simulation and simulation based es-
timation process.

5. The performance that is seen on the ISCAS circuits generates
a maximum error of 1.8% with a compression ratio up to 300.

2. RELATED WORK
The compaction technique used in [2] is based on fractal con-

cepts. The correlation in the input vectors is exploited and the al-
gorithm divides the larger vector set into smaller fractal subsets.
Then the fractal subsets that are similar to a particular subset are re-
moved from the original vector set, and thus obtaining a compacted
vector set. In [9] two different techniques are proposed to accom-
modate temporal compatibility. The first method discards the tem-
poral incompatibility between the pairs of consecutive vectors. The
next method addresses this problem by making sure the consecu-
tively generated vectors are temporally compatible, by proposing a
greedy mechanism. In [11] Dynamic Markov Chain Modeling is
used to manage correlations among adjacent bits that belong to the
same vectors and correlations between successive input patterns.
The Markov model of the input sequence is first derived through
one-pass traversal technique and then a compacted sequence is gen-
erated, which is used to determine power consumed by the target
circuit.

3. LEARNING BAYESIAN NETWORKS
In a Bayesian network, the graph, called the Directed Acyclic

Graph(DAG), is the structure of the Bayesian Network, and the
conditional probability distribution is called the parameter. Both
the parameter and the structure can be separately learned from the
data. While learning the parameter we assume we know the struc-
ture of the DAG, but in structure learning we start with only a set
of random variables with unknown relative frequency distribution.
Learning structure can also be done with missing data items, and
hidden variables and also in the case of continuous variables as
discussed in [3]. The input to learn the Bayesian network in this
experiment is a database table. Each node in the network is a rep-
resentative of the fields in the database. Each record in the given
database is a complete instantiation of the random variables. We as-
sume that the database table has discrete values and the data set is
complete with no missing values. Also, the volume of the data set
should be large enough so that reliable conditional independence
(CI) tests could be performed. The conditional independence play
an important role, and by using the concept of direction dependent
separation or d-separation (Pearl, 1988), all the independence rela-
tions of the Bayesian network can be computed.

Definition: For a DAG G = (V,E),X,Y ∈ V and X �= Y, and C
⊂ V \X,Y, we say that X and Y are d-separated given C in G if
and only if there exists no adjacency path P between X and Y, such
that (i) every converging arrow on P is in C or has a descendant in
C and (ii) no other nodes on path P is in C. C is called the cut-set.
If X and Y are not d-separated given C, we say that X and Y are
d-connected given C.

If two nodes are dependent, then the knowledge of the value of
one node will give us some information of the value of the other
node. This information gain can be measured by using mutual in-
formation. Therefore the knowledge of mutual information can tell
us about the dependency relation between two nodes. The mutual
information of two nodes Xi ,Xj is expressed as:
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Figure 1: Step 1: Drafting

I(Xi,Xj ) = ∑
xi ,xj

P(xi ,xj) log
P(xi ,xj)

P(xi)P(xj )
(2)

and the conditional mutual information is defined as

I(Xi,Xj |C) = ∑
xi ,xj ,c

P(xi ,xj ,c) log
P(xi ,xj | c)

P(xi | c)P(xj | c)
(3)

where C is a set of nodes. When I(Xi ,Xj) is smaller than a certain
threshold ε, we say that Xi ,Xj are marginally independent. When
I(Xi ,Xj | C) is smaller than ε, we say that Xi ,Xj are conditionally
independent given C.

4. ALGORITHM FOR LEARNING BAYESIAN
NETWORK GIVEN NODE ORDERING

The algorithm constructs a Bayesian network based on depen-
dency analysis from a database table as input. A similar work is the
Chow-Liu algorithm as explained in [1].

There are three steps, that the algorithm performs, namely draft-
ing, thickening and thinning as shown in [4].

Step 1: Drafting: A flow chart representation of the steps is
shown which is self explanatory.

This step tries to find a draft which is more like the final model as
much as possible by only using pairwise mutual information tests
without involving conditional independence tests. The result ob-
tained at the end of the step can be anything from an empty graph
to a complete graph without affecting the final graph at the end of
all the steps of the algorithm. The draft learning procedure comes
to a stop when every pairwise dependency is expressed by an open
path in the draft.

Step 2: Thickening: The steps here are again easily explained
with the help of another flow chart.

Some arcs can be wrongly added, because some needed arcs may
be missing and they hinder finding a proper cut-set.

Step 3: Thinning: For the two nodes under consideration, if there
are other paths, other than the arc, then the arc is temporarily re-
moved from E, and the procedure is called again to find a cut-set
that can d-separate the two nodes. Now given the cut-set the CI test
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Figure 2: Step 2: Thickening

is done to find out whether the two nodes are conditionally inde-
pendent. If so, the arc is permanently removed or else it is added
back. This step is basically to find the arcs which may be been
wrongly added in the previous steps. This step makes sure all the
adds arcs are needed and there are no extra ones, and the end of the
step results in the I-map of the model.

Stochastic sampling: Probabilistic sampling is performed in-
side the cliques of the junction tree to obtain the necessary samples.
The steps involved in formation of the junction tree is the creation
of a moral graph, and the process is called compilation, then the
moral graph is triangulated. The clique set is identified and the
junction tree of cliques is formed. Given a Bayesian network, a
moral graph is obtained by ’marrying parents’, that is, adding undi-
rected edges between the parents of a common child node. Before
this step, all the directions in the DAG are removed. The moral
graph is said to be triangulated if it is chordal. The undirected
graph G is called chordal or triangulated if every one of its cycles
of length greater than or equal to 4 possesses a chord [8], that is we
add additional links to the moral graph, so that cycles longer than
3 nodes are broken into cycles of three nodes. The junction tree
is defined as a tree with nodes representing cliques (collection of
completely connected nodes) and between two cliques in the tree T
there is a unique path. We employ stochastic simulation approach
to make probabilistic inferences in large multiply connected net-
works. If we represent a Bayesian network by a sample of m deter-
ministic scenarios s=1, 2,.....m and Ls(x) is the truth of event x in
scenario s, then uncertainty about x can be represented by a logic
sample.

5. EXPERIMENTAL RESULTS
This model proves to be an efficient technique for power esti-

mation by providing a minimum number of samples that bridges
the gap between simulative and probabilistic techniques. This is
achieved by an efficient model of Bayesian network, by learning the
structure from the input data. The learned structure of the Bayesian
network represents the graphical structure in the input data. The
learned structure can now be used to generate any number of vec-
tors. The generation of the vector set is done efficiently by exploit-
ing the sampling techniques applied on Bayesian networks. Sam-
pling is done to derive vectors in any needed compaction ratio. The
reduced vector set is then fed into HSPICE to get an accurate esti-



Table 1: Power Estimates of ISCAS ’85 Benchmark Suite.
Circuit Inputs 60K Compaction Ratio

40 80 200 300
C17 5 2.9973 2.9826 2.9889 2.9829 2.9799
C432 36 4.1304 4.1669 4.1980 4.1474 4.1545
C499 41 3.0005 2.9972 3.0177 3.0927 3.1116
C1355 41 3.2257 3.2348 3.2478 3.3319 3.3245
C1908 33 5.3925 5.3634 5.4259 5.4095 5.3511
C3540 50 1.5969 1.5875 1.5866 1.5499 1.5769
C6288 32 2.2521 2.3112 2.3116 2.3142 2.3197
Avg % Error 0.77 1.02 1.83 1.86

mate of the average power. The power estimate is then compared
with the value got from simulating the large vector set. If a is the
original length of the vector and b is the compacted length, then a/b
is called the compaction ratio (CR). We have achieved very high
compaction ratios of up to 300 which have never been achieved
before.

We have fixed the larger vector set to be 60,000 highly-correlated
input patterns. To generate input patterns that are most likely, we
consider the following. At RTL, the logic blocks are interconnected
and hence output of one block is fed as an input to another. To sim-
ulate this effect, we sampled the outputs of one benchmark circuit
and use this data as the input space of another benchmark. For ex-
ample to obtain input vector space for C432 the circuit C3540 was
simulated. The process is mounted on a 32-bit windows systems
on PC and can be run on Windows 9x and XP versions. Since the
construction engine is an ActiveX DLL, it can be integrated into
other belief network, data mining or knowledge base systems. The
learning time was less than a few seconds for all the benchmarks.

Table 1 shows the power estimates of the ISCAS ’85 benchmark
suite. The second column shows the number of inputs in each cir-
cuit and the Bayesian network model has the number of nodes equal
to the number of inputs. So the largest Bayesian network used was
50 for C3540 and the smallest is of 5 nodes for C17. It is seen that
as the compaction ratio increases the error% increases, but it is not
that significant. Also, the error was only 0.77% for CR 40 with a
maximum error of 1.86% for CR 300.

The tables 2 and 3 show the joint probability of two arbitrary
nodes for two benchmark circuits for both the bigger vector set and
the compacted one with the compaction ratio of 40. These val-
ues denote the joint probability of the two nodes in consideration.
HSPICE is used to print the voltage values for the particular input
vectors of the two nodes, which are then changed to their switching
values. From these voltage values the joint probability is calculated
by finding the number of occurrences. The main idea of this part
of the result is to estimate the probability of worst-case crosstalk,
but the table also gives an estimate of the probability of leakage
occurring in the nodes.

The tables 2 a and b were plotted for the nodes 300 and 330
which are the inputs to a gate selected at random for original and
reduced vector-sets and the probabilities match closely with each
other. Note that here, node 300 is steadily remaining at zero which
is not true if you assume random inputs. Even though , worst cross-
talk probability is P(300@01, 330@10) = 0, but we have signif-
icant active leakage P(300@00, 330@11) = .56. Similar results
are also shown for another set for c499 in table 3 where we have a
7% probability of worst case cross-talk.

Thus, in this work, we provide a graphical probabilistic causal
model for the input space for efficient estimates of the switching

Table 2: Joint Probability Switching Estimate for Nodes 300
and 330 of C432 for(a) 60K vectors (b) for compression ratio
=40

Node
300

Node
330

State 00 01 10 11
00 0.06 0.19 0.19 0.54
01 0 0 0 0
10 0 0 0 0
11 0 0 0 0

Node
300

Node 330

State 00 01 10 11
00 0.05 0.19 0.19 0.56
01 0 0 0 0
10 0 0 0 0
11 0 0 0 0

(a) (b)

Table 3: Joint Probability Switching Estimate for Nodes 557
and 558 of C499 (a) 60K vectors (b) for compression ratio =40

Node
557

Node 558

State 00 01 10 11
00 0.05 0.06 0.06 0.06
01 0.06 0.06 0.07 0.07
10 0.06 0.07 0.06 0.07
11 0.07 0.06 0.07 0.07

Node
557

Node 558

State 00 01 10 11
00 0.06 0.06 0.06 0.06
01 0.06 0.06 0.07 0.06
10 0.06 0.07 0.06 0.07
11 0.07 0.06 0.07 0.07

(a) (b)

models that not only models singleton switching but also models
joint switchings of neighboring nodes.
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