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Abstract—
The Quantum-dot Cellular Automata (QCA) model offers a novel nano-

domain computing architecture by mapping the intended logic onto the
lowest energy configuration of a collection of QCA cells, each with two pos-
sible ground states. A four phased clocking scheme has been suggested
to keep the computations at the ground state throughout the circuit. This
clocking scheme, however, induces latency or delay in the transmission of
information from input to output. In this paper we study the interplay of
computing error behavior with delay or latency of computation induced by
the clocking scheme. Computing errors in QCA circuits can arise due to
the failure of the clocking scheme to switch portions of the circuit to the
ground state with change in input. Some of these non-ground states will
result in output errors and some will not. Larger the size of each clocking
zone, i.e. greater the number of cells in each zone, the more is the prob-
ability of computing errors. However, larger clocking zones implies faster
propagation of information from input to output, i.e. reduced delay. Cur-
rent QCA simulators compute just the ground state configuration of a QCA
arrangement. In this paper, we offer an efficient method to compute the N-
lowest energy modes of a clocked QCA circuit. We model the QCA cell
arrangement in each zone using a graph-based probabilistic model, which
is then transformed into a Markov tree structure defined over subsets of
QCA cells. This tree structure allows us to compute the N-lowest energy
configurations in an efficient manner by local message passing. We analyze
the complexity of the model and show it to be polynomial in terms of the
number of cells, assuming a finite neighborhood of influence for each QCA
cell, which is usually the case. The overall low-energy spectrum of multiple
clocking zones is constructed by concatenating the low-energy spectra of
the individual clocking zones. We demonstrate how the model can be used
to study the trade-off between switching errors and clocking zones.

I. INTRODUCTION

The anticipated scaling problem with CMOS has lead to
a fresh reconsideration of alternative emerging technologies.
Opinions differ as to which emerging technology will succeed
CMOS. One nanodevice that has potential for radically differ-
ent forms of computing is the Quantum-dot cellular automata
(Electronic, Magnetic and Molecular-QCA) [1], [2], [3], [4],
where nano-effects, such as device to device coupling, which
can be a problem in nano-electronics, is exploited for comput-
ing. Each cell consists of one or more electrons that can exist in
two or more dots, with two ground state configurations. These
two ground states can be taken to represent the logic states of
zero and one. Two or more cells interact by Coulombic inter-
actions, with an arrangement of cells settling to the lowest en-
ergy state. Traditional logic circuits can be built by mapping
the logic onto the ground state configuration [5], [6]. Initial
criticisms about the difficulty of converging to the ground state
has been addressed by using the concept of four phased adia-
batic clocking. The goal of the phased clocking mechanism is
to “pump” the logic information from the inputs to the output.
The adiabatic aspect of the clocking seeks to keep the circuit at
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ground state. Since there is no flow of electrons involved, there
is no need for interconnects, and it has potential for extremely
low-power computing, even below the traditional kT [7], [8].

Experimental demonstration of QCA technology has oc-
curred at a steady pace. Both individual QCA cells (semi-
conductor and metallic) and multiple QCA arrangements
(wires, clocked wires, majority logic, AND, OR, shift registers,
memory) have been fabricated and tested [9], [10], [11], [12],
[13], [14]. It is interesting to note that the range of devices ex-
perimentally demonstrated is similar to that for the more popu-
lar CNT-FET based ones: inverter, NOR, memory cell, AC ring
oscillator [15], [16]. Significant progress is also being made
in using molecules and magnets to implement QCAs [4], [3],
which will make it possible to operate at room temperature, pos-
sibly alleviating the initial criticisms of this technology.

QCA computations can be abstracted by Coulombic interac-
tions between cells, each of which contain quantum entangled
electrons. There are many variations of the design of the basic
cell structure. The common theme among all these designs is
that the ground state of each cell can be achieved by 2 different
configurations, which can be used to represent two logic states,
0 or 1. Logical computation is specified by the ground, i.e. min-
imum energy, state of the circuit. To drive a circuit towards this
ground state with every change in input, clocked QCA circuit
designs have been proposed. The overall circuit is divided into
zones, with each zone driven by one of the four clocks. As an
example, consider a QCA wire shown in Fig. 1 with 2 cells per
zone. The clocks are phase shifted versions of each other. The
task of the clock is to repeatedly depolarize (nullify the state) a
cell and latch the state to zero or one, and hold the new state,
based on the states of the surrounding cells. A depolarized cell
state does not effect the surrounding cells. The clock phases of
two consecutive zones are staggered so that the cells in one zone
can “drive” the cells in the other zone. In effect, the four phased
clocking scheme helps pump the information from the input to
the output, delaying the transmission of information from the
input to the output. This delay is proportional to the number of
clock zones. In passing, we may also note that another benefit
of the clock is in acting as a power source, however, we are not
concerned with that aspect in this paper.

There are four kinds of errors in QCA operations: decay
errors, dynamic errors, background charge fluctuations, and
switching (or thermal) errors. They were analyzed and experi-
mentally quantified for metal-dot QCA in [14] and expected to
be also present for molecular QCAs. Decay error occurs due
to the failure of retaining the state of a cell, however, the time
constants of such effects is larger than the GHz operating point
of QCA clocks. Dynamic errors can occur when the clock fre-
quencies approach the time constants for tunneling events. This
would be a problem only for ultra high frequencies (À GHz).
Random background charge drifts in the order of minutes could
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Fig. 1. Example of a clocked wire segment.

be a problem, but there is possibility that new fabrication meth-
ods can control it. By far, the most dominant form of errors
in QCA devices are expected to be switching or thermal errors.
Within each clocking zone it is necessary that the cell stay in
the ground state. This is achieved by using adiabatic clocking
so that states are not changed suddenly. However in practice,
imperfect adiabatic clocking and increased temperatures can re-
sult in error conditions when the cells in a zone settle down to
excited states. At temperature T , the probability for these kinds
of thermally induced errors is given by [14]

pth ∝ exp(−∆/kT ) (1)

where k is the Boltzman constant and ∆ is the energy gap be-
tween the ground state and the next excited state. Thus, to ana-
lyze these switching errors in QCA circuits, we need to be able
reason about near ground states in each clocking zone. How-
ever, current QCA simulators cannot compute such states.

Simulators such as QBert [17], Fountain-Excel simulation,
nonlinear simulation [18], [19], and digital simulation [19] can
estimate the ground state of the cells. There are also quantum
mechanical simulators such as AQUINAS [20] and the Coher-
ence vector simulation engine in the QCADesigner [19], both
of which perform iterative quantum mechanical simulation by
factorizing the joint wave function over all cells into a product
of individual cell wave functions (Hartree-Fock approximation).
They result in accurate estimates of ground states, cell polariza-
tion (or probability of cell state), temporal progress, and thermal
effects, however, only for the ground state. The only work that
computes the non-ground state is [21], but it computes just one
lowest energy state configuration that causes output errors. It
cannot find all the near ground states and it does not provide a
clock zone by clock zone energy spectrum. To fully study the
error behavior of designs it also important to consider excited
states that can arise in each clocking zone. Of particular in-
terest are the low-energy circuit states that are near the ground
state.

The inference of low-energy non-ground states requires an
exploration of the QCA cell state configuration space, whose
size is exponential in the number of cells in each clocking zone.
The only currently available approach, that we are aware of, to
accomplish this is using simulated annealing search [22]. Sim-
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Fig. 2. QCA basics and the traditional use of QCAs for logic computing. Each
cell exists in a combination of two polarized states. The kink energy between
two cells is defined to be the difference between the energy if the cells have
opposite states and the energy if the cells have same states. A linear arrangement
of cells has two ground state configurations and can act as a wire. Majority logic
is natural to QCA and is the basic gate for QCA circuits.

ulated annealing search is a stochastic search technique whose
probability of success depends on the number of iterations and
how slowly the system is driven towards the convergence point.
For a circuit with 6 cells, it can take 10,000’s of iterations. In
this paper, we present a method based on maximum likelihood
probabilistic inference to infer N-lowest energy configurations.
The inference is conducted with a graphical probabilistic model
that is built to represent the joint probability of the state config-
uration.

Starting from a quantum mechanical Hamiltonian, we show
that the quantum mechanical spectrum can be expressed as a
perturbation of the semi-classical spectrum for range of dot-
to-dot tunneling energies envisioned for QCAs. We compute
the semi-classical spectrum using graphical probabilistic mod-
els, specifically Markov networks [23], [24]. In these graphical
representations, the nodes denote the random quantities of in-
terest, which are the states of the individual QCA cell, and links
denote direct dependencies. The structure of the network is dic-
tated by the layout of the devices and are quantified by prob-
abilities determined by Gibbs energy. This exactly models the
joint probability of the cell states, based on the Boltzman dis-
tribution. For efficient and exact inference, we first convert this
Markov network into a tree-structured Markov network, called
the junction tree, defined over subset (cliques) of nodes. Maxi-
mum likelihood inference of the cell states then just involves lo-
cal message passing between the nodes in this junction tree. The
N-most likely states correspond to the N-lowest energy states.
Markov models are commonly used in reliability studies of cir-
cuits [25], [26], [27], where average case behavior is computed.
We take this idea farther by (i) exploring non-ground states, (ii)
strongly coupling device physics into the model, (iii) and using
an accurate probabilistic computing model.

In the next section, we present the Markov model of QCA
computations and how it can be constructed. In Section III,
we present the probability updating schemes that allows us to
reason about the low-energy configurations in one clock zone,
which is used to construct the energy spectrum of multiple zones
in Section IV. We validate and present results on commonly
used QCA circuit elements in Section VI. We discuss complex-
ity issues in Section VII and conclude with Section VIII.

II. MARKOV MODEL OF QCA COMPUTATION

The basic unit of computation is a cell consisting of two elec-
trons that can exist in four possible quantum dots. There are
two possible ground state (minimum energy) configurations for
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each cell, corresponding to the two possible diagonal occupan-
cies (see Fig. 2). These two states are used to represent the
logic states 0 and 1. While there is quantum tunneling between
dots in the same cell, there is no quantum tunneling between
neighboring cells. However, neighboring cells effect each other
by modifying the potential energies through Coulombic inter-
actions, which in turn effect the ground state configuration of a
cell arrangement.

Current effort in QCA has been to build logic circuits by map-
ping the logic onto the ground state configuration. Given that
the total energy is composed out of the pairwise Coulombic in-
teractions between cells, the ground state configuration can be
described as minimizing the total kink energy. The kink energy
between two cells is defined to be the difference in energy if the
cells have opposite states (or polarizations) and the energy if the
cells have same states (or polarizations). Thus, a linear arrange-
ment of cells has two ground state configurations, without any
kinks, and can act as a wire (see Fig. 2). Another basic logic
element is the 3-input majority gate that can be constructed by
arranging the cells as shown in Fig. 2. To keep the QCA circuit
at ground state, an adiabatic four phased clocking scheme has
been proposed that modulates the tunneling energies between
the dots in a cell. The clocking scheme controls the flow of
information in a QCA circuit by driving each cell through de-
polarized state, latching phase, and hold phase, and then back to
a depolarized state. The adiabatic aspect of the clock keeps the
circuit at ground state. Note that computation errors can arise
if the circuit goes out of ground state. Of particular interest are
states that are close to the ground states.

Finding the exact excited spectrum of a general quantum me-
chanical system is an open research area. While there is lot of
research on computing the ground state of quantum systems,
there is few works in computing the excited states [28]. Most
methods resort to approximate methods by approximating the
Hamiltonian using for example Hartree-Fock or density func-
tional methods or quantum Monte Carlo. In the QCA case, since
there is no quantum tunneling between neighboring cells and
the tunneling energy between the dots in a cell are in general
low, some recent studies [29], [30] have used the semi-classical
Boltzman distribution as a model. This model suffices. In this
paper, we show using ab initio calculations that the quantum-
model based distribution is indeed close to the semi-classical
Boltzman model and that the former can be approximated as a
perturbed version of the latter for practical QCA circuits.

A. The Quantum Model

Since there is no quantum interaction between cells, the over-
all state vector of a collection of N QCA cells, which is referred
to as the wave-function and denoted by |Ψ〉, can be expressed
as the tensor product of the individual cell states. We denote the
two possible, orthogonal, states of the i-th QCA cell by Ψi = |1〉
and Ψi = |0〉. Then, the multiple cell basis states are given by
the tensor product

|Ψ〉 = |Ψ1〉⊗ |Ψ2〉⊗ · · · |ΨN〉 (2)

The evolution of the wave function is determined by the un-
derlying Hamiltonian H, which, in the absence of quantum in-

teractions, is given by the sum of the Hamiltonians of the indi-
vidual QCA cells.

H = 1⊗·· ·1⊗H1 +1⊗·· ·1⊗H2 ⊗1+ · · ·+HN ⊗1⊗·· ·1⊗(3)
= H1 +H2 + · · ·+HN (4)

where 1 is the unit element (2 by 2 identity matrix) and Hi’s
are the individual Hamiltonian, 2 by 2, matrices that have been
shown to be adequately approximated by the Hartree approxi-
mation [31].

Hi =

[

− 1
2 ∑ j E(k)

i j Pj −γ
−γ 1

2 ∑ j E(k)
i j Pj

]

=

[

−Ei −γ
−γ Ei

]

(5)

where E(k)
i j is the electrostatic kink energy between the i-th and

j-th cells, representing the energy cost of the cells with full, but
opposite polarizations.

The expected value of any observable, 〈Â〉, can be expressed
in terms of the wave function as 〈Â〉 = 〈Ψ|Â|Ψ〉 or equivalently
as Tr[Â|Ψ〉〈Ψ|], where Tr denotes the trace operation, Tr[· · ·] =
〈1| · · · |1〉+ 〈0| · · · |0〉. The term |Ψ〉〈Ψ| is known as the density
operator, ρ̂. Expected value of any observable of a quantum
system can be computed if ρ̂ is known.

When the QCA cell array is in thermodynamic equilibrium
with a stationary heat bath, the steady state (thermal) density
matrix is given by [32]:

ρth =
e−βH

Tr(e−βH)
(6)

where β = 1
kT , with k being the Boltzman constant, T the

temperature, and Tr is the trace operation. The denominator,
Z = Tr(e−βH), is the quantum mechanical counterpart of the
canonical partition function. Using the expansion of the global
Hamiltonian in terms of the local ones (Eq. 4), we have

ρth =
1
Z

e−∑k βHk (7)

The individual Hamiltonians, Hi, can be expressed in terms of
their eigenvalues (energy levels), Ω−1 and Ω+1, and eigenvec-
tors (a−1,b−1)

T and (a+1,b+1)
T .

Hi = Ω−1

[

a2
−1 a−1b−1

a−1b−1 b2
−1

]

+Ω+1

[

a2
+1 a+1b+1

a+1b+1 b2
+1

]

(8)

where Ω−1 = −
√

E2
i + γ2, Ω+1 =

√

E2
i + γ2, a2

−1 =

1
2

√
E2

i +γ2+Ei√
E2

i +γ2
, a2

+1 = 1
2

√
E2

i +γ2−Ei√
E2

i +γ2
, b2

−1 = 1
2

√
E2

i +γ2−Ei√
E2

i +γ2
, an

b2
+1 = 1

2

√
E2

i +γ2+Ei√
E2

i +γ2
, For notational ease we will use

Hi = Ω−1ρ−1 +Ω+1ρ+1 = ∑
yi={−1,+1}

Ωyi ρyi (9)

The diagonal entries of the ρ matrices represent the probabilities
of the corresponding states. We will refer to them as Ωyi(−1)
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and Ωyi(+1). For instance, Ωy−1(−1) = a2
−1 and Ωy−1(+1) =

b2
−1. Using this we can show that

Hi = ∑
yi={−1,+1}

Ωyi (1⊗1⊗·· ·ρyi · · ·⊗1) (10)

Using this in Eq. 7 we have

ρth =
1
Z ∏

i
∑

yi={−1,+1}
e−βΩyi (1⊗1⊗·· ·ρyi · · ·⊗1) (11)

=
1
Z ∑

y1,···,yN

e−β∑i Ωyi ∏
i

(1⊗1⊗·· ·ρyi · · ·⊗1) (12)

=
1
Z ∑

y1,···,yN

e−β∑i Ωyi (ρy1 ⊗·· ·⊗ρyi ⊗·· ·⊗ρyN ) (13)

Given that each cell has 2 states, ρth is a 2N × 2N matrix with
the diagonal entries representing the probability of the different
possible combination of the states. Let {x1, · · · ,xN} represent a
state combination of the cells, then

Pρ(x1, · · · ,xN)=
1
Z ∑

y1,···,yN

e−β∑i Ωyi (ρy1(x1)⊗·· ·⊗ρyi(xi)⊗·· ·⊗ρyN (xN))

(14)
where we have used the shortened notation ρyi(xi) with xi =
{−1,1}, to refer to the diagonal entries of ρyi , which are the
probabilities of these two states for the eigenstate if the i-the
cell. The partition function can be shown to be

Z = Tr ∑
y1,···,yN

e−β∑i Ωyi (ρy1 ⊗·· ·⊗ρyN ) (15)

= ∑
x1,···,xN

∑
y1,···,yN

e−β∑i Ωyi (ρy1(x1)⊗·· ·⊗ρyN (xN)) (16)

= ∑
y1,···,yN

e−β∑i Ωyi ∑
x1,···,xN

(ρy1(x1)⊗·· ·⊗ρyN (xN)) (17)

= ∑
y1,···,yN

e−β∑i Ωyi (18)

Thus the complete quantum distribution function is given by

Pρ(x1, · · · ,xN)=
1

∑y1,···,yN e−β∑i Ωyi
∑

y1,···,yN

e−β∑i Ωyi (ρy1(x1)⊗·· ·⊗ρyi(xi)⊗·· ·⊗ρyN (xN))

(19)

B. Semi-classical Approximation

In practice solving Eq. 19 is computationally expensive, so
we resort to approximations. One such approximation uses the
fact that the tunneling energy γ will be very low compared to the
kink energies. It is envisioned that γ

E(k) would be in the order of
10−3 or less [30]. Thus, this means that one of the diagonal
values of ρyi will be close to 1, while the other will be close to
0. In order words, the cell polarizations will be close to -1 or
1. Let ρ−1(−1) = 1− ε and ρ−1(+1) = ε, and correspondingly
ρ+1(−1) = ε and ρ+1(+1) = 1− ε, with ε being in the order of
10−6 for γ

E(k) in the order of 10−3. Using this approximation,
the tensor products in Eq. 19 will be product of various powers
of ε and 1− ε. Ingoring higher order terms of ε, we can show
that

Pρ(x1, · · · ,xN) ≈ 1

∑y1,···,yN e−β∑i Ωyi

[

e−β∑i Ωxi (1− ε)N + ε(1− ε)N−1 ∑
yi 6=xi

e−β∑i Ωyi

]

(20)

≈ 1

∑y1,···,yN e−β∑i Ωyi

[

e−β∑i Ωxi (1−Nε)+ ε ∑
yi 6=xi

e−β∑i Ωyi

]

(21)

=
1

∑y1,···,yN e−β∑i Ωyi

[

e−β∑i Ωxi + ε ∑
yi 6=xi

e−β∑i Ωyi − e−β∑i Ωxi

]

(22)

=
e−β∑i Ωxi

∑y1,···,yN e−β∑i Ωyi
+ ε ∑

yi 6=xi

e−β∑i Ωyi − e−β∑i Ωxi

∑y1,···,yN e−β∑i Ωyi
(23)

where the summation ∑yi 6=xi involve N terms corresponding to
the N state configurations that are different from {x1, · · · ,xN},
each with respect to just one state. In order words it represents
a single cell perturbation of the configuration, i.e. Hamming
neighbors.

Let

P(x1, · · · ,xN) =
e−β∑i Ωxi

∑y1,···,yN e−β∑i Ωyi
(24)

It can be shown that is a probability function that sums to 1.
It is actually the Boltzman distribution for the energy function
given by ∑i Ωxi . We can see that the actual probability of the
configuration, {x1, · · · ,xN} is a perturbed version of this Boltz-
man probability. The amount of perturbation is proportional to
the difference in probability with (Hamming) neighbors of the
state. Thus,

Pρ(x1, · · · ,xN) ≈ P(x1, · · · ,xN)+ ε ∑
yi 6=xi

P(y1, · · · ,yN)−P(x1, · · · ,xN)(25)

We can compute Pρ once we have P, the Boltzman probabil-
ity. We can see that the correction factor will, in general, be
small, proportional to ε. It will decrease the probability of the
ground state slightly and some of the near ground state prob-
abilities will also tend to decrease. These small changes will
break some of the degeneracies in the Boltzman distribution,
but the changes will not be large enough to change the order of
the low-energy configurations, especially at high temperatures.
We present empirical results later on in the paper to validate
this observation. However, at very low (near zero) tempera-
tures, the change will be significant since the difference between
the probabilities of the ground state and its Hamming neighbors
will tend to larger than at high temperatures. In essence, for
finite temperature static equilibrium analysis of QCA circuits
the effect of tunneling is not significant. This is essentially the
conclusion that is also reached by Sturzu et al. [30], but using
different ab initio calculations. Note that the conclusions does
not preclude the importance of tunneling energies for dynamic
analysis of QCA analysis at finite temperatures.

C. Computing with Semi-Classical Model

The semi-classical probability of state assignment,
P(x1, · · · ,xN), can be approximated in terms of pairwise
kink energies by exploiting the fact that Ωxi ≈ Ei

1−2ε as follows.

P(x1, · · · ,xN) =
1
Z

e−β∑i Ωxi (26)

=
1
Z

e−β∑i xi
√

E2
i +γ2

(27)
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≈ 1
Z′ e

−β∑i xiEi
1

1−2ε (28)

≈ 1
Z′ e

−β∑i xi
1
2 ∑ j E(k)

i j Pj
1

1−2ε (29)

The magnitude of the polarization of j − th cell, |Pj| is in the
order of 1− 2ε. Thus, the probability can be approximated as
function of pairwise energies.

P(x1, · · · ,xN) =
e−0.5β∑i j E(k)

i j xix j

∑y1,···,yN e−0.5β∑i j E(k)
i j yiy j

(30)

=
e−β∑i, j>i E(k)

i j xix j

∑y1,···,yN e−β∑i, j>i E(k)
i j yiy j

(31)

=
e−β∑i, j>i E(xi,x j)

∑y1,···,yN e−β∑i, j>i E(xi,x j)
(32)

The interactions between QCA-cells is captured by the pairwise
energy term E(xi,x j), which is dependent on the Coulombic in-
teraction between the cells.

It is not necessary to model the interactions of each cell with
every other cells as captured in the double summation in the
exponent. Due to the 1/r5 fall-off of Coulombic interaction be-
tween cells, the energy term between the pair of cells that are far
away can be ignored. Let Ne(X) represent the set of cells that
are within a specified distance, D, i.e. Ne(Xi) = {X j|d(Xi,X j)≤
D} and d is the Euclidean distance function. The decomposition
of the total energy into pairwise interactions, induces a decom-
position of the joint probability function.

P(x1, · · · ,xM) =
1
Z

exp

(

−∑M
i=1 ∑ j=Ne(Xi) E(xi,x j)

kT

)

(33)

This joint probability can be factored in terms of pairwise func-
tions, which we will term as probability potential functions,
φ(xi,x j) = exp

(

−E(xi,x j)
kT

)

.

P(x1, · · · ,xM) =
1
Z

i=M

∏
i=1, j=Ne(Xi)

φ(xi,x j) (34)

Given this joint probability function, in principle, it is possi-
ble to compute the probability of any state configuration or the
marginal probability of any particular subset of random vari-
ables. However, the computational complexity is exponential if
the computations are blind to the factorization possibilities that
exist due to the local nature of the Coulombic interactions. Cells
that are far away do not interact directly. They only indirectly
influence each other through intermediate cell(s) that directly
influence each of the two cells. We exploit this to factorize
the underlying joint probability function into product of joint
probability functions over smaller, but overlapping subsets of
random variables. The search for the low-energy configurations
can then be decomposed into smaller searches over overlapping
spaces. The final solution is then constructed by local message
passing among these sets.

To understand the factorization process, it is helpful to rep-
resent the joint probability function as undirected graphs, with
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Fig. 3. Markov net dependency model for (a) 9-cell QCA wire considering (b)
1-cell radius of influence (b) 2-cell radius of influence, and (c) all cells. Ignore
the link directions.

nodes representing the random variables, and links denoting de-
pendencies, quantified by the corresponding probability poten-
tial function. The overall probability function is the normal-
ized product of the individual potential functions. This repre-
sentation is called a Markov graph [24]. Consider a linear ar-
rangement of 9 QCA cells, shown in Fig. 3(a). The Markov
graph representation for 1-cell and 2-cell radius of influence are
shown in Figs. 3(b) and (c), respectively. Fig. 3(d) shows a 9-
cell neighborhood, where there is no approximation about the
neighborhood of influence – we have a complete graph.

III. ERROR MODES OF EACH CLOCK ZONE

We first consider the probabilistic modeling of state con-
figurations of each clock zone. We will then use these zone
based models to construct the spectrum of the complete circuit.
To model each zone we have to consider the cells in previous
clock zone too, since they act as the driver cells. Given the
joint probability specification of the cells in these two zones
P(X1 = x1, · · · ,Xn = xn), as captured by the Markov network
representation, we explore the computation of the following:

1. Given the polarization of the driver cells in the pre-
vious clock zone, x1, · · · ,xr, what is the minimum en-
ergy polarization (or most likely state) assignments
of all the cells? For this we need to compute
argmaxxr+1,···,xN P(xr+1, · · · ,xN |x1, · · · ,xr), or the maxi-
mum likelihood state assignments.

2. What are the N-lowest energy configurations for the QCA
circuit, for a given driver cell configuration, x1, · · · ,xr?

Note that these computations are different from the computation
of the average case (expected) probabilities, or marginal prob-
abilities, which is commonly considered in most probabilistic
analysis [33], [34], [35], [36]. Readers who are familiar with
maximum likelihood probabilistic reasoning on graphical mod-
els may skip rest of this section.

Instead of approximate schemes, such as those based on
“loopy” local message schemes [37], we use an exact inference
scheme that also utilizes only local message passing, but on



6

x3

x2

x7

x4 x5 x6

x11 x12

x10x9x8

x1

x3

x2

x7

x4 x5 x6

x11 x12

x10x9x8

x1

Markov Graph

Chordal Graph

x1

x2

x3 x4 x5 x6

x7 x8 x9 x10

x11

x12

x2, x3, x7

x3, x5, x6

x6, x7, x8

x6, x8, x9 x6, x9, x10

x6, x10, x11

x3, x4, x5

x3, x6, x7

x1, x2

x11, x12

(a) (b)

Fig. 4. Graphical dependency structures representing an arrangement of QCA
cells. (a) Transformation of a QCA circuit to a Markov network and then to a
triangulated graph, capturing only single cell distance interactions. (c) Junction
tree of cliques capturing all dependencies.

a tree structured graph to control the computational complex-
ity [24]. The tree-structured graph is made of nodes represent-
ing subsets of nodes in the Markov graph and is arrived at via
a series of transformations to preserve the represented depen-
dencies. The goal of this transformation is to collect all subsets
of random variables that are directly or indirectly mutually de-
pendent. Note that the Markov graph links represent the direct
dependencies. We need to add the indirect dependencies that are
induced in the Markov graph. This, we arrive at by triangulating
the Markov graph.

Triangulation is the process of breaking all cycles in the graph
to be composition of cycles over just three nodes by adding ad-
ditional links. There are many possible ways for achieving this.
At one extreme, we can add edges between every pair of nodes
to arrive at a final graph that is complete, which, of course, will
still preserve all dependencies, but will have exponential rep-
resentational and computational cost. To control the computa-
tional demands, the goal is to form a triangulated moral graph
with minimum number of additional links. The task of trian-
gulation by adding the minimum number of links is a NP-hard
problem. Therefore, in practice one uses various approximate
algorithms. For instance, the Bayesian network inference soft-
ware HUGIN (www.hugin.com), which we use in this work,
uses efficient and accurate minimum fill-in heuristics to calcu-
late these additional links. Fig. 4(a) shows a simple arrangement
of QCA cells. Its corresponding Markov network, assuming just
1-cell neighborhood of influence, is shown in Fig. 4(b). The tri-
angulated Markov graph is shown in Fig. 4(c).

The triangulation method proceeds as follows. All the nodes
of the moral graph are first tagged as unlabeled. An unlabeled
node that has the minimum number of mutually unconnected
(unlabeled) neighbors is chosen. This node is then labeled with
the highest available node number, say i, starting from a num-
ber equal to the total number of nodes, N. A set Ci, is then
formed consisting of the selected node and its still unlabeled
neighbors. Edges are filled in between any two unlinked nodes
in this set Ci. Then the maximum available node number i is
decremented by 1. This process is repeated until there is no
unlabeled nodes. The resultant graph, which we term as the
chordal graph, is guaranteed to be triangulated. Note that each
Ci is a complete subgraph by construction and the set of these

constitutes the cliques of the graph G. The generated sequence
of cliques C e = {Ci}’s is termed the elimination set of cliques
of the graph.

Definition: An ordering of the cliques, [C1,C2, · · · ,CNc ], is
said to possess running intersection property if for every j >
1,∃i, i < j such that C j ∩ (C1 ∪C2 · · ·∪C j−1) ⊆Ci.

This property is essential for inference based on local mes-
sage passing. The generated order of the cliques in the elimina-
tion set will possesses this running intersection property[24].

It can also be shown [24] that if C1, · · ·Ck is a sequence of
sets with the running intersection property and Ct ⊆ Cp for
some t 6= p then the ordered set C‘ = {C1, · · ·Ct−1,Cp,Ct+1,
· · · ,Cp−1,Cp+1,Ck} also has running intersection property. Us-
ing this property the clique Ct can be eliminated for all Ct ⊆
Cp, p 6= t. Hence, the elimination set can be reduced to obtain
the minimal ordered set of cliques called clique set, C t , repre-
senting the triangulated graph completely.

A junction tree between these cliques is formed by connect-
ing each Ci to a predecessor clique C j, j < i in the clique set,
C t , sharing the higher number of nodes with Ci. A junction tree
example is shown in Fig. 4(c) for a simple QCA arrangement.

With each clique, Ci, in the junction tree we associate a func-
tion, φ(ci), also termed as the probability potential function,
over the variables in the clique, constructed out of pairwise
probability potentials, φ(xi,x j). For each pairwise potential,
we find one and only one clique, Ci, that contain the node set
{xi,x j}. The potential function for a clique is the product of the
conditional probability functions mapped to that clique. Thus,

φ(ci) = ∏
{xi,x j}∈Ci

φ(xi,x j) (35)

The joint probability function, which was expressed as product
of conditional probabilities, can now be expressed equivalently
as the product of these individual clique potentials.

p(x1, · · · ,xN) = ∏
ci∈C t

φ(ci) (36)

The tree structure is useful for local message passing. Given
any evidence, messages consist of the updated probabilities of
the common variables between two neighboring cliques. Global
consistency is automatically maintained by the running intersec-
tion property discussed earlier.

A. Maximum Likelihood Propagation

The probabilities are propagated through the junction tree just
by local message-passing between the adjacent cliques. The
propagation involves two passes through the junction tree. In
the first pass, messages are passing from the leaf cliques to an
arbitrarily designated root clique. Upon receiving all messages
from the leaf cliques, the root clique then initiates the second
phase by passing messages to its neighbor. The message passed
between two neighboring cliques, Ci and C j, consists of the
marginal over the variables common to them, i.e. their sepa-
rator set, Si j. The two neighboring cliques have to agree on
probabilities over the separator sets. The marginals, φi(si j) and
φ j(si j), based on the potentials at Ci and C j, are computed as
follows.

φ∗i (si j) = max
{Ci−Si j}

φ(ci) (37)
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φ∗j(si j) = max
{C j−Si j}

φ(c j) (38)

If message is being transmitted from Ci to C j, then the scaling
factor φ∗i (si j) is transmitted to clique C j and probability distri-
bution of C j is rescaled.

φ(c j) =
φ∗i (si j)

φ∗j(si j)
φ(c j) (39)

New evidence is absorbed into the network by passing such lo-
cal messages. Because the junction tree has no cycles, messages
along each branch can be treated independently of the others
and the updating procedure terminates in a time that is linear
with respect to the number of cliques.

To find the configuration with this maximum likelihood prob-
ability, we start with the root clique; choose its most likely con-
figurations. Then, we move on to its neighbors and choose their
most likely configurations, constrained by the configuration of
the separator nodes chosen in the root clique. Then the process
then continues to the neighbors of the neighbors and so on. The
maximum likelihood probability can be simply computed as the
product of the probabilities from the individual cliques.

B. N-most Probable Configurations

The search for the N most probable configurations proceeds
in an iterative fashion, starting from the most probable configu-
ration [38], [24]. At each iteration, we use the maximum likeli-
hood inference discussed earlier with appropriate constraints.
The search for the k-th lowest energy configuration is con-
strained by the 1-st through k − 1-th lowest energy configura-
tions found. Let the most likely configuration of variables be
denoted by x(1) = {x1

1, · · · ,x1
N}, with a probability of P∗(x(1)).

The second most likely configuration, x(2) must differ from the
most likely configuration in the state of at least one variable. We
search for this configuration by performing N maximum propa-
gations with the evidences, Fi, given by

Fi = {X1 = x1
i , · · · ,Xi−1 = x1

i−1,Xi 6= x1
i } (40)

for i = 1, · · · ,N. Let the mostly likely configuration, constrained
by the evidence, Fi, be x(Fi) with probability P∗(x(Fi)). The sec-
ond most likely configuration will be the most likely configura-
tion with one of these evidences.

x(2) = argmax
x(Fi)

P∗(x(Fi)) (41)

The third most likely configuration, x(3), will be from this set
of propagations, i.e. one of x(Fj), or from propagations with
evidences that differ from the first and second most likely con-
figurations by at least one state each, Fi j.

Fi j = {X1 = x1
i , · · · ,Xi−1 = x1

i−1,Xi 6= x1
i ,Xi+1 = x1

i+1, · · · ,X j 6= x2
j}

(42)
for j = 1, · · · ,N− i+1. Thus, the third most likely configuration
is

x(3) = argmax

(

max
x(Fi)

P∗(x(Fi)), max
x(Fi j)

P∗(x(Fi j)))

)

(43)

The process continues, until we have N most likely configura-
tions.

1 0

Input

0 0

0

0 0

0 1

0 0

0 1

0 0

0 0

0
1

0 0

0 1

0 0

0 03rd and 4th

excited

states

Clock 1

Clock 2
Clock 3 Clock 4

1 1

1
0

1
1

1 0

0 0

1 1

0 0

1 1

1 1

1 0

1 0

1
1

1 1

1 0

1 1

0 1

1
1

1 1

0 1
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ground state and the first excited state at each zone. Shading is used to denote
the two cell states. The configuration that results in the correct output state is
marked with a tick mark at the leaf nodes.

IV. ENERGY SPECTRUM OF MULTIPLE CLOCKED ZONES

In the previous section, we saw how the energy spectrum,
along with their cell state configurations, could be computed ef-
ficiently for each clock zone. To construct the energy spectrum
of the clocked QCA circuits, we use the Markov model based
inference mechanism for each clock zone, conditioned on the
low-energy states of the previous clock zone. For instance, in
the first clock zone, we can compute the ground and the first
excited states conditioned on the primary input states. For the
second clock zone, we then compute two sets of ground and ex-
cited states corresponding to the ground and the excited states
of the first clock zone. Similarly, for the third clock zone we
have eight sets of configurations. Thus, we construct a tree-like
state configuration structure, where each node in the tree corre-
sponds to a state configuration of a clock zone and each level
corresponds to a clock zone.

To illustrate, we consider the clocked wire configuration
shown earlier in Fig. 1(a). It has 4 clock zones plus the input
cell. Each zone has 2 cells. Given the states of the input cell,
the two cells in the next clock zone can exist in four possible
states, out of which we consider only the ground state and the
first excited state. For each of these states for the first clock
zone, we consider the ground and first excited states of the sec-
ond zone. And so on. The resulting tree structure of states is
shown in Fig. 5. Note that we can have correct result at the
output even with intermediate cell state errors. In practice, we
would have to consider all configurations that are close to the
ground state as possible branches to explore.

To specify the energy structure, we will extend the mathe-
matical notations we have used so far to include the clock zone.
Thus, Xi j will denote the i-th cell in the j-th zone. The k-th low-
est energy configuration of the cells in the j-clock zone will be
denoted by x(k)

j = {x1
1 j, · · · ,x1

N j}, with a probability of P∗(x(k)
j ).

For notational uniformity, we categorize the inputs as being in
the first clock zone. For each clock zone, we find the k-lowest
energy configuration configurations conditioned on the lowest
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energy configurations of the previous clock zone. Thus,

{x(1)
j , · · · ,x(km)

j } = {arg
(k)

maxx j
P∗(x j|x(n)

j−1,n = 1, · · · ,m} (44)

Note that for each lowest energy configuration, x(k)
j−1, of the pre-

vious clock zone, we compute k lowest energy configuration of
j-th clock zone.

V. DESIGN METRIC: SWITCHING ERROR LIKELIHOOD

From a design point of view it is important to study how the
probabilities of the low-energy configurations vary with temper-
ature. However, not all of the low-energy configurations result
in output errors. To quantify this effect we will assume that in
practice a QCA circuit will be adiabatically clocked in an effort
to keep the circuit at ground state. Therefore, errors would occur
predominantly when the states switch out from the ground state
to a near ground state. The near ground states of interest need
not be just the first excited state, but could have energies very
close to first excited state. The probability of thermal transition
(Pth) between ground state, with energy Eg and a state with en-
ergy Ek is proportional to exp(−β(Ek −Eg)). This is equal to
the ratio of the probability of excited state to the probability of
the ground state.

Pth(k) =
Pk

Pg
(45)

We consider excited states for which is probability above a fixed
probability, say 0.1 or 10% chance of error in state switch-
ing. This threshold could be linked to the non-adiabicity of the
clocking scheme, however, we do not attempt to explore such
linkage here.

To characterize the overall switching stability of a circuit, we
will use the ratio of the probability of the error state configu-
rations to the configurations that results in correct output in the
ground state and the excited states with Pth > 0.1.

L =
∑Pth(i)>0.1,(i)∈error Pr(x(i))

∑Pth( j)>0.1,( j)∈correct Pr(x( j))
(46)

We call this ratio the switching error likelihood L and suggest
it as design metric. The range of the ratio will vary from 0 to
infinity. The lower this value, the better it is in terms of error
profiles. Higher values indicate the propensity of switching er-
rors. Note that this is a ratio of two probabilities and hence can
be greater than 1.

VI. RESULTS

In this section, we present analyses of basic but critical QCA
elements, such as wires, majority gates, and wire crossovers us-
ing the graphical probabilistic models presented here. All con-
clusions are based on the quantum-corrected spectra (Eq. 25),
computed after the semi-classical spectra are computed with
the Markov models. Although, we do compare this quantum-
corrected spectra with the semi-classical one for some QCA cir-
cuits to show that the differences are indeed small.

First, we present studies of switching error likelihoods of
wires and consider error vs. delay trade-offs. Delay in wire
arises from the need to clock the wire transmission. We find

that contrary to expectations, placing one cell per clock zone
does not result in the most stable solution. Second, we demon-
strate the ability of the model to handle an unbalanced version
of the majority logic gate, for which first order quantum mod-
els based on Hartree-Fock approximations have been shown to
be inadequate [18] – higher order interactions were necessary
to model adequately the dependencies. Third, we present stud-
ies with the crossbar architecture, which is an essential compo-
nent of QCA circuits facilitating the crossing of wires in the 2D
plane. Based on studies, we show that some amount of thermal
robustness can be achieved either by thickening the design.

It is also worthwhile mentioning that in the experiments, only
some of whom we present here, we have validated that our
probabilistic model can indeed find all the state configurations,
ranked according to energy, by comparing against exhaustive
enumeration for small QCA circuits for which such exhaustive
exploration is computationally feasible.

A few words about how the thermal studies are presented
are in order. The thermal behavior of a QCA circuit is depen-
dent on the kink energy between the QCA cells, which in turn,
depends on the physical implementation of the cells; molecu-
lar cells have higher kink energy than metal or semiconductor
based ones. So instead of reporting the variation directly in
terms of the temperature, we consider the kink energy invari-
ant ratio kT

Ek
, where Ek is the largest kink energy between two

QCA cells in the design and k is the Boltzman constant. The
dynamics of QCA operation is dependent on this ratio, which
will refer to as the normalized temperature (NT).

A. Wires: Thermal, Error, Delay Studies

We first consider the 9-cell QCA wire arrangement shown in
Fig. 3(a) but without clocks to validate our computations. QCA
wire is a well studied configuration and has been be studied ex-
haustively [39]. Fig. 6 (a) shows the low energy spectrum com-
puted in four different ways: (i) using semi-classical method
with a 2-cell neighborhood model, (ii) using semi-classical
method with an all-cells neighborhood model, (iii) after quan-
tum perturbation correction with a 2-cell neighborhood model,
and (iv) after quantum perturbation correction with an all-cells
neighborhood model. We plot the probabilities of the config-
uration, but on a logarithmic scale so as to emphasize the dif-
ferences in the energies between the configurations; the negative
log of the probability is proportional to the energy. We can make
a number of observations from this plot. First, a 2-cell neighbor-
hood is sufficient; using an all-cells neighborhood does not in-
crease accuracy, but increases the computational cost. Second,
semi-classical model seems to be sufficient for ground state and
near ground state computations. The quantum-correction fac-
tor changes only the high energy states, but that too, slightly
(in terms of probabilities). There is some splitting of states,
but the associated probabilities are orders of magnitude lower
than the ground state. Third, note the clustering of the states
to form the first excited cluster, second excited cluster, and so
on. The probabilities within each cluster need not be the same
(degenerate), but they are very close to each other. Of particular
concern is the first excited cluster of states. Fig. 6 (b) shows
the 11 lowest energy configurations. Cell states that are differ-
ent from the ground state are shown as shaded cells. Note that
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Fig. 6. Study of a 9-cell wire. (a) Low energy spectrum computed using semi-
classical and after quantum perturbation correction, with a full 9-cell neighbor-
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Note that the negative log of the probability is proportional to the energy. (b)
Some low energy configurations of a 9 cell QCA wire Cell states that are dif-
ferent from the ground state are shown shaded. Only two of the configurations
from the 2nd excited cluster are shown here.

the first excited state cluster consists of state configuration with
single kinks. The configurations with kinks after the first cell
and before the last cell are somewhat higher probabilities than
the other first excited state cluster, but very close to them. Con-
figurations with two kinks comprise the next energy band. Note
that non-ground states can also result in correct outputs.

Next, we considered clocked wire designs of different lengths
ranging from 2 to 128 cells, with different number of clock
zones. For each zone, we consider the ground state and the
first excited cluster of states. Fig. 7(a) shows the error likeli-
hood variation with temperature of individual clock zone with
different number of cells. Fig. 7(b) shows the variation of error
likelihood with number of cells per zone for a fixed tempera-
ture. Note that we are plotting the error likelihood (ratio of er-
ror probability to correct probability) which can be greater than
one. We notice that

• the variation of error likelihood of individual clock zones
with normalized temperature ( kT

Ek
) is linear, and

• the variation of error likelihood of an individual clock zone
with number of cells is also linear.

It would appear that smaller the number of cells per clock zone,
the more stable is the wire, but this is not so. For a wire of
fixed length as the number of cells per clock zone decrease, the
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Fig. 7. Switching errors and delay studies of a clocked wire. (a) Variation of
error likelihood of one clocked zone in a wire with normalized temperature ( kT

Ek
)

for different clock sizes. (b) Variation in error likelihood of one clocked zone
with number of cells in that zone. (c) Variation in overall error likelihood of
a wire with number of clocked zones in that wire for various error likelihoods
of each clocked zone. (d) Switching error versus delay trade-off for two wire
lengths at normalized temperature of 0.291.

number of clock zones increase. Thus, increasing the number
of times errors can occur. For one clock zone, errors can occur
during the transition of that clock. For two clock zones, errors
can occur during two clock transitions, one in each zone. And
so on. The error likelihood of a chain of clock zones can be ex-
pressed in terms of the likelihoods of individual zone error like-
lihoods. Fig. 7(c) shows the variation of overall error likelihood
of a clock wire with the number of clock zones for different er-
ror likelihoods (L) of each clock zone. We see that the overall
error likelihoods increase with number of clock zones.

We combine the zone error likelihoods at normalized temper-
ature of 0.291 from Figs. 7(a) and (b) with Fig. 7(c) to arrive at
a plot of error likelihood of the overall clocked wire as a func-
tion of the number of clock zones or the overall delay in trans-
mission as shown in Figs. 7(d). We clearly see that neither one
clock zone for the entire wire nor the other extreme of one clock
zone per cell is the most stable solution. The optimal value lies
somewhere it between and appears to be different for different
wire sizes.

These kinds of error versus delay studies has implications
in design automation of QCA circuits. First, these kinds of
studies can be used to build errors macromodels of QCA cir-
cuit elements in terms of temperature and clocking structures.
For wires, at least, the relationships seems be fairly simple lin-
ear one. Second, these kinds of studies will influence the fi-
nal assignment of clock zones in QCA circuits. So far, cur-
rent approaches have allocated clock zones purely on timing
issues [40]. The analysis presented here will impose additional
constraints on the design based on errors. Our study indicates
that, contrary to expectations, densely placed (smaller) clocking
zones does not guarantee good error performance.
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Fig. 8. (a) Balanced and unbalanced majority gate with same number of cells.
(b) State configuration spectrum for balanced and unbalanced majority gate.
Note the vertical axis plots the probability on a logarithmic scale, ordered in-
versely; thus the vertical is proportional to the energy.

B. Majority Logic: Thermal Studies

The basic logic block for QCA designs is the 3-input majority
gate. In addition to a balanced majority logic gate (Fig. 8(a)),
we also consider a particularly challenging, unbalanced ver-
sion of the majority gate. The input wire lengths of the un-
balanced majority gate are not of the same length. This unbal-
anced gate was found to be particularly difficult to model. First
order Hartree-Fock approximations without accounting for cor-
relations between cells was found to be inadequate [18]. We
find that dependency preserving probabilistic models presented
here is able to model correctly the unbalanced gate. Fig. 8(b)
shows the energy spectrum of the two gates with the same num-
ber of cells. We see some minor differences in the spectrum;
note that the vertical scale is logarithmic so small differences
are emphasized.

Fig. 9 shows the low-energy configurations for the unbal-
anced majority gate. We found that the ground state configu-
rations for different inputs results in the expected cell configu-
ration of a majority gate. It is interesting to note that the config-
uration with just the output cell error is the first excited cluster.
The next three configurations, constituting the second excited
cluster, actually results in correct output, even though there are
state errors in the internal cells.

Clocking can introduce some more stability to the operation
of a majority logic performance. We considered two clocking
zones, one covering the input arms and the other covering the
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Fig. 9. Low energy configurations of an unbalanced majority gate, with input
(0, 0, 0), as computed using maximum likelihood inference with the Markov net
model. Cell states that are different from the ground state are shown shaded.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

000 100 010 110

Inputs

E
rr

o
r 

L
ik

e
li
h

o
o

d
s

Unbal

Unbal-Clock1

Balanced

Balanced-Clock1

Fig. 10. Variation the error likelihood for different inputs to unbalanced and
balanced majority logic gate, with and without clocking. The normalized tem-
perature is 0.582.

central cell along with the output link. Fig. 10 shows the error
likelihood for balanced and unbalanced gates, with and without
clocking, and for 4 different inputs. Due to symmetry, the re-
sults for the complemented forms of the inputs are the same as
that for these 4 inputs. The worst case input is (1, 0, 0). We note
that clocking does not lower the errors for all inputs for the un-
balanced gate. However, for the balanced majority gate, it does
lower the errors. Lusth [41] also noted the asymmetry in the
ground state probabilities for a majority logic gate. It has im-
plications in power dissipation with switching of inputs states.
As inputs switch, the difference in the corresponding ground
state energies has either to be dissipated to the background or
acquired from the clock.

C. Crossbar: Clocking and Reliability Studies

Among the most crucial element of QCA circuit designs we
have QCA crossbars, i.e. wire that cross each other in the same
plane minimally influencing each other. The ability to cross
wires in QCA designs has been considered to be one its biggest
advantages allowing for planar designs. Consider the arrange-
ment of QCA cells shown in Fig. 11(a), which shows three ver-
tical QCA wires consisting of rotated cells and one horizontal
wire. Since the horizontal wire is “cut” by the vertical wire, er-
rors in the horizontal wire are of concern. Figs. 11(b), (c), and
(d) shows three switching error modes. Fig. 11(e) shows the
excited spectrum of the design at two different temperatures.
It plots the logarithm of the probability, which is proportional
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Fig. 11. (a) Consecutive crossbars, all in one clock zone. Errors in the hori-
zontal line are of concern. The switching error modes are shown in (b), (c), and
(d). The excited state spectra for the design for two different temperatures are
shown in (e). The vertical axis is inversely related to the log of the probability,
i.e. it is proportional to the energy.

to the energy, of each of the excited state configurations. Note
that excited states have very close energy to the ground state,
pointing to the inherent instability of the crossbar design. This
corroborates the finding of crossbar instability in [42], where
3D designs is suggested to mitigate this effect. We consider
mitigation schemes within the constraint of 2D designs.

To harden the design, we use the pattern of the switching er-
ror modes in Figs. 11(b), (c), and (d) to partition the circuit into
4 clock zones as shown in Fig. 12(a). In addition, we consid-
ered hardening the design at the crossings by thickening them
(Fig. 12(b)) and adding clocking zones (Fig. 12(c)). Fig. 12(d)
plots the value switching error likelihood for the four crossbar
designs at a normalized temperature of 0.04. The switching er-
ror modes, not shown here, of all the four designs are the same,
except for the difference in the error likelihood values as noted
above. We notice that with thickened crossing, the switching er-
ror propensity goes down even with one clocking zone. Clock-
ing does not seem to be have much effect in reducing error. The
switching error likelihood for thickened and single cell design
is similar with addition of clocking zones. However, even with
some mitigation, crossbar remains the weakest spot for QCA
circuits.

VII. COMPLEXITY

The Markov tree based computations are fast. In Fig. 13 we
compare the computation times for maximum likelihood infer-
ence on Markov net model to search for the 10 lowest energy
configurations with exhaustive search for a linear arrangement
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Fig. 12. Different crossbar designs with three crossings (a) clocked single cell
in 4 clock zone, (b) thickened crossings – all in one clock zone, (c) thickened
crossings with 4 clock zones. (d) Switching error likelihood of different cross-
bar designs at a normalized temperature of 0.04.
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Fig. 13. Comparison of computation times for maximum likelihood inference
on Markov net model with exhaustive search on a Pentium III, 800MHz PC
with Windows XP. We vary the number of cells in a linear arrangement of QCA
cells.

of QCA cells as the number of cell is varied. We report the to-
tal time taken (CPU + I/O) on a Pentium III, 800MHz PC with
Windows XP. It includes the time taken to compile the Markov
network and the inference times. The vertical axis is a log scale.
We see that, as expected, exhaustive search exhibits exponential
behavior, unlike that for the Markov net model.

It might appear that Markov network model is able to bypass
the combinatorics of computing the ground state of an N cell ar-
rangement, which is known to be NP-hard [43]. However, this
is not so. The modeling exploits the factorization possibilities
that exist due to spatial separation of cells to arrive at the least
complex model. In the worst case, every cell is dependent on
every other cell, resulting in a complete graph, with exponen-
tial reasoning complexity. In the rest of the section, we derive
the order of complexity of reasoning with the Markov model in
terms of QCA circuit parameters.

Recall that a compilation process that transforms the
Bayesian network structure into a tree of cliques, called the
junction tree, precedes the inference process. So, we first look
at the complexity of the inference process, which consists of
two steps [24]. First, the Markov network is triangulated with
the minimum fill-in heuristic based triangulation method whose
complexity can be shown to be O(N +E), where N is the num-
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ber of nodes and E is the number of links. The cliques of the
triangulated graph are extracted during the triangulation pro-
cess itself. The second step involves the construction of the
junction tree which requires one pass through the ordered list
of cliques generated during triangulation. The complexity is
O(Nc). Thus, the overall complexity of the compilation process
is O(E +N +Nc).

Next, we consider the complexity of the inference process.
Each step of the message passing scheme requires the compu-
tation of the marginalized averaged or maximum probabilities,
depending on whether we want simple probabilities or maxi-
mum likelihood states. The required number of operation for
this marginalization at each clique will be proportional to the
size of the joint probability function of that clique. From this
observation, it can be shown [44] that the inference process is
O(Nc2|Cmax|) time where Nc is the number of cliques and |Cmax|
is the maximum clique size.

Upon adding up the complexity of compilation and the in-
ference process, we infer that the complexity of the overall
process is O(E + N + Nc2|Cmax|). Using the fact that the num-
ber of cliques, Nc is less than the number of vertices, N, and
the fact that the maximum clique size is greater than the maxi-
mum number of parents of any node, i.e. |Cmax| > Nm

p , we have
O(E + N2|Cmax|) as the overall complexity. An upper bound on
the number of edges, E, can constructed out from the maximum
clique size and the maximum number of possible cliques.

E ≤ N|Cmax|2 (47)

Using this fact, it is obvious that the exponential term will dom-
inate the complexity, which will be O(N2|Cmax|)

A good upper bound on the maximum clique size can arrived
at using the bounds on a quantity called the induced width of
a graph, which was derived in [44]; we do not describe it here.
The original analysis was for directed probabilistic models, we
modified the analysis for undirected graphs.

|Cmax| ≤ max
i

|Ne(Xi)|+ ∑
Y∈Ne(Xi)

|Ne(Y )|−1 (48)

where Ne(X) refers to the neighbor set of the node X . In the
context of QCA circuits, this set will be determined by the
neighborhood radius used to model the cell to cell interaction,
which would be bounded. Let this radius be r. The total num-
ber of neighbors would be bounded by r2, a constant. Thus, the
overall complexity is linear in the number of cells, but exponen-
tial with the radius of influence, i.e. O(N2r4

). In most cases, a
small value of radius r = 2to5 cells suffices.

VIII. CONCLUSIONS

We proposed a new error analysis formalism that is based on
the low energy spectrum that reflects the underlying physics of
the operation of QCA cells. Instead of just the ground state cell
configuration, as is the current practice, we also compute the
low-energy states near it. Starting from a quantum-mechanical
formulation of the spectrum, we derived approximations in
terms of the semi-classical Gibbs models. We showed that the
quantum-mechanical spectra can be expressed, upto a first or-
der approximation, as a perturbation of the semi-classical spec-

tra. We then showed how we can efficiently compute the N-
lowest semi-classical energy state configurations by modeling
the QCA cell arrangement using a Markov graph-based proba-
bilistic model, which we then transformed into a Markov tree
structure defined over subsets of QCA cells. The N-lowest en-
ergy configurations were then computed by local message pass-
ing; the inference is exact and there are no approximations in-
volved. We showed that the complexity of the inference is poly-
nomial in terms of number of cells, assuming a finite neighbor-
hood of influence for each QCA cell, which is usually the case.
We demonstrated the model using QCA circuit structures such
as wires, majority gate, and crossover wires. We also demon-
strated how the model can be used to study the error configura-
tions of QCA circuits and the variation of the low-energy con-
figuration likelihoods with temperature and conduct error ver-
sus delay studies. These issues are important for the design of
thermally robust QCA circuits. Current QCA designs take into
account just the ground state configuration to map the logic and
timing issues to design the clock. The error versus delay stud-
ies of the kind presented here places further constraints on high
level design.
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