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Abstract —

We propose a novel formalism, based on probabilistic
Bayesian networks, to capture, analyze, and model dynamic
errors at nano logic for probabilistic reliability analysis. It
will be important for circuit designers to be able to com-
pare and rank designs based on the expected output er-
ror, which is a measure of reliability. We propose an error
model to estimate this expected output error probability,
given the probability of these errors in each device. We
estimate the overall output error probability by comparing
the outputs of an ideal logic model with a dynamic error-
encoded model. We use of Bayesian inference schemes for
propagation of probabilities. Since exact inference is worst
case NP-hard, we use two approximate inference schemes
based on importance sampling, namely EPIS(Evidence Pre-
propagated Importance Sampling) and PLS (Probabilistic
Logic Sampling), for handling mid-size benchmarks having
up to 3500 gates. We demonstrate the efficiency and accu-
racy of these approximate inference schemes by comparing
estimated results with logic simulation results.

I. INTRODUCTION

The ITRS road-map predicts CMOS device dimen-
sions to reach close to the design limit of 50 nm by
2020. Circuits built with such nano-dimensional de-
vices will face design challenges that have not been
much of an issue so far. One such challenge involve
dynamic errors in the interconnects and gates.

What is a dynamic error? These errors arise due
to temporary malfunction of nano-devices while oper-
ated near thermal limits. These errors are significant
in nano-computing due to very low noise margin, re-
duced supply voltages and low stored charges in nodes.
We term these errors as dynamic errors since they are
not permanent damages. What complicates the pic-
ture is that this propensity for errors will, intrinsi-
cally, exist at each gate. These errors are going to the
measure of reliability in the nano devices. Hence, in
future, reliable computation has to be achieved with
"systemic” unreliable devices [1]. Thus making the
entire computation process probabilistic rather than
deterministic in nature. For instance, given inputs
1 and 0, an AND gate will output the state 0, only
with probability 1 — p, where p is the error probabil-
ity. Thus, traditional, deterministic, truth-table based
logic representation will not suffice. Instead, the out-
put needs to be specified in terms of probabilities,
conditioned on the states of the inputs. There will
be need for formalisms to compare, evaluate, and vet
circuit designs with these dynamic error prone gates.

The sources of dynamic errors: Dynamic error will

arise due to the use of ultra low voltage design, result-
ing in supply to ground bounce, leakage and coupling
noise and due to small device geometry operating with
only a handful of electrons even in next generation
CMOS. Emerging devices like nano-wire FET, CNT-
FET, resonant tunnel diodes(RTD) and would have
increased effect of dynamic errors that will arise due
to their operating conditions near thermal limit, due
to background charge fluctuations and phonon cou-
pling. Each of these devices would pose various de-
sign, modeling challenges for analyzing them: for ex-
ample QCA is not really causal, CNT circuits have to
operate without multiple fanouts.

The problem of reliable computing using unreliable
devices is not new. Indeed the basic methods of Triple
Modular Redundancy (TMR) and NAND Multiplex-
ing were proposed in the 1950s [1]. There are works
done on computation of error bounds [3], [1], [13] for
noisy gates which are useful for higher level designs.
At logic level, Han et al. [4] discussed various redun-
dancy schemes for reliability enhancement. Patel et
al. [2] provided a matrix-based formalism for model-
ing dynamic errors at logic level: scalability of such a
technique is in question as the largest circuit handled
had 46 gates. Order of magnitude improvement was
reported by Rejimon et al. [14] using Bayesian formal-
ism for error computation. Probabilistic model check-
ing for reliability-redundancy trade-off was inroduced
in [6]. Markov models are proposed in [5] for signal
probabilities for circuits that are extremely small and
did not have any re-convergence. We know that er-
ror probability inference is NP-hard, however, using
conditional independence and smart approximation,
reasonable estimates can be found. In this work, we
present an approximate algorithm for the error proba-
bility computation for mid-sized ISCAS benchmarks.

Suppose, we have logic block with inputs Z7,--- Zy,
internal signals X7, --- X/, and outputs Y7, -- Yk . Let
the corresponding versions of the internal lines and the
outputs with dynamic errors be denoted by X¢,--- X3,
and Y, - Yg, respectively. Thus, the error at the
ith output can be mathematically represented as the
XOR of the error-free and the output with error.

Ei=Y @Y, (1)
We propose the output error probability P(E; =1) =
PYf@Y, =1) as a design metric, in addition to
other traditional ones such as area or delay, to vet
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different designs in the nano-domain. Note that the
probability of output error is dependent on the indi-
vidual gate error probability p and also on the internal
dependencies among the signals that might enhance
or reduce the overall output error based on the cir-
cuit structure. We model these dependencies by a
Bayesian Network, which is known to be the ex-
act, minimal probabilistic model for the underlying
joint probability density function (pdf) for causal logic
networks. Probabilistic belief propagation on these
Bayesian Networks can then to be used to estimate
this probability.

In this work, we report two approximate inference
schemes (1) Probabilistic Logic Sampling and (2) Evi-
dence pre-propagated importance sampling for the ap-
proximate inference for the mid-size benchmarks. In
the absence of nano-domain benchmarks, we use mid-
size ISCAS benchmarks having gate count up to 3500
to show the scalability, accuracy and efficiency of our
modeling using these approximate inference schemes.

II. BAYESIAN NETWORKS

Bayesian Networks are graphical probabilistic mod-
els representing the joint probability function over
a set of random variables using a directed acyclic
graphical structure (DAG), whose nodes describe ran-
dom variables and node to node arcs denote direct
causal dependencies. In a Bayesian network, the exact
joint probability distribution over a set of n variables,
Xj -+, X, in this network is given by Eq. 2.

P(xn,xn_l,“',xQ,l’l):P(ﬂfn‘mn_l,"',xl) ( )
P(Zn1|Tn_2,,T1) P(z1)
Any random variable, X} is independent of all other
variables, given the states of its parent nodes, say,
Xr_1 and Xj_o. This conditional independence can
be expressed by Eq. 3.

P(xg|zy—1,21-2))

Mathematically, this is denoted (ég
I( Xk, {Xk-1, Xg—2}, {Xn, -+, Xn-1}). Using the
conditional independence in directional graph, we
arrive at an optimal factorized form that involve
conditional probabilities based on the parents (or
direct causes, inputs) to a node (effect, output):
P(X) =TI, P(zx|pa(xk)). Even though probabilis-
tic inference is worst-case NP-Hard, these factorized
forms can reduce complexity significantly for general
cases.

P(£k|xn7xn—l7'”axl) =

III. PROBABILISTIC ERROR MODEL

We compute the error probability P(e;) =
PYfE@Y;, = 1) by marginalizing the joint prob-
ability function over the inputs, internal lines, and

Fig. 1. (a) Conceptual circuit representation of the logic used to
detect errors involving the ideal logic and the unreliable logic com-
ponents. (b) The corresponding Bayesian network representation.

the outputs

Pe;)= Y Pleilz1,---2n)P(21) - P(zn)

= P(z1)---P(zn) Z Z P(eilz1,-2n)

z x,x€

= P(=1)+P(ey)

e e e
E E P(ei7yi7yi7Z1a'zN,m1a"'xMax17"'xM)
Vz Va,Vze

where Eq. 4 shows that the joint density function
that is necessary to compute the dynamic error ex-
actly. Summing over all possible values of all the
involved variables is computationally expensive (NP-
hard), hence we require a graphical model that would
use the causal structure and conditional indepen-
dences to arrive at the minimal optimally factorized
representation of this joint probability function as a
Bayesian network.

A. The Bayesian Network Structure

We model, both error-free logic and the logic with
dynamic errors, as a Directed Acyclic Graph (DAG).
These two models, which we will refer to as the ideal
logic model and the error-encoded model, are then
connected at the outputs by comparators. The com-
parator output is the variable E; =Y @Y; in Eq. 1.
The comparator output of logic 1 indicates that the
ideal logic model and error-encoded model outputs are
different. The probability of the comparator outputs
being in state ”1” provides the overall output error
probability, P(E; = 1) of output Y; of the circuit.

Figure 1(a) shows the (conceptual) representation of
a error detection circuit for a simple logic involving
two NAND gates, represented by block C. The other
block involves the same logic, but built with unreli-
able components. These gates are assumed to have
gate error probability of p. The inputs to both the
blocks are the same. The two outputs are connected
to two comparators. The output of the comparator
represents error in computation. Note that this is just
a conceptual representation, we do not actually pro-
pose synthesizing the circuit. From the conceptual
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circuit design, we can construct the Bayesian network
representation, which we call the LIPEM-DAG model.
Each node in the LIPEM is a line in circuit and the
links denote a connection between the lines via gates.
Figure 1(b) shows the LIPEM corresponding to the
circuit in Figure 1(a).

B. Computing the Error Probability

We used a stochastic algorithm, based on importance
sampling, to compute the error probability based on
the built LIPEM model. This approximate scheme
can be proven to converge to the correct probability
estimates [10]. The stochastic importance sampling
algorithm generates randomly selected instantiations
of the network variables in topological order, accord-
ing to probabilities in the model, and then calculates
frequencies of instantiations of interest to obtain esti-
mates of the probabilities. Given the states of certain
nodes in the network (evidence) and the conditional
probability table of each node, this algorithm gener-
ates sample instantiations of the network so as to gen-
erate state of each node in the network. From these
sample instantiations, it can find approximate proba-
bilities of each state for each node in the network. This
sampling is done according an the optimum impor-
tance function that closely resembles the underlying
joint probability distribution. Probabilistic Logic
Sampling (PLS): Probabilistic logic sampling is the
first and the simplest sampling algorithm proposed
for Bayesian Networks [10]. The salient features of
these algorithms are: (1) they scale extremely well
for larger systems making them a target inference for
nano-domain billion transistor scenario and (2) they
are any-time algorithm, providing adequate accuracy-
time trade-off and (3) The samples are not based on
inputs and the approach is input pattern insensitive.

The flow of the algorithm is as follows.
1. Complete set of samples are generated for the

Bayesian network using the optimal importance
function, which is the joint probability distribu-
tion function P(X). The importance function is
never updated once it is initialized. This assump-
tion makes sense when the child node evidences
are not present.

2. In case of child node evidences (important in di-
agnostic backtracking), samples that are incom-
patible with the evidence set are disregarded.

3. The probability of all the query nodes are es-
timated based on counting the frequency with
which the relevant events occur in the sample.

Evidence Pre-propagated Importance Sam-
pling (EPIS): The evidence pre-propagated impor-
tance sampling (EPIS) [7], [8] uses local message pass-
ing and stochastic sampling. This method scales well
with circuit size and is proven to converge to correct
estimates. This is also an anytime-algorithm since it

can be stopped at any point of time to produce esti-
mates. Of course, the accuracy of estimates increases
with time. Like PLS, EPIS is also based on impor-
tance sampling that generates sample instantiations
of the whole DAG network, i.e. for all line states in
our case. These samples are then used to form the
final estimates. The difference is with respect to the
importance function used for sampling. EPIS takes
into account any available evidence. In a Bayesian
network, the product of the conditional probability
functions at all nodes form the optimal importance
function. Let X = {X1, Xo, -+, X} be the set of
variables in a Bayesian network, Pa(Xj) be the par-
ents of X, and F be the evidence set. The importance
function can be approximated as

X|E = ﬁ Pa Xk (:Ek‘Pa(Xk)))\(Xk) (4)

where a(Pa(Xk)) = (P(E~|Pa(X%)))~! is a normal-
izing constant dependent on Pa(Xj) and A(Xj) =
P(E~|zy), with ET and E~ being the evidence from
parents and children, respectively, as defined by the
directed link structure. Calculation of A is computa-
tionally expensive and for this, Loopy Belief Propaga-
tion (LBP) [9] over the Markov blanket of the node is
used. Yuan et al. [8] proved that for a poly-tree, the
local loopy belief propagation is optimal. The impor-
tance function can be further approximated by replac-
ing small probabilities with a specific cutoff value [7].

IV. EXPERIMENTAL RESULTS

The approximate computation of the LIPEM using
Bayesian Networks was done by a tool named ”Ge-
NIe” [11]. We used PLS and EPIS. The tests were
performed on a Pentium IV, 2.00GHz, Windows XP
computer. We show that the error model and associ-
ated computations scales extremely well with circuit
size by showing results with circuits of varying sizes.
Table I shows the average output error probabilities
for various ISCAS’85 benchmark circuits for three dif-
ferent gate errors of p = 0.01,0.001 and 0.0001. Re-
ported results were obtained from PLS and EPIS with
1000 samples. As expected, all circuits exhibit higher
overall error as individual gate error increases. It can
be observed that c¢499 has lower error growth over all
the other circuits. For many of the benchmark circuits
(namely ¢432, c1908, ¢3540, c6288, c7552), the aver-
age output error exceeds 0.1 for gate error probability
0.01. This indicates that 0.01 is unacceptable gate er-
ror probability for these circuits. Additional gate level
redundancy may be required for these circuits.

To validate our model we performed an in-house logic
simulation of the benchmarks with 500,000 random
vectors obtained by changing seed after every 50,000
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TABLE 1
OUTPUT ERROR PROBABILITIES FOR ISCAS’85 CIRCUITS.
No. of Average Output error Probability for individ-
gates ual gate error probability p
=0.01 =0.001 =0.0001
PLS EPIS PLS EPIS PLS EPIS
c432 160 0.119 0.118 0.016 0.017 0.0021| 0.0008
c499 202 0.030 | 0.031 0.004 | 0.004 0.0005| 0.0002
c880 383 0.078 0.074 0.009 0.008 0.0013| 0.0010
cl355 546 0.059 | 0.060 0.007 | 0.007 0.0009| 0.0009
c1908 880 0.134 0.130 0.024 0.023 0.0080( 0.0071
c2670 1193 0.075 | 0.077 0.018 | 0.018 0.0087| 0.0100
c3540 1669 0.257 | 0.258 0.127 | 0.121 0.0965| 0.0918
c5315 2307 0.075 | 0.076 0.010 | 0.009 0.0017| 0.0010
c6288 2416 0.386 0.388 0.111 0.105 0.0181| 0.0150
c7552 3512 0.111 0.109 0.018 0.018 0.0024| 0.0021
TABLE II
COMPARISON OF BAYESIAN NETWORK MODELING AND LogGIC
SIMULATION
BN-Nodes PLS EPIS Sim.
Time
He Ti(s) | ke T2(s) | Tsim(s)
c432 475 0.0020 0.234 0.0030 | 0.561 19.763
c499 565 0.0016 0.344 0.0016 | 0.912 23.013
c880 956 0.0023 0.844 0.0019 1.773 43.147
cl355 1253 0.0020 1.141 0.0019 3.245 58.999
c1908 2172 0.0081 2.187 0.0076 9.503 95.030
c2670 3097 0.0095 3.205 0.0094 55.30 144.300
c3540 4038 0.0807 | 4.547 0.0759 82.60 192.060
c5315 6247 0.0073 7.844 0.0023 155.55 295.162
c6288 4896 0.0058 5.672 0.0073 118.18 297.473
c7552 8398 0.0236 11.64 0.0274 233.08 445.326

vectors and obtained the average output error prob-
abilities for different gate error probabilities. In Ta-
ble II, we compare simulation results with Bayesian
network results. We report the accuracy of our model
in terms of average error, u. , between the exact out-
put error probabilities and the estimated output error
probabilities obtained from PLS and EPIS with 1000
samples. Mean estimation error (over all circuits) for
PLS is 0.012 and for EPIS is 0.011. Average estima-
tion time taken by PLS for 1000 samples is found to
be 3.72 sec. whereas average time taken by EPIS for
the same number of samples is 31 sec. and the average
simulation time is 161.43 seconds. These results show
the effectiveness of our model in terms of accuracy and
estimation time. It is observed from the results that
accuracy of forward inference with PLS is almost the
same as that of EPIS, but PLS has less time complex-
ity. However for backward reasoning problems like
input space characterization, EPIS is the only choice.
Comparing Designs: Figure 2 shows the variation
in average output error with gate error p for two IS-
CAS benchmark c¢499 and c1355 that are logically
equivalent. We see that c499 is clearly a better design
of the logic for nano-domain in terms of resistance to
dynamic errors. The circuit c1355 is more sensitive
to dynamic-error almost for all individual gate error
probabilities. For example, when p=0.01, the aver-
age output error probability become 0.06 as opposed
to 0.03 for ¢499. The expected output dynamic error
can be used, along with other design measures such
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Fig. 2. Output error profiles of two alternative logic implementa-
tion (c499, and ¢1355). . . .
as power and area for nano-domain circuits.

In conclusion, we presented an exact probability
model, based on Bayesian networks, to capture the
inter-dependent effects of dynamic errors at each gate.
Dynamic error at each gate is modeled through the
conditional probability specifications in the Bayesian
network. The expected output error, also the mea-
sure of realiability, can be used to vet design choices.
We used two scalable, any-time approximate infer-
ence schemes to compute probability of output error.
Comparing estimated results with simulation results,
we show that the estimation is close-to-exact. We
demonstrate scalability of our estimation tool by us-
ing the mid-sized ISCAS’85 CMOS benchmarks (3000
gates), which would be equally scalable for other nano-
devices. We are currently working on modeling dy-
namic error tolerant designs by applying TMR redun-
dancy on selected nodes having high dynamic error
sensitivities, and also on selection of input space for a
desired output behavior (Bayesian backtracking).
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