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Abstract

Switching activity estimation is a crucial step in esti-
mating dynamic power consumption in CMOS circuits.
In [1], we proposed a new switching probability model
based on Bayesian Networks which captures accurately
the various correlations in the circuit. In this work,
we propose a new strategy for efficient segmentation of
large circuits so that they can be mapped to Multiple
Bayesian Networks (MBN). The goal here is to achieve
higher accuracy while reducing the memory require-
ments during the computation. In order to capture the
correlations among the boundaries of segments, a tree-
dependent (TD) distribution is proposed between the seg-
ment boundaries such that the TD distribution is closest
to the actual distribution of switching variable with some
distance criterion. We use a Maximum Weight Span-
ning Tree (MWST) based approximation [4] using mu-
tual information between two variables at the boundary
as weight of the edge between the variables. Experimen-
tal results for ISCAS’85 circuits show that the proposed
method improves accuracy significantly over other meth-
ods.

1 Introduction

Switching activity estimation strategies can be divided
into two broad categories: (i) estimation by simulation
and (ii) estimation by probabilistic techniques. Proba-
bilistic techniques [9, 12, 13, 6] are fast and tractable,
but typically involve assumptions about joint correla-
tions. The probabilistic techniques use knowledge about
input statistics to estimate the switching activity of inter-
nal nodes. In some of the pioneering works around this�
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idea, Najm et al. [17] estimated the mean and variance
of current using probability waveforms accounting for
temporal correlation with spatial independence assump-
tions. In a later work, Najm et al. [10] introduced the
concept of transition density. However, these methods
have been reported to yield inaccurate estimates when the
nodes are highly correlated. An improved switching ac-
tivity estimation strategy based on OBDD was proposed
by Bryant [9], however, it had high space requirements.
Ghosh et al. [6] modeled temporal correlation effects in
a real delay model. The computational complexity was,
however, extremely high. Tagged probability simulation
was proposed by Ding et al. [12], which was based on
local OBDD propagation with a real delay model.

Dependency modeling of switching activity has been per-
formed by many, but only partially. Present formalisms
are not able to account for all types of spatial dependen-
cies. Kapoor [14] has modeled structural dependencies
and Schneider et al. [18] used one-lag Markov model
to capture temporal dependence. Tsui et al. [15] mod-
eled first order spatial correlation efficiently. Schneider
et al. [19] proposed a fast estimation technique based on
ROBDD where an approximate solution is provided for
spatial correlation. Pair-wise correlation between circuit
lines were first proposed by Ercolani et al. [11]. Mar-
culescu et al. [20], studied temporal, spatial dependen-
cies studying pairwise correlations. In a later pioneer-
ing work, Marculescu et al. [8], formulated higher order
correlations by approximating them as a set of pair-wise
correlations. We proposed LIDAG constuction [1] from
a combinational circuit and proved that it corresponds to
a Bayesian Network which captures higher order spatio-
temporal correlations in the internal nodes. When the
circuits were large we used naive segmentation strategy
without really capturing the dependencies between two
BNs.

In this paper, our focus is to systematically formulate
the problem of using Multiple Bayesian Network for

Proceedings of the 15th International Conference on VLSI Design (VLSID�02) 
0-7695-1441-3/02 $17.00 © 2002 IEEE 



large circuits such that correlations between the BNs are
captured effectively through approximate tree-dependent
distribution at the boundaries. Results show that the Mul-
tiple BN modeling has even higher accuracy compared to
naive segmentation based approach in [1] for large com-
binational benchmark circuits.

2 Bayesian Network Modeling

The theory behind modeling switching activity using sin-
gle BN has been proposed and discussed in [1]. Some of
the basic definitions and terminologies are repeated here
for convenience. For more details the reader is referred
to [1].

A Bayesian Network is a directed acyclic graph
(DAG)and is established in the following manner. Defini-
tion 1: [3] Let U=

�������	��
�
�
�
be a finite set of variables

taking on discrete values. Let ����� � be the joint probabil-
ity function over the variables in � , and let � , � and �
be any three subsets (maybe overlapping) of � . � and �
is said to be conditionally independentgiven � if

������� � ��� �	� ���!�"� � � whenever ���!� �#� ��$&% (1)

Following Pearl[3], this conditional independence
amongst � , � , and � is denoted as '(��� � � � �)� in which� and � are said to be conditionally independentgiven
Z.

The concept of conditional independence can be ex-
tended to dependencies in a graphical structure by
Pearl [3] and is discussed in [1]. Moreover, given any
Probability function, we can also get a set of all the I re-
lations. This set of three tuple I’s form an I-map.

If the network representation has I-map as a superset of
that derived from the probability function then the net-
work is an approximate under-representation (since the
network assumes more independence relation that en-
coded in the probability function). If the network rep-
resentation has an I-map that is subset of that encoded
by the probability function then the network is an over-
representation. Only when these two I-maps are equal
we get an exact representation which is the minimal one
that captures the independence model completely. This
network representation is actually a Bayesian Network.

Definition 2:[1] Given a probability function � on a set
of variables � , a DAG * is called a Bayesian Networkof� if * is a minimum I-map of � .

The next step is to have DAG network representation of
the switching model of a combinational circuit.

Definition 3: [1] A Logic Induced Directed Acyclic
Graph (LIDAG) structure, +,* , corresponding to a com-
binational circuit consists of nodes, ��- s, representing the

switching at each line and links between them is con-
structed as follows: The parents of a random variable rep-
resenting the switching at an output line, ./- , of a gate 01-
are the nodes representing switchings at the input lines of
that gate. Each input line is either one of

� '�2 ��
�
�
�� '43  or
an output of another gate.

Theorem 2: The LIDAG structure, +�* , corresponding
to the combinational circuit is a minimal I-map of the
underlying switching dependency model and hence is a
Bayesian Network. Proof: Proof in[1].

In the LIDAG structure, each random variable represents
switching activity on each line in the combinational cir-
cuit. Each variable can take four values corresponding to
the four possible transitions:

� �(5#5 � �6542 � �7285 � �72�2  . Note
that this way of formulating the random variable effec-
tively models temporal correlation since we use zero-
delay model. The probability of switching at a line would
be given by ���!��-1�9� 542 ��:;�����<-=�9� 2>5 � . The orig-
inal Bayesian Network is converted in junction tree of
cliques for computational efficiency and the conversion
stages were briefly mentioned in [1]. In the next sec-
tion, we want to discuss a few steps in BN computation
in details which will direct us towards the need for MBN
modeling.

3 BN Computation

We have already discussed the transformation of a BN
which is a DAG to a junction tree of cliques in our earlier
work [1]. This transformation is necessary for local mes-
sage passing inference scheme. Each node of the junction
tree is a clique or a collection of random variables. The
same random variable may be present in more than one
clique. An important property of the junction tree is that
if two cliques share a random variable then all cliques in
the path between these cliques contain the same random
variable. This property is crucial for updating by local
message passing.

Once junction tree of cliques is formed in the compilation
process, we need to form the distribution function for the
cliques. We then follow a two phase algorithm for mes-
sage propagation. All the messages that is propagated
are between neighboring cliques. Let

��?A@B
be the set of

nodes in clique C in the junction tree. The joint probabil-
ity function over these variables is denoted by D�� ? @ � . Let��?AE�

be the set of nodes in a separator set F between two
cliques in the junction tree. The joint probability function
over these variables is denoted by DG� ?AE � . Let H1I denote
the set of all cliques and I	I denote the set of separators
in the junction tree. The joint probability function factor-

2
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izes over the junction tree in the following form [2]:

D��!� 2 ��
�
�
�� �(J1�	�LKM#N CS

DG� ?A@ ��O;KP�N SS

DG� ? E � (2)

A separator set F is contained in two neighboring cliques,C�2 and C4Q . If we associate each of the product terms over
the separators in the denominator with one its two neigh-
boring cliques, say C 2 , then we can write the joint prob-
ability function in a pure product form as follows. LetR M8S � ?A@4T �U�&DG� ?A@VT ��OWD�� ? E � and

R MYX � ?A@VZ �[�\DG� ?A@VZ � , then
the joint probability function as expressed as:

���!� 2 ��
�
�
�� �(J1�	� KM#N CS

R M � ?A@ � (3)

where the factors
R M � ?A@ � are also commonly referred to

as the potential function over the nodes
� � M  in clique C ,

and H1I is the set of cliques. These functions,
R M � ? @ � s,

can be formed by multiplying the conditional probabil-
ities, from the input Bayesian network specification, of
nodes in the clique C .
Let us now focus on the information flow in the neighbor-
ing cliques to understand the key feature of the Bayesian
updating scheme. Let two cliques ] and ^ have proba-
bility potentials

R`_
and
R`a

, respectively. Let I be the set
of nodes that separates cliques ] and ^ . Let us say that
there is new evidence for some node. This will change the
probabilities of all the other nodes such that two neigh-
boring cliques agree on probabilities on the node set I
which is their separator. To achieve this we first compute
the marginal probability of I from probability potential
of clique ] and then use that to scale the probability po-
tential of ^ as captured by Eq. 5. To achieve this we
need to transmit the scaling factor along the link and this
process is referred to as message passing. We have to
repeat this process in the reverse direction by computing
the marginal probability of I from probability potential
of clique ^ and then use that to scale the probability po-
tential of ] . This will ensure that evidence at both the
cliques are taken into account. New evidence is absorbed
into the network by passing such local messages. The
pattern of the message is such that the process is multi-
threadable and partially parallelizable. Because the junc-
tion tree has no cycles, messages along each branch can
be treated independently of the others.R7bc � de N _�f e=gN c R _ (4)

R ba � R a R bcR c (5)

We use a two phase message passing scheme that can
integrate all new evidence in two passes. In this scheme

a clique from junction tree is selected to be the root node.
In the first phase, the collection phase, all the leaf node
of the tree send messages towards the root node, which
are re-computed according at Eqs. 4 and 5 at each node
along the way. Once messages from all the leaf nodes
have been received, the second phase is initiated when
messages are passed back from the root clique towards
the leaves. Note that this ensures that along any one link
we have messages along both directions, thus ensuring
all nodes have been updated based on information from
all the new evidence.

The clique size i.e. number of random variables in a
clique is dependent on the number of parents that a node
have and the connectivity and also on the number of
added links during the triangularization. As the clique
size (k) increases we suffer three problems: (i) the po-
tential table is hji becomes memory intensive for each of
the large cliques and (ii) formation of the joint probabil-
ity function in terms of the cliques become computation-
ally expensive(Eq.3) and (iii) the updating through Eqs. 4
and 5 becomes computationally expensive. Hence we re-
sort to individual smaller BNs loosely coupled with each
other to increase performance. In the next section, we
discuss modeling based on naive coupling between indi-
vidual BNs followed by Multiple BN modeling using a
tree based coupling (by using TD distribution).

4 Modeling with Multiple BN

It is evident that if the circuit is considerably large or
if the circuit has high connectivity between nodes, then,
the size of the cliques formed becomes large. This re-
sults in large probability potential tables and might make
handling large circuits in one stage impossible with lim-
ited memory resources. To handle large circuits, we first
adopt a divide and conquer strategy based on naive seg-
mentation.

4.1 Naive Segmentation

We first segment the large circuit into smaller ones and
then estimate switching activity in them by ensuring con-
sistency of probability of the nodes at the boundary.
Hence, probability values on all the states of each node,
which is in the boundary between two BNs are updated
sequentially from one BN to the next BN. As an illus-
tration, consider two BNs 0k2 and 01Q , as shown in Fig-
ure 1, which are the two smaller BNs of the initial BN
G. Let the edges �l� �Wm � � �on � �p� � ��� � �q� and ��� � �/� be
the four edges that have the first node in 0 2 and the
second node in 0 Q . As described before we remove
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Figure 1. Segments 0 2 and 0 Q of a graph 0
with common edges.

edges �l� ��m � � �on � �p� � ��� � �q� and �o� � �r� from 0k2 , how-
ever nodes � , n and � are retained in 0k2 . In 01Q , we
have all four edges, however, nodes � , n and � are now
one of the root nodes. Moreover, we calculate probabil-
ities for nodes � , n and � by updating 0 2 with all the
input evidences as described in the previous section. We
then use the same probabilities for � , n and � in 0 Q . It
is obvious that we lose some correlations as we propagate
only the singleton probabilities. One way to account for
the lost correlation is to learn a BN in the boundary node
and cascade it to the next BN. However, the accuracy im-
provement by a perfect Bayesian Network modeling may
become marginal as opposed to the enormous computa-
tional time. Hence, we resort to an approximation tech-
nique which is a good compromise between accuracy and
memory requirement.

4.2 MBN-TD Based Modeling

In the earlier section, we discussed the naive segmenta-
tion scheme. In the following section we propose a tree-
dependent(TD) structure over the boundary nodes. This
TD structure would be only an approximation of the joint
probability distribution over the boundary nodes, but will
ensure that most of the correlations are captured with
minimal increase in memory and time requirement. Re-
laxation of the tree-structure constraint would entail large
memory requirement. The tree-structure is an excellent
compromise between memory requirement and the abil-
ity to represent correlations between the BN boundary
nodes. The tree-dependent structure is formally defined
next followed by proof of its optimality, which can also
be found in [4].

Definition 4: Any tree-dependent distribution �tsW���`� can
be defined as a Markov field relative to the tree u which

can be written as the product of vpwyx pair-wise condi-
tional probability distributions,

D s �!�`��� K - D��!� - � �{z4| -~} � (6)

where �kz4| -�} is the designated parent of ��- in some orien-
tation of the tree u . The root node ��2 is chosen arbitrarily
without any parents and ���!�A2�� �65���� ���!�A2�� . Apart from
the memory requirement, only second order statistics are
needed to construct the tree.

Our goal is to construct a tree over v variables, represent-
ing the segment boundary nodes, that is the closest repre-
sentation of the underlying joint probability function over
the v variables. Hence, out of all the spanning tree over
the v variables that can be constructed, we have to select
the one which preserve the correlations to a maximum
level. For this, we use a distance measure between two
distribution � and �1� known as Kullbuck-Leibler cross-
entropy measure [5] in Eq. 7.

*��o� � � � �,� d�� ���!�7���~���7�����!�7�#O�� � �!�7��� (7)

A low distance measure between � and �1� indicates
that the two distribution almost coincide with each other.
Now, we have two subgoals: 1) To choose the best con-
ditional probabilities between the parent and the child
nodes in the tree given a fixed tree u such that �ts is the
best approximation of � . This distribution is called the
projection of � on u ( �ts� ) . And, 2) to choose a tree
from a set of all the spanning trees over the nodes such
that would make the projection � on this tree �ts� closest
to � . We will use the two following theorems to arrive at
a tree structure [4].

Theorem 3: The projection of � on u is characterized by
the equality

� s� ��� - � ��z4| -~} �	� ���!� - � �{z4| -~} � (8)

Proof: For proof see [3]. This implies that the conditional
probabilities for a branch a tree has to coincide with that
computed from � will produce the best projection of �
on u ( �ts� )

Theorem 4 : [4] The distance measure of Equation 7
is minimized by projecting � on any maximum weight
spanning tree (MWST) where the weight of the branch����- � � z � is defined by the information measure between
them

4
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Figure 2. Consecutive BN 0 2 and 0 Q cou-
pled by TD.

'(��� - � � z �	� d��� f ���{���!� - � � z �{���B�(������� - � � z �#O����!� - �8����� z �#�
(9)

Proof: For proof see [3].

Hence we can use any algorithm for any MWST finding
algorithm. The tree distribution thus obtained (TD) help
us couple the two adjacent BNs. The steps we follow, as
proposed by [4], are listed below in Figure 3.

Using a tree-structured representation ensures that stor-
age proportional to ���=w�x��8����v�w;x���:��=w�x [3] is used
where � is the number of states (in our case � = 4) and v is
the number of variables on the segment boundary which
is much less than � 3 which would be needed for a com-
plete representation. Moreover, by the above algorithms,
we ensure that the pairwise correlations are captured ef-
fectively and propagated to the next segments. Hence,
as in Figure 2, we now construct TD distribution (by
MWST) at the boundary nodes of BN 0k2 and cascade
this tree (marked in dotted lines) and the boundary edges
(marked in dash-dot lines) to the original BN 01Q .
5 Experimental Results and Conclusions

We mapped large ISCAS circuits to their corresponding
LIDAG structured Bayesian Networks. The conditional
probabilities are pre-determined by the type of gate con-
necting the parents and the child. We used HUGIN’s
Bayesian Network tool for compiling the junction tree
and propagating the probabilities. We also performed
logic simulation providing “ground truth” estimates of
switching.

We presented results with all the ISCAS circuits in [1]
with random inputs. Our accuracy was high and the es-
timation time was low. From the results, we observed

Calculate the branch weight I(X  , X  ) for all of 
         the edges in the boundary

from the overall distribution
Calculate the P(x  , x  ) for all pair in the boundary 

Assign the  edges with with the largest I to the tree 
if it is not forming a cycle

Repeat the above step until n-1  edges have been 
                               selected

t
P

P  (x) can be computed by assigning correct  
conditional probabilities 

i

ji

j

Figure 3. Steps involved in construction of
MBN-TD

that circuits which are modeled with multiple BN were
less accurate than that modeled by single BN and some
circuits have higher standard deviation of errors because
of the error propagation through the circuits originated
at the naively coupled segments. This is the motivation
for the tree-dependent(TD) distribution at the BN bound-
aries. In this section, we compare the results that we ob-
tained from naive segmentation with segmentation with a
tree-dependent(TD) distribution between segments in Ta-
ble 1. We present the mean, standard deviation and max-
imum error for the large circuits with TD segmentation
and we compare the results with that obtained from the
naive segmentation. As it can be observed that the tree-
based segmentation results in increased accuracy; mean
error is further reduced. Moreover, we reduce the max-
imum error in estimation by using tree-based segmenta-
tion over naive segmentation. As it can be observed that
for all the circuits our maximum error has improved. The
deviation of error has either been same or have reduced
in almost all the circuits. We also achieved a large im-
provement in our mean error for almost all the circuits
except c3540. We encountered still a high maximum er-
ror of %�� ��x�� in the circuit c6288 which indicates that for a
few sparse nodes the TD based segmentation may not be
enough to capture correlation for those nodes. However,
our standard deviation is quite low indicating that most of
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naive segmentation MBN-TD based
segmentation

Circuits �j�(�8� ���6�8� ���4���(�8� �j�(�8� ���(�8� ���4���(�8�
c432 0.006 0.031 0.290 0.002 0.032 0.197
c499 0.000 0.004 0.023 0.000 0.001 0.006
c880 0.001 0.009 0.066 0.001 0.009 0.066
c1355 0.006 0.033 0.188 0.001 0.017 0.124
c1908 0.001 0.010 0.155 0.001 0.010 0.099
c3540 0.003 0.044 0.279 0.005 0.037 0.252
c6288 0.014 0.046 0.421 0.006 0.023 0.318

Table 1. Comparison between naive and
MBN-TD based segmentation.

Schneider

et al.,

96*[19]

Marculescu et al.,

98*[7]
MBN-TD
based
segmentation

Circuit �j�(�8� �j�(�8� ���(�8� ���4� ���6�8� ���(�8� ���4�
c432 0.016 0.028 0.04 0.21 0.002 0.03 0.197
c499 - 0.013 0.01 0.062 0 0 0.006
c880 0.006 0.013 0.02 0.069 0.001 0.01 0.066

c1355 0.005 0.004 0 0.003 0.001 0.02 0.124
c1908 0.01 0.009 0.02 0.131 0.001 0.01 0.099
c3540 0.014 0.03 0.04 0.201 0.005 0.04 0.252
c6288 0.023 0.014 0.02 0.089 0.006 0.02 0.318

Table 2. Comparison with techniques [7,
19].

the node errors are close to the mean which is very low
for c6288 circuit.

We compare the estimation by multiple Bayesian Net-
work modeling using new TD based segmentation
scheme in the boundary of the individual BNs with the
BN modeling using naive coupling between individual
BNs [1] in Table 1, where we see significant improve-
ment. In Table 2, we compare our result with the esti-
mation technique proposed by Schneider et al.[19] and
estimation techniques proposed by Marculescu et al. [7].
Obviously, since these works are conducted on different
machines a definite conclusion cannot be drawn. The ta-
ble is provided just for qualitative analysis. Our future
effort will focus on the input modeling to capture spatial
correlation at the primary inputs themselves.
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