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Università di Roma “Tor Vergata”

Rome, ITALY

pontarelli@ing.uniroma2.it

Abstract

In this paper, different circuit arrangements of Quantum-

dot Cellular Automata (QCA) are proposed for the so-called

coplanar crossing. These arrangements exploit the major-

ity voting properties of QCA to allow a robust crossing of

wires on the Cartesian plane. This is accomplished using

enlarged lines and voting. Using a Bayesian Network (BN)

based simulator, new results are provided to evaluate the

robustness to so-called kink of these arrangements to ther-

mal variations. The BN simulator provides fast and reli-

able computation of the signal polarization versus normal-

ized temperature. It is shown that by modifying the layout, a

higher polarization level can be achieved in the routed sig-

nal by utilizing the proposed QCA arrangements.

1. Introduction

Quantum-dot Cellular Automata (QCA) [12] is a promis-

ing technology that could allow to overcome some of the

limitations of current technologies, while meeting the den-

sity foreseen by Moore’s Law and the International Tech-

nology Roadmap for Semiconductors (ITRS). For manu-

facturing, molecular QCA implementations have been pro-

posed to allow for room temperature operation; the feature

of wire crossing on the same plane (coplanar crossing) pro-

vides a significant advantage over CMOS. Coplanar cross-

ing is very important for designing QCA circuits; multi-

layer QCA has been proposed [3] as an alternative tech-

nique to route signals, however it still lacks a physical im-

plementation. At design level, algorithms have been pro-

posed to reduce the number of coplanar wire crossings [8].

In QCA circuits, a reliable operation of coplanar crossing

is dependent on the temperature of operation. Resilience to

temperature variations due to thermal effects is also an im-

portant feature to consider. A reduction in the probability of

generating an erroneous signal is also a concern, hence, ro-

bustness must be addressed.

Robustness to thermal effects must consider the repeated

estimates of ground (and preferably near-ground) states,

along with cell polarization for different design variations.

This evaluation is presently possible only through a full

quantum-mechanical simulation (over time) that is known

to be computationally expensive. AQUINAS [12] and the

coherence vector simulation engine of QCADesigner [13]

perform an iterative quantum mechanical simulation (as a

self consistent approximation, or SCA) by factorizing the

joint wave function over all QCA cells into a product of

individual cell wave functions (using the Hartree-Fock ap-

proximation). This results in accurate estimates of ground

states, cell polarization (or probability of cell state), tem-

poral progress and thermal effects, but at the expense of

a large computational complexity. Other techniques such

as QBert [9], Fountain-Excel simulation, nonlinear simu-

lation [10, 13], and digital simulation [13] are fast, but they

only estimate the state of the cells; in some cases unfor-

tunately, they may fail to estimate the correct ground state.

Also these techniques do not fully estimate the cell polariza-

tion or take into account thermal effects. In this paper, we

use a modeling method that allows not only to estimate the

cell polarization for the ground state, but to study the effects

of thermal variations. Using a Bayesian model, it is possi-

ble to model and perform a thermal characterization of the

coplanar crossing (which is not possible by iterative quan-

tum mechanical simulation).

The objective of this paper is to propose and analyze

different circuit arrangements for QCA coplanar crossing.



The co-planar crossing designs that we discuss are: (1) two

normal coplanar crossings [7], (2)two TMR based copla-

nar crossing proposed by us in this work and (3)two thick

coplanar crossing [2]. Even though we could study the ef-

fect of changing radius of effect, cell sizes, clock energy,

in this work, we focus on the robust operation to thermal

variation in detail assuming a conventional radius of effect

of 2 neighboring cells. The proposed arrangements utilize

the majority voting function of QCA circuits to route sig-

nals on a Cartesian plane. This feature is also made possi-

ble by the different types of cells (rotated and not rotated)

and their immediate adjacencies.

This paper is organized as follows: Section 2 provides

an overview of QCA technology, Section 3 introduces the

Bayesian model used for temperature characterization and

Section 4 describes the coplanar wire crossing arrangements

(inclusive of layouts). Section 5 provides an analysis of

the designs with respect to normalized temperature. Finally,

Section 6 draws conclusions on the analysis.

2. Review of QCA

A QCA cell can be viewed as a set of four charge con-

tainers or “dots”, positioned at the corners of a square. The

cell contains two extra mobile electrons which can quan-

tum mechanically tunnel between dots, but not cells. The

electrons are forced to the corner positions by Coulomb re-

pulsion.

Therefore electrons have a preferential alignment along

one of the two perpendicular cell axes, as shown in Fig.

1. The polarization δ 1 measures the extent of this align-

ment. If the two extra electrons are completely localized

on dots 1 and 3, the polarization is + 1 (binary 1); if they

are localized on dots 2 and 4, the polarization is - 1 (bi-

nary 0). Tunneling between dots implies that charges may

not be not completely localized and consequently the polar-

ization value can be not integer.

Figure 1. QCA cell and polarization states

Unlike conventional logic circuits in which information

is transferred by electrical current, QCA operates by the

Coulombic interaction that connects the state of one cell to

the state of its neighbors. This results in a technology in

which information transfer (interconnection) is the same as

information transformation (logic manipulation) with low

power dissipation [11].

1 δ refers to polarization as P is used for defining probabilities.
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One of the basic logic gates in QCA is the so-called

majority voter (MV) with logic function Maj(A, B, C) =
AB + AC + BC. MV can be realized by 5 QCA cells, as

shown in Figure 2(1b). Logic AND and OR functions can

be implemented from the MV by setting an input (the so-

called programming or control input) permanently to a “0”

or “1” value. The inverter (INV) is the other basic gate in

QCA and is shown in Figure 2(1a). The binary wire and

inverter chain (as interconnect fabric) are shown in Figure

2(1c)(1d). In VLSI systems, timing is controlled through

a reference signal (i.e. the clock), however timing in QCA

is accomplished by clocking in four distinct and periodic

phases [4] (as shown in Figure 2 (2)). A QCA circuit is par-

titioned into serial (one-dimensional) zones, and each zone

is maintained in a phase.

3. Bayesian Model

The two-state approximate model of a single QCA

cell [12] is utilized. In this model, each cell can be ob-

served to be in one of two possible states, corresponding

to logical states 0 and 1. Let the probability of observ-

ing a QCA cell at state 0, be denoted by P (Xi = 0)
or PXi

(0), or simply by P (xi). Hence for polarization,

δXi
= PXi

(1) − PXi
(0) The joint probability of observ-

ing a set of steady-state assignments for the cells is denoted

by P (x1, · · · , xn). To reduce the combinatorial complex-

ity of this analysis, the joint wave function must be con-

sidered in terms of the product of the wave function over

one or two variables (i.e. the Slater determinants). This cor-

responds to a factored representation of the wave function

(Hartree-Fock approximation)[11] [6]. As an example, con-

sider the linear wire arrangement of 9 QCA cells, shown

in Fig. 3(a). With no assumption, the joint state proba-

bility function can be decomposed into a product of con-

ditional probability functions by the repeated use of the

property that P (A, B) = P (A|B)P (B) (as shown in

Fig. 3d).

P (x1, · · · , x9) =

= P (x9|x8 · · ·x1)P (x8|x7 · · ·x1) · · ·P (x2|x1)P (x1)

(1)
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Figure 3. Bayesian net dependency model

(BN) for (a) 9-cell QCA wire with (b) 1-cell ra-

dius of influence (c) 2-cell radius of influence,
and (d) all cells.

The radius of influence r is the maximum distance (nor-

malized to the cell-to-cell distance) that allows inter-

action between two cells. If a 2-cell radius (r = 2)

of influence is considered, then the conditional prob-

ability P (xi|xi−1, · · · , x1) can be approximated by

P (xi|xi−1, xi−2), and the overall joint probability can be

factored as

P (x1, · · · , x9) =
{

P (x9|x8, x7)P (x8|x7, x6) · · ·P (x2|x1)P (x1) r = 2
P (x9|x8)P (x8|x7) · · ·P (x2|x1)P (x1) r = 1

Hence, an inherent causal ordering is considered among

cells (parent-child relationship) [1] as imposed by the clock-

ing zones and the direction of propagation of the wave func-

tion [12] inside a single clocking zone. The conditional

probabilities [1] P (A|B) are then based on the condition

that cells are always in the ground state; moreover, these

probabilities are calculated from the diagonal entries of the

steady-state density matrix ρ00 and ρ11 which are given by:

ρss
00 =

1

2

(

1 −
E

Ω
tanh(∆)

)

(2)

ρss
11 =

1

2

(

1 +
E

Ω
tanh(∆)

)

(3)

where E is the total kink energy at the cell, Ω =
√

E2 + γ2 (γ is the tunneling energy) is the energy term

(also known as the Rabi frequency), and ∆ = Ω

kT
is the ther-

mal ratio k is the Boltzmann’s constant and T is the temper-

ature in Kelvin. Interested readers are encouraged to refer

to [1] for a detailed treatment of this computational model.

4. Crossing Schemes

The coplanar wire crossing is one of the most interest-

ing aspects of QCA; it allows for the physical intersection

of horizontal and vertical QCA wires on the same plane

while retaining logic independence in their values; the ver-

tical wire is implemented by rotating the QCA-cells at 45

degrees i.e. by means of an inverter chain. The feature of

this structure is that the information along the vertical wire

does not interact with the horizontal, wire. Crossing is ob-

tained by interrupting either the horizontal, or the vertical

wire, these interruptions are hereafter also referred to as

cuts. Switching of the signals is accomplished by the four

phased clock through the release phase.

As in previous papers in the technical literature, layouts

are considered to be in a single clocking zone. The outputs

are evaluated when the ground state is attained by quasi adi-

abatic switching. A different approach [5] proposes the ver-

tical and horizontal waves alternatively passing through an

intersection. While this approach has the interesting feature

of exploiting the intrinsically pipelined behavior of QCA,

crossings in a single clocking zone require lesser area and a

simple clocking circuitry.

Three novel schemes (and associated layouts) for copla-

nar crossing are introduced together with the corresponding

BN.

1. Normal crossing: this is based on the orientation of the

cells.

2. TMR crossing: this is based on the voting nature in the

QCA layout.

3. Thick crossing: this is based on the interaction among

cells in an enlarged wire.

For normal crossing the cell orientation is interrupted on

the central cell of either the horizontal (A line), or vertical

line (B line).

For the other two schemes, the cell orientation is inter-

rupted on the horizontal (A line), or vertical line (B line).

4.1. Normal

The normal coplanar crossing arrangements (shown in

Figs. 4 and 5) has been proposed in the technical literature

[7]. It has been shown that an horizontal wire (with input

A and output Aout) can be crossed with a vertical inverter

chain (with input B and output Bout) with no interference

among wires.

These arrangements differ by the orientation of the cell

at the crossing point: Xa in Fig. 4 (a) has the central cell ro-

tated by 45 degrees, Xb in Figs 5 (a) has a non-rotated cell.

Figs 4 (b) and 5 (b) show the BN for analyzing these two ar-

rangements. Note that only the BN shown in 4 (b) reports

the actual number of connections which account for a ra-

dius of effect equal two, all the successive BNs are simpli-

fied for improving their readability.

4.2. TMR

A simple approach for implementing robust crossing in

QCA is to take advantage of the inherent voting characteris-

tic of this technology. The QCA wire is split through fanout,

crossed and then re-converged and voted by a MV which

performs a TMR voting function of the signals.

Two types of arrangements are proposed:

1. 3-to-1 TMR;
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Figure 4. Normal crossing with rotated cen-
tral cell (Xa) (a) Layout (b) BN with 2-cell ra-

dius of effect.

(a) (b)
Figure 5. Normal crossing with rotated cen-

tral cell (Xb) (a) Layout (b) BN with 2-cell ra-

dius of effect.

2. 3-to-3 TMR.

In the 3-to-1 TMR architecture shown in Fig.6 and asso-

ciated BN, voting occurs along the direction on which the

cell rotation is interrupted, thus producing two different ar-

rangements TMR Xa for voting the A line and TMR Xb for

voting the B line (shown in Fig. 6 ) .

If both wires are split and reconverged, the more com-

plex 3-to-3 (triple) TMR architecture (as shown in Fig. 7

with corresponding BN) is applicable. The triple TMR has

also two versions: double TMR Xa (Fig. 7) for the inter-

rupted A line direction, and double TMR Xb for the inter-

rupted B line direction. The 3-to-3 TMR utilizes a larger

number of cells (92 versus 41) than the 3-to-1 TMR.

4.3. Thick

A crossing arrangement that is still based on TMR vot-

ing, has been proposed in [2] and is hereafter referred to as

thick crossing. Differently from TMR, in thick crossing the

(a) (b)
Figure 6. 3x1 TMR crossing with non rotated
central cell (TMRXb voting on the B line) (a)

Layout (b) BN with 2-cell radius of effect.
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Figure 7. 3 x 3 TMR crossing with rotated cen-

tral cell (a) Layout (b) BN with 2-cell radius of

effect.

(a) (b)
Figure 8. Thick horizontal crossing (a) Layout

(b) BN with 2-cell radius of effect.

fanout of the three wires generates a “thick” wire which has

a width of three cells; crossing between wires is performed

by interrupting the thick wire with a single wire whose cells

are rotated with respect to the thick wire. Figs. 8 and 9 show

these arrangements together with the corresponding BN for

horizontal and vertical crossings. A thick organization re-

quires 37 QCA cells.

5. Temperature Characterization

In this section, the simulation results are presented for

the Bayesian network of the proposed coplanar crossing de-

signs with respect to temperature. In all reported plots, start-

ing from the correct value, the output value tends to 0 when

the normalized temperature tends to one, i.e. when the tem-

perature is such that kT ' Ek (the thermal energy is equal

to the kink energy) and the two extra electrons are delo-

calized. The increase in temperature has different effect on

the layouts, therefore allowing to define a metric. Figs. 11,

12, 13 and 14 provide the plots of output value dependence

on temperature for the previously introduced arrangements

(a) (b)
Figure 9. Thick vertical crossing (a) Layout

(b) BN with 2-cell radius of effect.



when considering the exhaustive four values of the A, B in-

puts i.e. (0, 0) (1, 0) (0, 1) and (1, 1) respectively. The plots

show the robustness of the proposed designs with respect to

a temperature increase: a steep slope at the output to reach

the zero polarization accounts for an inefficient tempera-

ture solution, while a smooth slope shows a good temper-

ature performance. A quantitative metric for evaluating the

performance of the different arrangements is introduced by

taking into account the increase of normalized temperature

needed for dropping the output polarization from 90 % to

10% of the nominal value. This metric is referred to as Ther-

mal robustness (Th) and is defined as

Th = ∆T∆P90−10

Tables 1 and 2 report the Th computed for Aout and Bout
respectively for the considered coplanar crossing schemes

the higher values account for better performances.

The following observation can be drawn from analyzing

the plots and tables :

1) In all configurations, thermal robustness is not af-

fected by input values, i.e. there is no correlation between

polarization levels for boolean states and temperature;

2) In all configurations, the outputs along the non inter-

rupted direction behave similarly: for instance in the A di-

rection ThickXb, Xb and TMRXb result in the same Th be-

cause there is no interrupted wire in such direction

3) The double TMR layout always has the worst perfor-

mance on the interrupted direction i.e. dblTMRXa has the

worst Th value in Table 1 while dblTMRXb has the worst

Th value in Table 2.

4) Thick crossings have always the best performance on

the interrupted direction

5) The number of cuts reduces performance, for instance

double TMRXa has worse performance than TMR Xa.

In general, the Th of Bout is higher than Aout for the

same design. This is also applicable if ”uncut” arrangements

are compared in the designs. For example, in Table 1, Aout
for Xb is 0.383, while in Table 2 Bout for Xa is 0.543.

The last observation can be explained as follows. The

kink energy between two cells is determined by the dif-

ference in energy between the higher energy configuration

and the lower energy configuration. Assuming two possible

states for each cell, we can have two possible energy con-

figurations of 2 cells as shown in Fig. 10.

The energy of each configuration is computed by sum-

ming the Coulomb energies between the dots in the cells:

E12 =

4
∑

i=1

4
∑

j=1

q1iq2i

4πεεr

1

dij

(4)

The charge at the i − th dot of the first cell is denoted by

q1i, and the distance between the i − th dot in the first cell

and the j − th dot in the second cell is denoted by dij . On

the assumption that there exists an effective −1/2q charge

Figure 10. Configuration energies for normal
(top row) and rotated (bottom row) cells. (left

the lowest energy configurations, right the

highest energy configurations)

(a) (b)
Figure 11. Output polarization vs normalized
temperature for A=0 B=0 (a) Aout(b) Bout

at each black dot and +1/2q at the white dots, the over-

all charge of a cell is zero. The kink energy for the nor-

mal cell is 2.96 milli eV, while the energy of the rotated cell

is higher at 4.34 milli eV. The difference in kink energy is

due to the difference in distance between the dots for the

cell types. The largest distance between two dots occurs for

the normal cells than for rotated cells. Therefore, this sug-

gests that a rotated cell arrangement is thermally more sta-

ble than a non-rotated one.

(a) (b)
Figure 12. Output polarization vs normalized

temperature for A=1 B=0 (a) Aout(b) Bout



A B Xa Xb TMRXa TMRXb dblTMRXa dblTMRXb ThickXa ThickXb Average

0 0 0.355 0.383 0.429 0.383 0.263 0.35 0.457 0.383 0.375375

0 1 0.355 0.383 0.429 0.383 0.263 0.35 0.457 0.383 0.375375

1 0 0.355 0.383 0.429 0.383 0.263 0.35 0.457 0.383 0.375375

1 1 0.355 0.383 0.429 0.383 0.263 0.35 0.457 0.383 0.375375

A B Xa Xb TMRXa TMRXb dblTMRXa dblTMRXb ThickXa ThickXb Average

0 0 0.543 0.474 0.543 0.54 0.46 0.33 0.543 0.679 0.514

0 1 0.543 0.474 0.543 0.54 0.46 0.33 0.543 0.679 0.514

1 0 0.543 0.474 0.543 0.54 0.46 0.33 0.543 0.679 0.514

1 1 0.543 0.474 0.543 0.54 0.46 0.33 0.543 0.679 0.514

(a) (b)
Figure 13. Output polarization vs normalized
temperature for A=0 B=1 (a) Aout(b) Bout

(a) (b)
Figure 14. Output polarization vs normalized

temperature for A=1 B=1 (a) Aout(b) Bout

6. Conclusion

This paper has provided the analysis of the thermal

properties of different designs for implementing the ro-

bust coplanar crossing for Quantum-dot Cellular Automata

(QCA) based circuits. The use of a Bayesian Network BN

simulator has allowed for fast and reliable computation to

evaluate the thermal performance of different layouts. It has

been shown that, in all configurations, thermal robustness is

not affected by input values, and the use of the so-called

thick crossing scheme accounts for the best resilience to

temperature. Moreover, from the simulation results it has

been noticed and then proved that wires with rotated cells

are thermally more stable than a non-rotated scheme. Fu-

ture work include the investigation of the coplanar crossing

structures in presence of cells placement defects and varia-

tions of clock energy and radius of effect.
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