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ABSTRACT

We propose a new switching probability model for combina-
tional circuits using a Logic-Induced-Directed-Acyclic-
Graph(LIDAG) and prove that such a graph corresponds
to a Bayesian Network guaranteed to map all the depen-
dencies inherent in the circuit. This switching activity can
be estimated by capturing complex dependencies (spatio-
temporal and conditional) among signals efficiently by local
message-passing based on the Bayesian networks. Switch-
ing activity estimation of ISCAS and MCNC circuits with
random input streams yield high accuracy (average mean er-
ror=0.002) and low computational time (average time=3.93
seconds).

1. INTRODUCTION

Switching activity estimation strategies, important for power

estimation can be divided into two broad categories: (i) es-
timation by simulation and (ii) estimation by probabilis-
tic techniques. Estimation by simulation [4], [5], though
time consuming, is extremely accurate. Probabilistic tech-
niques [10], [13], [14] are fast and tractable but typically
involves assumptions about joint correlations.

In this paper, we model the switching in a combinational
circuit using a probabilistic Bayesian Network [1, 2], which
allows us to capture both the temporal and spatial depen-
dencies in a comprehensive manner. Bayesian networks are
directed acyclic graph (DAG) representations whose nodes
represent random variables and the links denote direct de-
pendencies, which are quantified by conditional probabilities
of a node given the states of its parents. This DAG structure
essentially models the joint probability distribution over the
set of random variables under consideration in a compact
manner. The attractive feature of this graphical represen-
tation of the joint probability distribution is that not only
does it make conditional dependency relationships among
the nodes explicit it also serves as a computational mecha-
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nism for efficient probabilistic updating. Bayesian networks
have traditionally been used in artificial intelligence and im-
age analysis. Their use in power estimation is new.

We first construct the Logic Induced Directed Acyclic
Graph (LIDAG) based on the logical structure of the circuit.
Each signal in the circuit is a random variable in the LIDAG
that can have four possible states indicating the transitions
from 0 =+ 0,0 - 1,1 — 0,1 — 1. Directed edges are drawn
from the random variables representing switching of the in-
puts to the random variable for switching at the output of
each gate. We prove that the LIDAG thus obtained is a
Bayesian Network which is the minimal representation that
captures all the independency mapping. The salient advan-
tages of switching activity estimation by modeling it as a
Bayesian Network are as follows.

1. It is able to produce globally consistent estimates of
switching activity thot takes into account spatial corre-
lation by local message passing.

2. It can accommodate input correlation, temporal, and
spatial correlation efficiently.

. After a compilation process that converts the Bayesian
network into a junction tree of cliques, further com-
putation time is small. Thus, repeated computation
of switching activity of the circuit with different input
statistics does not require much time.

. Finally, a Bayesian network, in addition to pair-wise
correlations [8], also models conditional independence
amongst subset of variables, which allows it to cover a
large class of probabilistic dependencies.

2. BACKGROUND WORK

Non-simulative power estimation techniques have been
proposed in the past which have reasonable accuracy and
extremely fast estimation procedures. They can be purely
non-simulative [11], [3], [10] or they can be statistically sim-
ulative[6]. In statistical simulation, the estimated power is
highly input sensitive. Although, Monte Carlo simulation
technique can use input selection efficiently [6], these tech-
niques have problems when the estimation process has to be
performed under correlated input streams.

The non-simulative statistical techniques use knowledge
about input statistics to estimate the switching activity of
internal nodes. In some of the pioneering works around this



idea, Najm et al. [17] estimated the mean and variance of
current using probability waveforms. In [11], the concept of
transition density is introduced and is propagated through-
out the circuit by Boolean difference algorithm. However,
these methods have problems in handling correlation be-
tween nodes and hence, the estimates are inaccurate when
the nodes are highly correlated. An accurate way of switch-
ing activity estimation is proposed in [10] which has a high
space requirement. Tagged probability simulation is pro-
posed in [13], which is based on the local OBDD propaga-
tion. The signal correlations are captured by using local
OBDDs. However, spatio-temporal correlation between the
signals is not discussed. Kapoor [15] has modeled struc-
tural dependencies and Schneider et al. 18] used one-lag
Markov model to capture temporal dependence and Tsui
et al. [16] modeled spatial correlation. Pair-wise correla-
tion between circuit lines were first proposed by Ercolani
et al. in [12]. Marculescu et al. in [7], studied tempo-
ral, spatial and spatio-temporal dependencies by capturing
pair-wise correlations. In a later effort to capture higher
order correlation approximately, Marculescu et al. in [§]
handled higher order correlation as a composition of pair-
wise correlations. Schneider et al. [19] proposed another an
approximate technique to model higher order spatial corre-
lations.

The theoretical contribution of our work is that the joint
probability function of a set of random variables is exactly
mapped capturing higher order correlations between the sig-
nals accurately using Bayesian Network model. Earlier ef-
forts either treat the distribution as a composition of pair-
wise correlated signals between all signals [8, 12] or use an
approximate solution for capturing spatial correlation [19].
Moreover, the Bayesian Network models conditional inde-
pendence of a subset of signals unlike in [8]. Results show
that the technique has high accuracy with low execution
times, for combinatorial benchmark circuits.

3. SWITCHING ACTIVITY MODELING

It is known that in a combinational circuit, switching at a
node has correlations with its own past values and with its
neighbors in the circuit. Temporal correlation is due to the
fact that switching in a node is dependent on its last value.
Spatial correlation among nodes arise of the underlying log-
ical connections.

In this section, we first present mathematical notions that
have been proposed to capture dependencies amongst ran-
dom variables. Second, we list the conditions under which
a Bayesian network can be constructed to capture the de-
pendencies. Based on these foundations, we prove that all
the dependencies amongst the switching variables in a com-
binational circuit can be captured using a DAG (directed
acyclic graph) structured Bayesian network that is derived
from the underlying circuit structure.

The following discussion is fashioned after [2]. We begin
with the definition of conditional independence among three
sets of random variables.

Definition 1: Let U={q, 3, --} be a finite set of vari-
ables taking on discrete values. Let P(.) be the joint proba-
bility function over the variables in U, and let X, Y and Z
be any three subsets (maybe overlapping) of U. X and Y is
said to be conditionally independent given Z if

P(z|y, z) = P(z|z) whenever P(y,z) >0 6))
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Following Pearl [2], we denote this conditional indepen-
dency amongst X, Y, and Z by I(X,Z,Y); X and Y are
said to be conditionally independent given Z. A dependency
model, M, of a domain should capture all these triplet condi-
tional independencies amongst the variables in that domain.
A joint probability density function is one such dependency
model. The notion of independence exhibits properties that
can be axiomatized by the following theorem.

Theorem 1: Let X, Y and Z be three distinct subset of
U. If I(X,Z,Y) stands for the relation “X is independent
of Y given Z” in some probabilistic model P, then I must
satisfy the following four independent conditions:

I(X,2,Y)=I1(Y,Z,X) (symmetry) (2)

I(X,Z,YUW)=I(X,Z,Y)&(X,Z,W) (decomposition)
(3)

IX,ZYUW)=I(X,ZUW,Y) (weak union) (4)

I(X,ZY)&I(X,ZUY, W)= I(X,Z, Y UW) (contraction)
&)

Next, we introduce the concept of d-separation of variables
in a directed acyclic graph structure (DAG), which is the
underlying structure of a Bayesian network. This notion of
d-separation is then related to the notion of independence
amongst triple subsets of a domain.

Definition 2: If X, Y and Z are three distinct node
subsets in a DAG D, then X is said to be d-separated from Y
by Z, < X|Z|Y >, if there is no path between any node in X
and any node in Y along which the following two conditions
hold: (1) every node on the path with converging arrows is
in Z or has a descendent in Z and (2) every other node is
outside Z.

Definition 3: A DAG D is said to be an I-map of a de-
pendency model M if every d-separation condition displayed
in D corresponds to a valid conditional independence rela-
tionship in M, i.e., if for every three disjoint set of vertices
X,Y and Z we have, < X|Z|Y >= I(X,Z,Y).

Definition 4: A DAG is a minimal I-map of M if none of
its edges can be deleted without destroying its dependency
model M.

Note that every joint probability distribution function P
over a set of variables represents a dependency model M
since it captures all the conditional independencies.

Definition 5: Given a probability distribution P on a set
of variable U, a DAG D is called a Bayesian Network of P
if D is a minimum I-map of P.

There is an elegant method of inferring the minimal I-map
of P that is based on the notion of a Markov blanket and a
boundary DAG, which are defined below.

Definition 6: A Markov blanket of element X; € U is an
subset S of U for which I(X;,S,U—-S—X;)and X; ¢ S. A
set is called a Markov boundary, B; of X; if it is a minimal
Markov blanket of X;, i.e. none of its proper subsets satisfy
the triplet independence relation.

Definition 7: Let M be a dependency model defined
on a set U = {X1,---,Xn} of elements, and let d be an
ordering {Xa1, X4z, -} of the elements of U. The bound-
ary strata of M relative to d is an ordered set of subsets of
U, {Bai1, Baa,- - - } such that each B; is a Markov boundary
(defined above) of Xg4; with respect to the set Ui(C U) =



{Xa1,Xa2, -+, Xau-1)}, 1.e. B;is the minimal set satisfying
B; C U and I(Xg;, Bi,U; — B;). The DAG created by des-
ignating each B; as the parents of the corresponding vertez
X; is called a boundary DAG of M relative to d.

This leads us to the final theorem that relates the Bayesian
network to I-maps, which has been proven in [2]. This the-
orem is the key to constructing a Bayesian network.

Theorem 2: Let M be any dependency model satisfying
the axioms of independence listed in Eqs. 2- 5. If graph
structure D is a boundary DAG of M relative to ordering
d, then D is a minimal I-map of M.

This theorem along with definitions 2, 3, and 4 above
specifies the structure of the Bayesian network. We use
these to prove our following theorem regarding the struc-
ture of Bayesian network to capture the switching activity
of a combinational circuit.

Let a combinational circuit consist of gates {G1, - ,Gn}
with n input signals denoted by the set {I1,--- ,Ir}. Let the
output of gate G; be denoted by O;. The inputs to a gate
are either an input signal or output of another gate. The
switching of these input signal and output lines, {I1,--- , In,
O1,--- ,0n}, are the random variables of interest. Note
that the set of output lines include both intermediate gate
and the final output lines. Let X; be the switching at the
i-th line, which is either an input or an output line, taking
on four possible values, {zoo, o1, %10, Z11}, corresponding to
the possible transitions: 0 — 0,0 -+ 1,1 = 0,1 = 1.

Definition 8: A Logic Induced Directed Acyclic Graph
(LIDAG) structure, LD, corresponding to a combinational
circuit consists of nodes, Xj;s, representing the switching at
each line and links between them is constructed as follows:
The parents of a random variable representing the switching
at an output line, O;, of a gate G; are the switchings at the
input lines of that gate. Each input line is either one of
{I, -+ ,Ir} or an output of another gate.

Theorem 3: The LIDAG structure, LD, corresponding
to the combinational circuit is a minimal I-map of the under-
lying switching dependency model and hence is a Bayesian
network.

Proof: Let us order the random variables, {Xi, X2, -,
Xn4n} such that (i) variables representing the switching at
the input lines appear first followed by those representing
the output lines of the gates, and (ii) if a line O; is an
input to a gate whose output line is Oy then the variable
corresponding to line O; appear before Oy.

With respect to this ordering, the Markov boundary of a
node, X;, is given as follows. If X; represents switching of
an input signal line, then its Markov boundary is the null
set. And, since the switching of an output line is just depen-
dent on the inputs of the corresponding gate, the Markov
boundary of a variable representing an output line consists
of just those that represent the inputs to that gate. In the
LIDAG structure the parents of each node are its Markov
boundary elements hence the LIDAG is a boundary DAG.
And, by Theorem 2 listed above the LIDAG is a minimal
I-map and thus a Bayesian network (BN).

It is interesting to note that the LIDAG structure corre-
sponds exactly to the DAG structure one would arrive by
considering the principle of causality, which states that one
can arrive at the appropriate Bayesian network structure by
directing links from nodes that represent causes to nodes
that represent immediate effects [2]. Thus, directed links in
the graph denote immediate cause and effect relationship.
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Figure 1: A small combinational circuit.

In a combinational circuit the immediate causes of switch-
ing at a line are the switchings at the input lines of the
corresponding gate.

4. QUANTIFYING THE LIDAG-BN

We first illustrate with an example how switching in a
combinational circuit at circuit level can be represented by
a LIDAG structured Bayesian network (LIDAG-BN). Then
we show how the conditional probabilities that quantify the
links of LIDAG-BN are specified.

Let us consider the circuit with fives gates shown in Fig-
ure 1. We are interested in the switching at each of the 9
numbered lines in the circuit. Each line can take four val-
ues corresponding to the four possible transitions: {zoo,Zo1,
Ti0,211}. Note that this way of formulating the random
variable effectively models temporal correlation. The prob-
ability of switching at a line would be given by P(X; =
zo1) + P(X; = 710)'. The LIDAG structure for the circuit
is shown in Figure 2. Dependence among the nodes that
are not connected directly is implicit in the network struc-
tures. For example, nodes X; and X, are independent of
each other, however, they are conditionally dependent given
the value of say node Xy. Or the transition at line 5, X,
is dependent on the transitions at lines 1 and 2, represented
by the random variables, X; and X, respectively. Thus,
the transitions of line 5 are conditionally independent of all
transitions at other lines given the transition states of lines
1 and 2.

The joint probability function that is modeled by a Bayesian
network can be expressed as the product of the conditional
probabilities.

p(y, - ,2n) = HP(Wleparent(v)) (6)

For the Bayesian network structure in Fig. 2 the corre-
sponding joint probability density is given by the following
factored form.

P(z1, - o)

P(zo|z7, z8)P(zs|xs) P(z7|Ts, z6)
P(:l?elfl,‘;;, 1‘4)P(£E5|.’L‘1, 1‘2)

P($4)P(z3)P(1'2)P($1)

(M

The conditional probabilities of the lines that are directly
connected by a gate can be obtained knowing the type of the

! Probability of the event X; = x; will be denoted simply by
P(z;) or by P(X; = x;).



Figure 2: Bayesian Network corresponding to the
circuit in Figure 1.

gate. For example, P(X5 = z01|X1 = o1, X2 = zoo) will be
always 1 because if one of the inputs of an OR gate makes
a transition from 0 to 1 and the other stays at 0 then the
output always makes a transition from 0 to 1. A complete
specification of the conditional probability of P(zs|z1,2)
will have 4% entries since each variable has 4 states. These
conditional probability specifications are determined by the
gate type. By specifying a detailed conditional probability
we ensure that the spatio-temporal effect of any node are
effectively modeled.

The last four terms in the right hand side of Eq. 7 repre-
sent the statistics of the input lines. Given the statistics of
the input lines, we would like to infer the probabilities of all
the other nodes. A brute force way of achieving this would
be to compute the marginal probabilities by summing over
possible states, thus, P(zo,z1) = 212’,__,“ P(z1, -, x9).
This, obviously, is computationally very expensive and, in
addition, does not scale well. In the next section, we show
how the structure of the Bayesian network can be used to
efficiently compute the required probabilities.

5. BAYESIANNETWORK COMPUTATIONS

It would be computationally convenient if we could com-
pute probabilities in a Bayesian network by local message
passing. Unfortunately, we cannot directly update a Bayesian
network by local message passing if the underlying undi-
rected graph structure has cycles. So, the first step of a
propagation strategy is to transform the original DAG struc-
ture into a undirected tree structure whose nodes are subsets
of the original random variables [1]. Such a tree is referred
to as the junction tree of cliques of random variables and the
process is referred to as the Bayesian network compilation
process.

The first step of the compilation process is to create an
undirected graph structure called the moral graph given the
Bayesian network DAG structure. The moral graph rep-
resents the Markov structure of the underlying joint dis-
tribution [1]. In case of a DAG, which is the structure of
a Bayesian network, a moral graph is obtained by adding
undirected edges between the parents of a common child
node and dropping the directions of the links. The sec-
ond step of the compilation process triangulates the moral
graph by adding additional links so that all cycles longer
than 3 nodes are broken into cycles of three nodes. In our
example,the dash line between X: and X3 in Figure 3 is
obtained during Moralization and the dash-dotted line be-
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Figure 3: Triangulated undirected graph structure
that encodes that same dependencies as the DAG
structure shown in Figure 2.

C={Xs X, Xs}

Figure 4: Junction tree of cliques.

tween X4 and X~ in Figure 3 is added to the moral graph
to triangulate it.

The next step in compilation is to detect cliques of nodes
in the triangulated moral graph structuresuch that a junc-
tion tree can be formed between the cliques. Each clique is
then clumped into a composite node representing the col-
lection of nodes in the clique. The connection between the
cliques is inherited from the triangulated moral graph struc-
ture. This tree of cliques is referred to as the junction tree
of cliques. Figure 4 shows the junction tree for our run-
ning example. Every clique with an edge between them will
have a non null set of nodes common between them, which
is referred to as the separator set. These common variables
play key role in evidence propagation. If there were two
cliques that are not connected by an edge and still have
common variables then these variables must be present in
all the cliques in between the unique path between the two
cliques to guarantee global consistency by local propagation.
This is guaranteed by the triangulation step. As it can be
seen that C5 and Cs both contain X7, and X~ is also present
in all the cliques in the path from C3 to Cs namely in C; and

'C. This helps to preserve global consistency while updating

by local message passing.

It can be proven that the dependency properties of a DAG,
which carry over to moral graphs, also are preserved in the
triangulated moral graph [1]. The joint probability distri-
bution that factorizes on the moral graph will also do so on
the triangulated one since each clique in the moral graph is
either a clique in this graph or subset of a clique.

After compilation, the probabilities are propagated through



the junction tree just by local message-passing between the
adjacent cliques.

Let us now consider two neighboring cliques to understand
the key feature of the Bayesian updating scheme. Let two
cliques A and B have probability potentials ¢4 and ¢35, re-
spectively. Let S be the set of nodes that separates cliques
A and B. The two neighboring cliques have to agree on
probabilities on the node set S which is their separator. To
achieve this we first compute the marginal probability of S
from probability potential of clique A and then use that to
scale the probability potential of B. The transmission of
this scaling factor, which is needed in updating, is referred
to as message passing. New evidence is absorbed into the
network by passing such local messages. The pattern of the
message is such that the process is multi-threadable and par-
tially parallelizable. Because the junction tree has no cycles,
messages along each branch can be treated independently of
the others.

6. EXPERIMENTAL RESULTS

We mapped 14 ISCAS and 5 MCNC circuits to to their
corresponding LIDAG structured Bayesian Networks. The
conditional probabilities are pre-determined by the type of
gate connecting the parents and the child. We have already
discussed in Section 4 that each node in Bayesian network
represents switching at a line in the circuit and can be in
one of the four states (zoo, Zo1, Z10,z11). We used HUGIN’s
Bayesian Network tool for compiling the junction tree and
propagating the probabilities. Circuits that are reasonably
large, could not be modelled as a sigle BN. Multiple Bayesian
Networks are used for modeling such circuits and probabil-
ities are propagated between successive BNs. We also per-
formed logic simulation providing “ground truth” estimates
of switching,.

We tabulate the results of switching activity estimation at
circuit level by the LIDAG structured Bayesian networks in
Table 1. We also performed simulation with pseudo-random
inputs for comparison of the switching estimates. Columns
2 and 3 provide mean and standard deviation of the error of
switching activity, which is the error between the switching
activity estimated and switching activity obtained through
simulation on each node, respectively. Moreover, we present
the %error between the average switching activity estimated
over all the nodes with average switching activity through
simulation in column 4. The elapsed total time for Bayesian
Network based estimation, which is time to compile and
time to propagate, is shown in column 5 . We separately
show the time for propagation of evidence in column 6. As
it can be observed, the propagation time is extremely low
irrespective of the size of the circuits.

The platform used here is a single processor DELL PC
with 250 Meg RAM and 450 MHz clock speed. We want
to emphasize that the time estimates are obtained from a
WINDOW based timing feature (function ftime in VISUAL
C++) which provides the total time spent in a function
module which includes memory access, I/O time along with
CPU time. In fact, while handling larger circuit, CPU time
is not a good estimate of actual time due to high memory
access needed by the algorithm.

As it can be observed from Table 1, the circuits which
are (namely c17, comp, count, pcler8 etc.) modeled as a
single Bayesian Network yield exact estimate and the stan-
dard deviation of error calculated on each node is extremely

Error statistics Overall % Error and time
over each node for all nodes

Circuits | perr oerr | % Error | Elapsed Time (s)

Total Update
cl7 0.0002 | 0.0004 | 0.02% <.001 <.001
c432 0.0111 [ 0.0300 | 2.08% 1.33 <.001
c499 0.0002 [ 0.0038 | 0.09% 0.33 <.001
c880 0.0012 | 0.0088 | 0.57% 1.24 <.001
c1355 0.0015 [ 0.0189 | 0.41% 2.29 <.001
c1908 0.0009 | 0.0090 | 0.22% 6.09 <.001
¢c3540 0.0029 | 0.0400 | 0.79% 8.62 <.001
cb315 0.0035 | 0.0269 | 0.80% 15.08 <.001
6288 0.0140 | 0.0465 | 3.314% 18.70 <.001
7552 0.0031 | 0.0460 | 0.70% 18.26 <.001
alud 0.0001 | 0.0198 | 0.86% 0.54 <.001
malud | 0.0011 | 0.0204 | 0.23% 0.21 <.001
max_flat | 0.0004 | 0.0005 | 0.10% [ <0.001 | <.001
voter 0.0002 | 0.0005 | 0.04% 0.11 <.001
b9 0.0004 | 0.0020 | 0.10% 0.33 <.001
c8 0.0002 | 0.0017 [ 0.05% 0.93 <.001
count 0.0001 | 0.0006 | 0.03% 0.33 <.001
comp 0.0000 | 0.0003 [ 0.00% 0.22 <.001
pcler8 0.0002 | 0.0007 | 0.03%6 0.11 <.001
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Table 1: Experimental results on switching activ-
ity estimation by Bayesian network modeling for IS-
CAS’85 and MCNC’89 benchmark circuits for ran-
dom input sequences.

low. The time for estimation is also less. The circuits which
are modeled by multiple Bayesian Networks, have standard
deviation of the order of 0.02. The errors encountered in
larger circuits are contributed by the loss of some corre-
lations in the network boundaries. The result reported in
this paper are based on preliminary segmentation scheme,
while currently we are investigating an efficient segmenta-
tion technique that will reduce the standard deviation and
the mean error. The maximum error that is encountered
is around 2% for c432. The minimum error is zero. Out
of the 19 benchmark circuits 17 of them had less
than 1% error and 2 of them have between 1% and
3.5% error. It can also be observed that updating and
propagating all the input evidences in almost all the circuits
were performed in the order of 1 milliseconds. This is ad-
vantageous particularly if the switching activity has to be
estimated for different input signal statistics. The circuits
can be precompiled, only propagation has to be done for
different input statistics.

In Table 2, we show some comparative statistics of time
and accuracy estimates on the common benchmarks reported
by [7] and by Schneider et. al. [19] for switching activity esti-
mation. We also tabulate results obtained by [9] which is the
revised version of the work [8] available in the web. We are
unable to compare our work with that made by [8] since we
do not have their results on pseudo-random inputs. At this
point, we have to remember that these experiments are con-
ducted on different machines with different speeds and ar-
chitecture. For example, in {7], the estimation is performed
in SUN SPARC 2 whereas in [19], estimation is performed
under SUN SPARC 10. In all the previous works [7, 19, §]
the run time is reported in CPU seconds which is a drastic
underestimate of total time with memory intensive imple-
mentation. However, we report run time is the total time
in the module including memory access and I/O time. As it



Marculescu et. al., 94[ 7] Schneider et. al., 967 19] Marculescu ot. al., 987 9] Bayesian Networks
Circuit || perr | OErr Total WErr | OFErr Time LErr | OErr Time UErr | OErr Time

Time(s) CPU (s) CPU(s) CPU(s)

cl7 0.012 | 0.02 0.35 - - - 0.012 T 0.02 0.04 0 0 <0.001
c432 [ 0.0I137 0.02 | 276.43 ]| 0.016 - 11 0.028 [ 0.04 | 1182 |[0.011 | 0.03 1.33
c499 0.005 1 0.01 519.56 - - - 0.013 | 0.01 10.57 1] 0 0.33
c880 0.016 | 0.03 | 320.11 0.006 - 34 0.013 | 0.02 18.35 0.001 | 0.01 1.24
cI355 [ 0.003 0 330.11 0.005 - 11 0.004 0 4.24 0.001 | 0.02 2.29
c1908 0.004 | 0.01 489.23 0.01 - 8 0.009 | 0.02 12.69 0.001 | 0.01 6.09
¢3540 | 0.028 [ 0.03 | 3307.11 || 0.014 - 65 0.03 10.04 [ 60.86 | 0.003] 0.04 8.62
c5315 - - - - - - - - - 0.0037] 0.03 15.08
c6288 - - 4530 0.023 - 126 0.014 | 0.02 29.1 0.014 [ 0.05 18.7
c7552 - - - - - - - - - 0.003 | 0.05 18.26

Table 2: Comparison of CPU time and Percentage error of different estimation techniques [7, 9, 19].

can be observed that BN modeling for most of the circuits
performs better than the existing approximate modeling of
switching activity. In some circuits, we obtained almost 10
times improvement in terms of accuracy compared to that
of [7, 19, 8]. This suggests that there is need for modeling
higher order correlations accurately. The standard deviation
of error is not presented by Schueider et.al. [19]. The time
to compute the switching activity is extremely fast for BN
modeling. The elapsed time estimate is in most cases is in
the order of hundred times faster compared to the work by
Marculescu et. al. [7](in CPU sec) and on an average sev-
eral times faster than the estimation by Marculescu [19, 9](in
CPU sec). We are aware that these works are performed on
different machines with varied CPU speed and different ar-
chitecture. A real comparison is not possible but qualitative
judgment can be drawn. We can see that Bayesian Network
based estimation strategy is competitive both with respect
to time and accuracy.

7. CONCLUSION

This paper introduces a switching activity estimation tool
that encapsulates all the dependencies, both in the internal
nodes and in the inputs, in reasonable time and with high
accuracies. We have shown results of the estimated switch-
ing activity for pseudo-random inputs. The model handles
spatio-temporal dependencies between the nodes. It also
models conditional dependencies of the nodes. The pro-
posed model is accurate and captures higher order correla-
tion among lines. Our future effort focuses on the segmen-
tation techniques, and input modeling for capturing spatial
correlation at the primary inputs using the same BN model.
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