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Abstract

We represent switching activity in VLSI circuits us-
ing a graphical probabilistic model based on Cascaded
Bayesian Networks (CBN’s). We develop an elegant
method for maintaining probabilistic consistency in the
interfacing boundaries across the CBN’s during the in-
ference process using a tree-dependent (TD) probability
distribution function. A tree-dependent (TD) distribution
is an approximation of the true joint probability func-
tion over the switching variables, with the constraint that
the underlying Bayesian network representation is a tree.
The tree approximation of the true joint probability func-
tion can be arrived at using a Maximum Weight Span-
ning Tree (MWST) built using pairwise mutual informa-
tion between switchings at two signal lines. Further, we
also develop a TD distribution based method to model
correlations among the primary inputs which is critical
for accuracy in Bayesian modeling of switching activity.
Experimental results for ISCAS circuits are presented to
illustrate the efficacy of the proposed methods.

1 Introduction

Switching activity of a node is affected by factors such
as the connectivity of the circuit, the input statistics, the
correlation among nodes (or lines), the gate type, and the
gate delays, thus making the estimation process a com-
plex procedure. It is well-known that switching activity
depends on temporal, spatial, and spatio-temporal corre-
lations exhibited by the signals (could be internal nodes
or primary inputs or state lines) [4, 5, 6, 3].

In this work, we propose a a new switching probabil-
ity model for combinational circuits based on the con-
cept of Cascaded-Bayesian Networks (CBN), captur-
ing complex conditional dependencies over a set of ran-
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dom variables. While single Bayesian Network repre-
sentation is guaranteed to give us accurate estimates [2],
the inference process in establishing these estimates is
NP-hard. This forces us, given the available comput-
ing constraints, to represent combinational circuits us-
ing Cascaded BNs (CBN). A large circuit is partitioned
into smaller one, and each partition is represented as a
Bayesian Network (BN). Consecutive BN’s are cascaded
through a Tree-Dependent distribution. In the Bayesian
network model discussed in [2], the partitioning was
done in an ad-hoc manner without maintaining spatial
correlations across the boundary nodes. Moreover, we
address the problem of modeling the switching activity
among correlated primary inputs which is essentially the
same as maintaining correlations across the CBN. We
can elegantly address both these problems with solutions
based on the tree-dependent (TD) probability function.
This tree-dependent representation offers a good trade off
between the need for accurate representation of corre-
lations and computational efficiency. We use the tree-
dependent (TD) distribution at the BN boundaries, as
well as, at the primary inputs. Since the tree-dependent
(TD) distribution can also be represented as a Bayesian
Network, we can fuse this approximate tree representa-
tion over the primary nodes with the accurate BN-based
representation over the internal nodes of the combina-
tional circuit as well as fuse the TD between adjacent
BN to capture correlations in the boundary nodes. Re-
sults show that mean error, standard deviation of error
and maximum error are lower, indicating that CBN is in-
deed superior model which estimates switching activity
accurately and uniformly over all the switching nodes.

2 Cascaded BN Modeling

Switching correlations among the primary input nodes
can affect switching activity estimates across the whole
circuits. An ideal way to model the input switching
would be, given a training set of input line transition, to
learn an exact switching model in terms of a joint proba-
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bility function over the input lines, which, of course, can
also be represented by a Bayesian network (BN). This
learned BN then would be coupled with the BN repre-
sentation of the combinational circuit. However, Learn-
ing exact BN is NP-hard. Hence, we resort to TD based
approximate modeling as a practical compromise of the
accuracy of representation of dependencies and compu-
tational costs in terms of time and storage. The BN cou-
pling problem between the cascaded BNs can be seen
as an instance of the primary input modeling problem,
where the “inputs” are not the primary input lines but
nodes in the previous BN. Here too we can use TD distri-
bution over the boundary nodes and cascade it with adja-
cent BN and form an elegant cascade structure.

Definition 1: Any tree-dependent distribution P?(z) can
be defined as a Markov field relative to the tree ¢ which
can be written as the product of n — 1 pair-wise condi-
tional probability distributions,

p'(z) = [[ pleilz;)) e))

where X;(;) is the designated parent of X; in some orien-
tation of the tree ¢. The root node X is chosen arbitrarily
without any parents and P(z1|z¢) = P(x1). Apart from
the memory requirement, only second order statistics are
needed to construct the tree.

Our goal is to construct a tree over n variables, repre-
senting the input nodes, that is the closest representation
of the underlying joint probability function over the n
variables. Hence, out of all the spanning tree over the
n variables that can be constructed, we have to select
the one which preserve the correlations to a maximum
level. Now, we have two subgoals: 1) To choose the best
conditional probabilities between the parent and the child
nodes in the tree given a fixed tree ¢ such that P! is the
best approximation of P. This distribution is called the
projection of P on ¢ (Pf;) . And, 2) to choose a tree from
a set of all the spanning trees over the nodes such that it
would make the projection P on this tree P} closest to
P. We will use the two following theorems to arrive at a
tree structure [1].

Theorem 1: The projection of P on ¢ is characterized by
the equality

Ph(wi|mj()) = P(@ilzj) ()

Proof in [1].

This implies that the conditional probabilities for a
branch a tree has to coincide with that computed from
P will produce the best projection of P on t (P5). The
optimal tree structure is chosen by minimizing Kullbuck-
Leibler cross-entropy measure.

Theorem 2: The Kullbuck-Leibler distance measure is
minimized by projecting P on any maximum weight
spanning tree (MWST) where the weight of the branch
(X, X;) is defined by the information measure between
them

I(Xi, Xj) = 3 Plai,x;)log (%) ®

T;i,Tj

Proof in [1].

Hence, by the above definitions and theorems, a tree-
dependent (TD) distribution is an optimal (best) approx-
imation of the true joint probability function over the
switching variables, with the constraint that the under-
lying Bayesian network representation is a tree. The tree
structure controls the computational complexity. The tree
approximation of the true joint probability function can
be arrived at using a Maximum Weight Spanning Tree
(MWST) built obtained by the pairwise mutual informa-
tion between switchings at two signal lines [1]. Using
a tree-structured representation ensures that storage pro-
portional to (r — 1)r(n — 1) + 7 — 1 [1] is used where
r is the number of states (in our case r = 4) and n is the
number of variables of the primary inputs which is much
less than 7™ which would be needed for a complete repre-
sentation. Moreover, by the above algorithms, we ensure
that at least the pairwise correlations are captured effec-
tively and propagated to the internal nodes.

3 Experimental Results and Conclusion

We mapped several ISCAS circuits to their corresponding
Cascaded Bayesian Networks representation. The condi-
tional probabilities are pre-determined by the type of gate
connecting the parents and the child. We used HUGIN’s
Bayesian Network tool [7] for compiling the junction tree
and propagating the probabilities. We also performed
in-house zero-delay logic simulation providing “ground
truth” estimates of switching for computation of the er-
rors on each signal. In our experiments, we want to es-
tablish that the tree-dependent distribution works accu-
rately for highly correlated input streams. We use 16
bit counters to generate highly correlated sequences for
the experiments. These experiments are carried with in
DELL PC with WINDOWS operating system running at
750 MHz. In Table 1, we present the time for estimation
as well as time for input modeling for several circuits un-
der highly correlated input streams. We observed that
maximum cost of input modeling in terms of time is less
than 1.32 sec.

We provide a comparison with BN models (without cap-
turing spatial correlation in the boundary nodes and in the
primary inputs) versus the new CBN with TD model in
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Circuits Time (BN | Time (input
Inference)(s) modeling) (s)

cl7 0.00 0.00

c432 0.33 1.31

c499 0.21 1.26

c880 0.25 1.26
c1355 1.04 1.27
c1908 1.87 1.26
c3540 3.47 1.32
c6288 8.68 1.27

Table 1. Estimation time for CBN Models.

BN Model CBN Model
Circuits u 4 Mazx I o Mazx
cl7 0.000 | 0.000 | 0.00
c432 0.003 | 0.023 | 0.191 0.001 | 0.011 | 0.141
c499 0.0002 | 0.023 | 0.172 || 0.000 | 0.017 | 0.125
c880 0.000 | 0.002 | 0.033 || 0.000 | 0.002 | 0.031
c1355 0.007 | 0.039 | 0.191 0.001 | 0.011 | 0.126
c1908 0.006 | 0.027 | 0.388 || 0.005 | 0.019 | 0.122
¢3540 0.000 | 0.001 | 0.083 || 0.000 | 0.001 | 0.054
c6288 0.009 | 0.034 | 0.450 || 0.001 | 0.027 | 0.350

Table 2. Estimation Errors for BN and CBN
models.

Table 2 for highly correlated input streams. We achieved
considerable improvement in terms mean, standard devi-
ation and maximum errors. It is obvious that with TD, the
mean is always lower than that without TD-based mod-
els. Standard deviation of error which signifies the di-
versity of error estimates are 1.5 to 2 times smaller with
TD based coupling than the naive one. For all the cir-
cuits, maximum error is reduced by significant amount;
for some, we achieved 3 times improvements. The re-
duction in standard deviation and the maximum errors
signifies that the estimation based on CBN models are
not only more accurate but also more uniform. The error
distribution (for all the nodes having errors higher than
0.01) with CBN and BN models for both low and highly
correlated inputs for benchmark c1355 are shown in Fig-
ures 1 and Figures 2(CBN in yellow (or light) and BN
in red (or dark)). It is obvious that with TD based CBN
modeling, we achieve very low error spread compared to
naive BN models. Hence TD based CBN modeling is
essential for accurate and uniform switching activity es-
timation for all the nodes internal to the circuits as well
as for modeling correlated inputs.
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