
Scalable Probabilistic Computing Models using Bayesian Networks

Thara Rejimon and Sanjukta Bhanja
University of South Florida, Tampa, FL, USA.

E-mail: (rejimon, bhanja)@eng.usf.edu

Abstract

As technology scales below 100nm and operating fre-
quencies Increase, correct operation of nano-CMOS will
be compromised due reduced device-to-device distance,
imperfections, and low noise and voltage margins. Un-
like traditional faults and defects, these errors are ex-
pected to be transient in nature. Unlike radiation related
upset errors, the propensity of these transient errors will
be higher. Due to these highly likely errors, it is more
appropriate to model nano-domain computing as prob-
abilistic rather than deterministic events. We propose
the formalism of probabilistic Bayesian networks (BNs),
which also forms a complete joint probability model, for
probabilistic computing. Using the exact probabilistic in-
ference scheme known as clustering, we show that for a
circuit with about 250 gates the output error estimation
time is less than three seconds on a 2GHz processor. This
is three orders of magnitude faster than a recently pro-
posed method for probabilistic computing using transfer
matrices.

1 Introduction

The ITRS road-map predicts CMOS device dimensions
to reach close to the design limit of 50 nm by 2020. Cir-
cuits built with such nano-dimensional devices will face
design challenges that have not been much of an issue
so far. One such challenge involve dynamic errors in the
interconnects and gates.

What is a dynamic error? These errors arise due to
temporary malfunction of nano-devices while operated
near thermal limits. These errors are significant in nano-
computing due to very low noise margin, reduced sup-
ply voltages and low stored charges in nodes. We term
these errors as dynamic errors since they are not per-
manent damages. Such dynamic errors may occur any-
where in the circuit, but hard to detect by regular testing
methodologies (since they are not permanent damage).
They can be characterized only probabilistically. Each
device (logic gate/interconnect) will have certain, non-
zero, propensity for an output line error.

There have been works [1] that derived theoretical up-
per bounds of the output error, but without considering
the specific circuit logic structure. Such general bounds
can possibly used only for high architecture level designs
issues, but better estimates are needed for logic level de-
signs. A MATLAB based tool to compute and propa-
gate probability distributions of fundamental gates is pro-
posed in [7], which also evaluates reliability of defect tol-
erant architectures such as TMR and CTMR. However
results were shown only for small circuits. Our model is
used to estimate the overall error probability at the out-
put of a logic block where individual logic elements are
subject to error with a finite probability, �.

Probabilistic computation with unreliable components is
not new [1]. Recently, in [3] Chen et. al proposed
Markov Random Field (MRF) based model which works
only for toy circuits without re-convergent fanouts. An-
other primitive matrix based model proposed by Krish-
naswami et. al [2], handles circuits that are really small
with extremely high time complexity. In this work, we
used BN based approach because logic circuits are inher-
ently causal and a directed graph would be best to arrive
at an edge minimal structure, the effect of which is evi-
dent in the observed time complexity of our model.

We construct the overall BN representation based on
logic level specifications by coupling gate level represen-
tations. Each gate is modeled using a conditional prob-
ability table (CPT) which models the probability of gate
output signal being at a logic state, given its input signal
states. An ideal logic gate with no dynamic error has its
CPT derived from the gate truth table, whereas the CPT
of a gate with error is derived from its truth table and the
error probabilities, which can be input dependent. The
overall joint probability model is constructed by network-
ing these individual gate CPTs. This model captures all
signal dependencies in the circuit and is a minimal repre-
sentation, which is important from a scalability perspec-
tive.

We measure the error with respect to the ideal logical
representation. Suppose, we have logic block with in-
puts��� � � ��� , internal signals��� � � ��� , and outputs

7120-7803-9197-7/05/$20.00 © 2005 IEEE.

��� � � ��� . Let the corresponding versions of the internal
lines and the outputs with dynamic errors be denoted by
��

� � � � ��
�
� and � �

� � � � ��
�
� , respectively. Thus, the error

at the �th output can be mathematically represented as the
XOR of the error-free and the output with error.

�� � � �
� � �� (1)

We propose the output error probability � ��� � �� �
� �� �

�

�
�� � �� as a design metric, in addition to other

traditional ones such as area or delay, to vet different
designs in the nano-domain. Note that the probability
of output error is dependent on the individual gate er-
ror probability � and also on the internal dependencies
among the signals that might enhance or reduce the over-
all output error based on the circuit structure. For causal
logical circuits, these dependencies can be modeled by
a Bayesian Networks, which is known to be the exact,
minimal probabilistic model for the underlying joint pdf.
Probabilistic belief propagation on these Bayesian Net-
works can then to be used to estimate this probability.

2 Bayesian Networks

Bayesian Networks are graphical probabilistic models
representing the joint probability function over a set of
random variables using a directed acyclic graphical struc-
ture (DAG), whose nodes describe random variables and
node to node arcs denote direct causal dependencies.

The exact joint probability distribution over a set of �
random variables ��� ��� � � � � �� in a Bayesian Net-
work is given by Eq. 2.

� �	�� � � � � 	� � � ��	� �	���� 	���� � � � � 	��
��	����	���� 	���� � � � � 	���
� � � � ��	��

(2)

Let ���� and ���� be the parents of a random variable
��. Then �� is independent of all other variables in the
network given the states of its parent nodes, ���� and
����. This conditional independence can be expressed
by Eq. 3.

� �	� �	���� 	���� � � � � 	�� � � �	��	���� 	����
(3)

Using the conditional independence in directional graph,
we arrive at an optimal factorized form that involve
conditional probabilities based on the parents (or direct
causes, inputs) to a node (effect, output): � ��� ���

��� � �	���
�	���. Even though probabilistic infer-
ence is worst-case NP-Hard, these factorized forms can
reduce complexity significantly for general cases.

The attractive feature of this graphical representation of
the joint probability distribution is that not only does it
make conditional dependency relationships among the

nodes explicit but it also serve as a computational mech-
anism for efficient probabilistic updating. Bayesian net-
works have traditionally been used in artificial intel-
ligence, image analysis, and specifically in switching
model [4] and single stuck-at-fault/error model [5] in
VLSI but their use in nano-domain dynamic-error mod-
eling is new. We use an exact inference scheme, known
as clustering [8] on the built Bayesian network represen-
tation to compute the output error probability.

3 Probabilistic Error Model
We compute the error proba-
bility � ���� � � �� �

�

�
�� � �� by marginalizing the

joint probability function over the inputs, internal lines,
and the outputs�.

� ���� �
�

��������

� ������� � � � �� �� ���� � � �� ����(4)

� � ���� � � �� ��� �
�

�

�

	�	�

� ������� ��� � (5)

� � ���� � � �� ��� ��

��

�

�	��	�

� ���� ��
�
� � ��� ��� �

	�� � � �	� � 	��� � � �	
�
� � (6)

where Eq. 6 shows that the joint density function that is
necessary to compute the dynamic error exactly. Sum-
ming over all possible values of all the involved vari-
ables is computationally expensive (NP-hard), hence we
require a graphical model that would use the causal struc-
ture and conditional independences to arrive at the mini-
mal optimally factorized representation of this joint prob-
ability function as a Bayesian network.

We model, both error-free logic and the one with dynamic
errors, as a Directed Acyclic Graph (DAG). These two
models, which we will refer to as the ideal logic model
and the error-encoded model, are then connected at the
outputs by comparators. The comparator output is the
variable �� � � �

� � �� in Eq. 1. The comparator output
of logic 1 indicates that the ideal logic model and error-
encoded model outputs are different. The probability of
the comparator outputs being in state ”1” provides the
overall output error probability, � ��� � �� of output ��
of the circuit.

Figure 1(a) shows the (conceptual) representation of a
error detection circuit for a simple logic involving two
NAND gates, represented by block �. The other block
involves the same logic, but built with unreliable compo-
nents. These gates are assumed to have gate error prob-
ability of �. The inputs to both the blocks are the same.
The two outputs are connected to two comparators. The

�In this paper, � ��� denotes the probability of the event � � �,
i.e. P(X=x).

713

Y

E

ZZ

16

21

e20
e

e

23
e

Y 22
2

E1

23

E

20 21

1610

21

 23

21

e X

e

e
20X

Z19

Ye
22

C

22
10

19
Error-Encoded circuit

Ideal logic circuit

22

2321

20

E

X
X

Y

Figure 1. (a) Conceptual circuit representation of the logic used to detect errors involving the
ideal logic and the unreliable logic components. (b) The corresponding Bayesian network rep-
resentation.

output of the comparator represents error in computation.
Note that this is just a conceptual representation, we do
not actually propose synthesizing the circuit. From the
conceptual circuit design, we can construct the Bayesian
network representation, which we call the LIPEM-DAG
model. Each node in the LIPEM is a line in circuit and
the links denote a connection between the lines via gates.
Figure 1(b) shows the LIPEM corresponding to the cir-
cuit in Figure 1(a). It can be easily proven that the LIPEM
DAG structure corresponding to the combinational cir-
cuit C is a minimal I-map of the underlying dependency
model and hence is a Bayesian network.

Bayesian Network Quantification: LIPEM-BN thus
constructed, consists of nodes that are random variable
of the underlying probabilistic model and edges denote
direct dependencies. All the edges are quantified with
the corresponding conditional probabilities of the form
��	
 �	parent�
���, where �
�������� is the set of nodes
that has directed edges to ��. These conditional proba-
bility specifications are determined by the gate type. A
complete specification of the conditional probability of
a two input AND gate output will have �� entries since
each variable has 2 states. By specifying a detailed con-
ditional probability we ensure that the spatial dependen-
cies among sets of nodes (not only limited pair-wise) are
effectively modeled.

4 Computing the Error Probability
Junction Tree Based Inference: We demonstrate this
inference scheme with an example shown In Fig 2. The
combinational circuit is shown in Fig. 2a and Fig 2b is its
equivalent Bayesian Network representation.

The steps involved in the exact inference scheme are de-
scribed below. Moralization: Create an undirected graph
structure called the moral graph from the Bayesian net-
work DAG structure by adding undirected edges between
the parents of a common child node and dropping the
directions of the links. The moral graph represents the
Markov structure of the underlying joint function [6].
The dependencies that are preserved in the original DAG

are also preserved in the moral graph [6]. The dashed
edges in Fig. 2c are added at this stage. This step ensures
that every parent child set is a complete sub graph. Trian-
gularization: In this step, every cycles of length greater
than or equal to 4 is reduced to cycles of 3 by inserting
additional links (chords) to the moral graph. The moral
graph is said to be triangulated if it is chordal [6]. Note
that in this particular example, moral graph is chordal
and no additional links are needed. Message passing
in Junction Tree: A junction tree is defined as a tree of
cliques (collection of completely connected sub graph)
of the choral graph (cliques are connected by unique path
as in Fig 2c). Junction tree possesses running intersec-
tion property [6] that ensures that if two cliques share
a common variable, the variable should be present in
all the cliques that lie in the unique path between them.
Fig. refbn1d is the junction tree derived from the chordal
graph of Fig. 2c in this example. Interested readers are
referred to [4] for a detailed description of how local
message passing is performed in junction trees.

5 Experimental Results
We demonstrate the ideas using LGSynth’93 and some
of the ISCAS’85 benchmark circuits. Gates with more
than two inputs are reduced to two-input gates by intro-
ducing additional dummy nodes, without changing the
circuit structure. While modeling the dummy nodes the
gate-error probabilities of the dummy nodes are consid-
ered zero. Hence their presence do not modify the output
error profiles.

In table 1, we report the maximum output error probabil-
ities of benchmark circuits for different gate error prob-
abilities. Column 2, 3 and 4 give the maximum out-
put error probabilities when gate error probabilities are
0.005, 0.05 and 0.1 respectively. In column 5 we report
the elapsed time.

In Table 2, we compare the time and space complexity
of our model with those of Probabilistic Transfer Matrix
[PTM] based method proposed in [2]. Column 2 and 3
of this table give the runtime and memory requirement

714

Z1 Z2 Z3

Y1 Y1e Y2 Y2e

E1 E2

Z1 Z2 Z3

Y1 Y1e Y2 Y2e

E1 E2

E1

E2

Z1

Z2

Z3

Y1

Y2

Y1e

Y2e

C1={Z1,Z2,Y1e,Y1} C1={Z2,Z3,Y2e,Y2}

C4={Y2e,Y2, E2}

{Y1e,Y1} {Y2e,Y2}

C3={Y1e,Y1,E1}

{Z2}

(a) (b) (c) (d)

Figure 2. (a) A small Error Model (b) Bayesian Network representation (c) Chordal Graph
(d) Junction Tree

Table 1. Output error probabilities.
Maximum Output error Probabil-
ity for individual gate error prob-
ability p

time(s)

=0.005 =0.05 =0.1
c17 0.0148 0.1342 0.2398 0.0
parity 0.0699 0.3971 0.4824 0.0001
pcle 0.0179 0.1560 0.2702 0.07
decod 0.0068 0.0654 0.1251 0.14
cu 0.0232 0.1969 0.3327 0.56
pm1 0.0331 0.2627 0.4141 0.44
xor5 0.0925 0.4336 0.4900 0.26
alu4 0.0676 0.3906 0.4816 1.87
b9 0.0315 0.2475 0.3867 2.49
comp 0.0733 0.3828 0.4683 0.66
count 0.0203 0.1613 0.2632 1.14
malu4 0.0845 0.4253 0.4903 1.94
max flat 0.0296 0.2151 0.3234 0.02
pc 0.0377 0.2794 0.4161 0.41
voter 0.0299 0.2178 0.3294 0.08

Table 2. Comparison of Modeling using
Bayesian Networks and Probabilistic Trans-
fer Matrix

PTM [2] BN
time(s) memory(MB) time(s) memory(MB)

c17 0.076 0.003 0.0 0.096
parity 0.35 0.144 0.0001 0.14
pcle 74.9 24.2 0.07 0.34
decod 56.9 11.8 0.14 0.42
cu 93.87 10 0.56 2.28
pm1 7169 160 0.44 1.38
xor5 1337 57.3 0.26 2.48

of PTM model, where simulations were performed us-
ing a 3GHz Pentium 4 processor. Column 4 and 5 give
the runtime and memory requirement of our model. We
used a 2GHz Pentium 4 processor and the listed elapsed
times are obtained by the ����� command in the WIN-
DOWS environment, and is the sum of CPU, memory
access and I/O time. These results show the effectiveness
of our model in terms of estimation time and memory us-
age. The time and space complexity of BN based model
does not depend on gate error probability values, whereas
experimental results form [2] show that the runtime and
memory requirement for PTM based modeling are not the
same for different gate error probabilities.

6 Conclusion
We presented an exact probability model, based on
Bayesian networks, to capture the inter-dependent effects
of dynamic errors at each gate through the conditional
probability specifications in the Bayesian network. We
used an exact inference scheme to compute the overall
output error probability due to individual gate errors. To
handle larger circuits, we use an approximate inference
scheme based on stochastic sampling which gave accu-
rate estimates. Due to space limitation, we do not in-
clude those results in this paper. Among the other uses
of the BN based probabilistic computing model, is (i) the
calculation of the sensitivity of node errors on the out-
put, which is useful for identifying gates for selective re-
dundancy, and (ii) the characterization the input space in
terms of propensity for errors, which has not been shown
to be possible with the transfer matrix approach. We are
currently working on modeling dynamic error tolerant
designs by applying TMR redundancy on selected nodes
having high dynamic error probabilities based on their
switching characteristics.

References
[1] J. von Neumann, “Probabilistic logics and the synthesis of reli-

able organisms from unreliable components,” in Automata Stud-
ies (C. E. Shannon and J. McCarthy, eds.), pp. 43–98, Princeton
Univ. Press, Princeton, N.J., 1954.

[2] S. Krishnaswamy, G. S. Viamontes, I. L. Markov, and J. P.
Hayes, “Accurate Reliability Evaluation and Enhancement via
Probabilistic Transfer Matrices”, Design Automation and Test in
Europe (DATE), March 2005.

[3] J. Chen, J. Mundy, Y. Bai, S.-M. C Chan, P. Petrica, and R. I. Ba-
har, “A Probabilistic Approach to Nano-computing,” Workshop
on Non-Silicon Computation, June 2003.

[4] S. Bhanja and N. Ranganathan, “Switching Activity Estimation
of VLSI Circuits using Bayesian Networks” IEEE Transactions
on VLSI Systems, pp. 558–567, Feb. 2003.

[5] T. Rejimon and S. Bhanja, ”An Accurate Probabilistic Model for
Error Detection” IEEE International Conference on VLSI De-
sign, pp. 717–722, Jan. 2005.

[6] R. G. Cowell, A. P. David, S. L. Lauritzen, D. J. Spiegelhalter,
“Probabilistic Networks and Expert Systems”, Springer-Verlag
New York, Inc., 1999.

[7] D. Bhaduri and S. K. Shukla, ”NANOLAB: A Tool for Evaluat-
ing Reliability of Defect-Tolerant Nano Architectures”, Interna-
tional Symposium on VLSI Design, 2004.

[8] URL http://www.hugin.com

715

