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Abstract— nputs Combinational Logic Latches
With device size shrinking and fast rising frequency ranges effect of [ 4. Particle Hit atnode ()
cosmic radiations and alpha particles known as Single-EverlUpset (SEU), ] D—E[} LA @ PQITD
N L . . . . H . [P JLPEEY) i SEU causin
Single-Event-transients (SET), is a growing concern in lag circuits. Ac- 2 - - SEU with - Deta. SEU propagated fo D abiiipat
curate understanding and estimation of Single-Event-Upgesensitivities of =D i L o ou e oupt
individual nodes is necessary to achieve better soft errordrdening tech- R T
niques at logic level design abstraction. We propose a proldlistic frame- B > @_E D = D
work to the study the effect of inputs, circuits structure and gate delays on : T
Single-Event-Upset sensitivities of nodes in logic circts as a single joint T el >
probability distribution function (pdf). To model the effe ct of timing, we : >
consider signals at their possible arrival times as the randm variables of N DD -
interest. The underlying joint probability distribution f unction, consists —
of two components: ideal random variables without the effecof SEU and dis the delay associated with gates

the random variables affected by the SEU. We use a Bayesian Nerk to
represent the joint pdf which is a minimal compact directional graph for ~ Fig. 1. SEU Propagation.
efficient probabilistic modeling of uncertainty. The attractive feature of
this model is that not only does it use the conditional indepsdence to ar-

rive at a sparse structure, but also utilizes the same for snraprobabilistic . - . .
inference. We show that results with exact (exponential coplexity) and nOdeJ- Let P(SEM) be the pI’Obablllty thata partlcle hitat node

approximate non-simulative stimulus-free inference (lirear in number of  j generates an SEU of sufficient strength andPi@, |T; ;) be
nodes and samples) on benchmark circuits yield accurate estates inrea-  the probability that an error at output nadeauses an erroneous
sonably small computation time. . . .
signal at latch outpu®_. MathematicallySES_q, is expressed
by Eq. 1.

High-energy neutrons present in cosmic radiations andaalph SES. = RuP(SEWPT)P(QLITi) @
particles from packaging materials give rise to single ewpa whereRy is the particle hit rate on a chip which is fairly uniform
sets (SEUs) resulting in soft errors in logic circuits. Wipam- in space and timeP(SEU) depends 0Vyq, Vin and also on
ticles hit a semiconductor material, electron-hole paiesgen- temperature.P(Q_|T; ) is a function of latch characteristics
erated, which may be collected by a P-N junction, resultmg i and the switching frequency.
short current pulse that causes logic upset or Single Evpat U In this work, we exploreP(T;_j) by accurately considering
set (SEU) in the signal value. An SEU may occur in an internéile effect of (1)SEU duration (2) effect of gate delagnd (3)
node of a combinational circuit and propagate to an outpeitla timing, (4) re-convergence the circuit structure and most im-
When a latch captures the SEU, it may cause a bit flip, whiglertantly (5)inputs
can alter the state of the system resulting in a soft errccutn ~~ We model internal dependency of the signals taking into con-
rent technology, soft errors are of serious concern in maspr Sideration timing issues so that the SEU sensitization grob
whereas in logic circuits soft error rate is comparatively Hue bility (P(Tj_i)) captures the effect of circuit structure, circuit
to logical, electrical and temporal masking effects. Hogreas path delay and also the input space. A fan-out dependent de-
process technology scales below 100 nanometers and operdély model is assumed where gate delay of each node is equal to
frequencies increase, the above masking barriers diméhish its fan-out. We also use logical effort based delay modelrerhe
to low supply voltages, shrinking device geometry and smalate delays are dependent not only on fan-out but also or inpu
noise margin. This will result in unacceptable soft errdlufe  capacitance as well as parasitic capacitance. Due to thaotem
rates in logic circuits even for mainstream applicatiorjs[1  ral nature of SEUs, not all of the SEUs cause soft errors. Let

Soft error susceptibility of a nodewith respect to a latch, th be the time when an SEU originates at a ndxlee the SEU
SES q, is the soft error rate at the latch outit, contributed duration ts be the time when outputs are sampled &hde the
by nodej. The propagation of an SEU generated due to a pa&Pt of propagation delayt) of sensitized paths from the node
cle hit at an internal nodgto an output which causes a bit flip to the circuit outputs. Nodes satisfying the following cdiuths
at the output of a latch is depicted in Fig. 1. do not cause soft error [4]:

We model the SEU propagation as follows: L&t; be a
Boolean variable which takes logic value 1 if an S-EU at a node 0+l <t Vel (2)

j causes an error at an output nad&henP(Tj_j) (measured as Even though the above empirical formula doesn’t take into ac
the probability ofT; ; being equal to 1) is the conditional probaeount of set up and hold time requirements which affect latch
bility of occurrence of an error at output nodgiven an SEU at ing window masking, we use this equation for our modeling

I. INTRODUCTION



because this is pretty accurate as far as logical maskiegteff 4. We infer error probabilities by (1) exact inference that

circuit structure and gate delays are concerned. transforms the graph into a special junction tree structure
We use a circuit expansion algorithm similar to that present and relies on local message passing scheme and also by
in [4], [15] to embed time-related information in the cirtui (2) smart stochastic non-simulative inference algorithms
topology without affecting its original functionality. &m the that have the feature of any-time estimates and generates
expanded circuit, we generate a list of SEUs (possible S& li excellent accuracy time trade-off for larger circuits.

that are possibly sensitized to the circuit outputs at threti 5. Bayesian Networks are unique tool where effect of an ob-
frame when output signals are latched. From the expanded servation at a child node can be used to get a probability
circuit and the possible SEU list, we construct an erroralete  space of the parents. This is called backward reasoning.

tion circuit and model SEU in large combinational circuits u Our model can be used to generate input space for which
ing a Timing aware Logic induced Soft Error Sensitivity mbde  the SEU occurring at a particular nogemight have no
(TALI-SES), which is a complete joint probability model pre impact on the outputs. Note that in such case, hardening
resented as a Bayesian Network. techniques will not be needed for nogle Similarly, we
Bayesian Networks are causal graphical probabilistic isode  can find input space for which SEU at a nodeause high
representing the joint probability function over a set afdam error probability at outputs. If the data trace is similar to

variables. A Bayesian Network is a directed acyclic graphic ~ the second type of input space, extensive hardening tech-
structure (DAG), whose nodes describe random variables and niques need to be applied o

node to node arcs denote direct causal dependencies. Aetirec The remainder of this paper is organized as follows. Sec-
link captures the direct cause and effect relationship eetw tion Il is a summary of the prior works done on soft error mod-
two random variables. Each node is quantified by the conéiing and analysis. In section IV we discuss Bayesian infer-
tional probability of the states of that nodéventhe states of ence schemes - both exact and approximate(stochastic) infe
its parents, or its direct causes. The attractive featurhief ence. This is followed by section V where we give experimenta
graphical representation of the joint probability distion is results using both exact and stochastic inference. Usiagtex
that not only does it make conditional dependency relatiqnss inference we can characterize the input space to achiege zer
among the nodes explicit but it also serves as a computatiopdtput error even in the presence of some of the SEUs. The
mechanism for efficient probabilistic updating. Bayesiat-n exact inference works well for small circuits. To handlegkar
works have traditionally been used in medical diagnostifj-ar circuits we use a stochastic inference scheme and compare ou
cial intelligence, image analysis, and specifically in shig results with logic simulation results and found that our eied
model [2] and single stuck-at-fault/error model [5] in VLIt ing is accurate (close-to-zero error) and efficient.

their use in timing aware modeling of Single-Event-Upssts i

new. We first explore an exact inference scheme also known Il. BACKGROUND

as clustering technique [13], where the original DAG is $/an  An estimation method for soft error failure rates resulting
formed into special tree of cliques such that the total nEssgrom Single Event Upsets proposed in [1] computes soft error
passing between cliques will update the overall probabift sysceptibility of a node based on the rate at which a SingéaEv
the system. We then explore a stochastic inference stratagiyset (SEU) occurs at the no@Rsey), the probability that it is
named Probabilistic Logic Sampling (PLS) [17], where a fulensitized to an outpPsensitized and the probability that it is
instantiation of the probabilistic network is collectedsbd on a captured by a lataPached). A model that captures the effects
simplified importance function. The sampling is stopped Whey technology trends in the Soft Error failure Rates (SERj-c
the probabilities of the nodes converdfeis worth pointing out  sidering different types of masking phenomena such asrelect
that unlike simulative approaches that sample the inpuits, i cal masking, latching window masking and logical maskisg, i
portance sampling based procedures generate instantisfior presented in [3]. Another model to analyze Single Event tipse
the whole network, not just for the inputShese samples canyith zero-delaylogic simulation, which is accurate and faster
be looked upon as Markov Chain sampling of the circuit stafigan timing simulators, is presented in [4]. As discussetthén

space. . _ previous section, this model uses a circuit expansion ebgor
The salient features of modeling SEU by Bayesian Netwot incorporate gate delays and a fault list generation éhyor
are as follows. to get a reduced list of SETs. All of the above methods use sim-

1. We provide a comprehensive model for the underlyingation techniques which are highly input pattern depenhdan
error framework using a graphical probabilistic Bayesian Zhaoet al. proposes a methodology to evaluate softness or
Network based model TALI-SES that is causal, minimadulnerability of nodes in a circuit due to compound noise ef-
and exact. fects by considering the effects of electrical, logical &ntdng

2. We can model the effect of timing and transient natureasking [11]. A selective triple modular redundancy teghei
of the SEU’s along with the accurate modeling of refSTMR) for achieving radiation tolerance in FPGA designs is
convergence in the circuit. discussed in [10]. Karnilet al. suggests that soft error rate

3. This model captures the data-driven uncertainty in tisbould be considered as a design parameter along with power,
modeling of soft error that can be used where exact iperformance and area due to its increasing impact on circuit
put patterns are not known apriori and also can be useddnyd systems with the scaling of process technology [6]. Ef-
building a probabilistic model in case data traces areavdict of threshold voltage on SER of memories and combina-
able by learning algorithm [21]. tional logic has been studied in [7]. Zhamgal. in [12] pro-
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Fig. 2. Time-space transformed circuit of benchmark c17defing all SEUs. Fig- 3. Modified time-space transformed circuit of benctinztt7, modeling
only the possibly sensitized SEUs.

posed a composite soft error rate analysis method (SERA) to . i ime-f hich th
capture the effect of supply voltage, clock period, latghirin- C', corresponding to different time-frames at which the gae o

dow, logic depth, circuit topology and input vector on safoe putis e\./alu.a'ged. The output evaluatlon.tlr{ﬂé} of each gate
rate. Their method uses a conditional probability basedrper " the circuit is calculated based on variable delay moded. W
ter extraction technique obtained from device and logiaggm 2SSUMe that the delay associated with a gate is equal toits fa
tion. In their work, combinational circuits are assumedagen ©Ut: FOr each gatg whose output is evaluated at time {T}
unbalanced re-convergent paths. However, other desigzid:ona replicate nodg,t is constructe_d. In addition to these_ repli-
erations usually drive optimal circuit design to have bageh A€ 9ates, we insert some duplicate gates (shown by filked ga
paths by adding buffers wherever re-convergence is nagesssyMPOIs in Fig. 2). We explain the reasons for adding these
For circuits with balanced paths, soft error analysis based duPlicate gates later in this section. .
approximations given in [12] might not be the best choice. ~ The inputs ofg,t are the replicate nodes of the gates, which
Since all the state-of-the-art techniques have resortetirto '€ the inputs o in the original circuit and belongs to the time-
ulation for logical and device level effects (known to beexp framest’ <t. We consider the value of signiaat timet by (i,t).
sive and pattern-sensitive especially for low probab#itgnts), Nov_v the _random variable that rep_resents the value of a signal
we felt the need to explore the input data-driven uncerydmt 2t imet is denoted byXi¢. The circuit outputs reach steady
a comprehensive manner through a probabilistic model to cSP€ ValuesXezo andXesp att = 0, after the application of
ture the effect of primary inputs, the effect of gate delagi tire (1€ Previous inputsiXy,o, X20, X0, X60, X70}. Let the new
effect of SEU duration on the logical masking. There is fatufPUS{X11. X2.1. Xa1, X1, X7.1} be applied at = 1. Xjo2 is
scope for these kinds of models to be fused with other md§€ Signal value at the output of gate 10 at time instant 2.
els [6], [7], [12] for capturing device effects such as diieat ~ We insert a few duplicate gates (exampl@0,4), (10,5),

masking, threshold voltage and supply voltage. (19,5), etc. shown by filled gate symbols) due to the following
reasons:
I1l. THE PROPOSEDMODEL Input signals of certain gates in the circuit might haveeatiff

In thi i first f handling the timi ent arrival time due to the difference in path delays. In orde
; rt] |sfsec |0n,bW§_|_|rf ocm(st IOP I an ollnbg the f'ru;:t‘? awars model the effect of any SEU generated at the junction of the
cature otour probabilistic model, followed by the Tausllicon- - aag ot time instants, later than the signal’s arrival tiweein-
struction. We conclude the section with discussion aboait t

: . o ) ert additional duplicate nodes for those internal sigmatk
model itself, given the timing-aware graph and the faultt lis less path delay. For example, in Fig. 2, input signals to Bate

have path delays 2 and 5 respectively. The final output signal
(22,6) is evaluated with input signald.6,5) and(10,5). If no

We first expand the circuit by time-space transformation &EUs originated at the output of gate 10 between time instant
the original circuit, without changing its functionalitfhe ap- 2 and 5,(10,2) and (10,5) would be the same. However, in
proach is similar to the method discussed in [4], [15]. Figs 2 the event an SEU occurs at node 10 at5, (10,2) and(10,5)
the expanded circuit of benchmack?. A gate in the original may differ depending on the inputs, which can cause a wrong
circuit C will have many replicate gates in the expanded circuutput signal at22,6). We model the effect of SEU &1.0,5)

A. Timing Issues



by introducing a duplicate gatd.0,5) whose inputs arél, 1) TABLE |

and (3, 1). Similarly, (1Q 3), (1Q 4), (1% 4)and (195) are other GATE DELAYS BASED ONLOGICAL EEFORT
duplicate gates. Duplicate gates also model the maskiegteff

of some of the SEUs generated in the signal path of the input Gate Type Delay
having lesser path delay. Example: Duplicate ga5) mask ___Inverter — fanout+ Pnv
the effect of an SEU originated at the output of gate 10, a tim ”';”i?]“tu':‘ﬁgDR Kf:?g,?ﬁ,’f,ﬁ"g”“

t = 2. Thus we can arrive at a reduced SEU list which is further 2-inEut XOR |4 Tanouts 4nPo,

explained later in this section.

Steps for constructing the timing-aware expanded circuit,
based on fan-out dependent delay model are the following: B. Delay Modeling Based on Logical Effort
1. Arrange gates in the order of levels, with the level of inpu We extend this work by using logical effort based model
gates equal to zero. o . i
Whmh is dependent on fan-out, input capacitance as welhas p

2. Include all gates that are present in the original CirCuasitic delay. In this section we explain how gate delays ate c
Output signals of these gates represent the steady state S Y- P 9 y

i . )
nal values at = 0, before the application of new inputs. chated based on logical effort [20]. Delay of a logic gata ca

3. Add additional input nodes representing new input sign%‘f exp_ressed as the sum O.f two components, (_affort delay and
values at — 1- paras_ltlc delay. effort delay is the prt_)duct _of logical eﬁa_and
4. For each level of the circuit starting from levet 1, re- electrical effort, where logical effort is defined as theatiie
. . ability of a gate topology to deliver current and electrietibrt
peat the following step: is the ratio of output capacitance to input capacitancectBtal
For each gatg in levell;, create replicate gates at timeef'fort is sometim%s caIFI)ed fan-out Mpathen?aticall attayl
framet =t + fg, wheretp, is the maximum time frame of . ' Y. 9

. ) . _ is expressed ad = f + p = gh+ p wheref is effort delay,p
:)huet E;E\g?euswdnzg:s(;rgzrﬁggg%?dgtng fg s the fan is the parasitic delayg is the logical effort and is electrical
gateg. Lp g effort. Logical effort is defined to be 1 for an inverter. Henc

Output signals of a circuit are sampled at ts, wheretsisthe |ogical effort is the ratio of input capacitance of a gatehe t
maximum of the latest signal arrival times of the output aign input capacitance of an inverter delivering the same outpit
SEUs which do not satisfy Eq. 2 affect circuit outputs résglt rent. It can be estimated counting capacitance in unitsaf tr
in soft errors. These SEUs are the upsets generated at {1t OWistor width. Parasitic delay represents delay of a gaténtyi
of gates, which are in the fan-in cones of final outputs (ot#tptho load and it depends on diffusion capacitance. paragitic d
evaluated at timés). SEUs occurring at certain other gatesay of an inverterP,, & 1. From the above considerations, we
which are not in the fan-in cones of the final outputs, may alg@mpute basic CMOS gate delays and use these delay values in
affect circuit outputs. These nodes arise due to the SEUidara our model. Table below shows the delay expressions for basic
time &. For example in Fig. 2, we see that the final outputs aggites.
generated at time instant t=6. If an SEU occurs at signal 19 aicjrcuit expansion is performed in a similar way as explained
4 ns and lasts for one time unit, it will essentially be capaifl in the above section. Each gate is replicated several tiores-c
tampering the value of node 23 at 6 ns. Note that we assume §@nding to the time frames at which new gate output sigmals a
o is one time unit. The fault list will be different if we ChangQavaMated. Here, gate output evaluation time is based (Hyde|
the value o. Thus we can see that SEUs which are sensitizgd|ues calculated as above. This is illustrated in Figurd&w
to outputs at time frames betwegrandts — 6 may cause soft shows how benchmark circuill 7 is expanded with logical ef-
errors, depending on the input signals and circuit strectur  fort based gate delay model. Delay of a 2-input nand gate with

Considering the above factors, we modify the expanded aime fan-out is calculated as 3.33 time units and that of gRtin
cuit by including only those gates that propagate SEUs to thate nand gate with 2 fan-out is 4.67 time units. Final ouigput
outputs between time instantsandts — 8. Thus we get a con- evaluated at time unif; = 13.67. From this expanded circuit,
siderable reduction in the circuit size. Fig. 3 is the modifiewve arrive at a reduced circuit by traversing backward from ou
expanded circuit of c17, which models all SEUs possibly senputs evaluated & andTs — 6 until a duplicate gate or an input
tized to a final output. is reached, thereby modeling only the possibly sensitiZeldsS

Next, we discuss how to generate a list of possible SEUs af- )
fecting the circuit outputs. Not all gates in Fig. 3 are SEb-seC. Bayesian Networks

sitive. As discussed above, a duplicate node introduceslan a Bayesian Networks are graphical probabilistic modelseepr
ditional delay of at least one time unit. If the delay introdd  senting the joint probability function over a set of randoaniv

by a duplicate gate is greater than or equabtdhe SEU du- aples using a directed acyclic graphical structure (DAGigse
ration time, the effect of SEUs originated at any of the gatggdes describe random variables and node to node arcs denote
in the fan-in cones of the duplicate gate is nullified andectr girect causal dependencies. In a Bayesian network, the exac

signal value is restored at the output of the duplicate gatd, joint probability distribution over a set afvariables Xy - - -, X,
hence those SEUs are effect-less. Thus we create a redsiteghithis network is given by Eq. 3.

of SEUs by traversing the modified extended circuit from each
of the circuit outputs at time instants betweeandts — 6, until P(Xn, X1, -, X2, X1) = P(Xn|Xn_1, -+, X1)
a duplicate gate or an input node is reached. P(Xn_1|Xn_2, -, X) -+~ P(x1) @)
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10 100 220 of SEU sensitivity on the input pattern, circuit structurelahe
3,O:LD£O§ 230 gate delays. Note that this probabilistic modeling doesraot
,,,,,,,,,,,,,,,,,,,,,,,,, quire any assumptions on the inputs and can be used with any
— biased workload patterns. The proposed model, Timing-8war
t=10 Logic-Induced-Soft-Error-Sensitivity (TALI-SES) Modéd a
Directed Acyclic Graph (DAG) representing the time-space
transformed, SEU-encoded combinational circuitC',J >
19438 t=433 whereC' is the expanded circuit created by time-space trans-
ffffff AT formation as discussed in section. A ahid the set of possible
056 SEUs (also discussed in section A). The error detection cir-
e cuit consists of the expanded circdlt, an error sensitization
= il logic for each SEU and a detection umittonsisting of several
************ comparator gates. We explain it with the help of a small exam-
1=7.66 ple shown in Fig 5(a), which is the error detection circuit &
small portion of benchmark c17. The error sensitizatioridog
for an SEU at node j consists of the duplicate descendansnode
23000 > from j. In Fig. 5(a), the block with the dotted square is the sen-
sitization logic for 165¢ [An SEU' at node 16 at time= 5]. It
(= 1034 consists of nodes 285 and 2265 descending from node 16
of the time-space transformed circuit. For simplicity, wew
B335 the modeling of only one SEU in this example. Our model can
777777777777777777777777777777777 handle any number of SEUs simultaneously. Each SEU sensiti-
22,1367 zation logic has an additional input to model the SEU. Exampl
23387 inputSEUj 5. This input signal value is set to logic one in order
to model the effect of a 0-1-0 SEU occurring at node 16 at time
Fig. 4. Time-space transformed circuit of benchmark c1hwitgical Effort frame 5.
Based Delay Model As discussed previously in section A, an SEU lasting for a
durationd can cause an erroneous output if its effect reaches
the output at any instant between the sampling tig@and time
framets — &. In this work we assuméto be one. Hence we get
error sensitized outputs at time framgeand for some SEUs at
ts — 1 also, if there exist re-convergent paths between SEU lo-
cation and an output. We need to compare the SEU-free output
signals evaluated at the sampling timgewith the correspond-
ing SEU-sensitized output signals arrivingat 1 andts. Hence
these signals are sent to a detection UiniThe comparators in
Fig. 5. (a) Anillustrative SEU sensitivity logic for a subheé c17. (b) Timing- the detection unit compare the ideal and error sensitizgulitss
aware-Logic-induced-DAG model of the SEU sensitivity ogi (a) with the corresponding error-free outputs and generatsigs
nals. For example, the test signals for an SEU at njoatgtime

Any random variable) is independent of all other variables! areTijy_(it) aNdT(jp_(ik-1- If any of these the test signal

; - : lue is 1, it indicates the occurrence of an error. The proba
given the states of its parent nodes, S8y,1 andXx_». This val ' S .
conditional independenaman be expressed by Eq. 4. bility P(T(; 1)), which is a measure of the effect of SEU1)s

on the output nodeis computed as a joint probability which is

v/

T(16.5)-23.6)) ((16,5)-22.6)

PO X0 X010 %) = POGXie1. %2 (4) explained below: . -
O 3o ) 04 ) Let A be an event that an SEU at nogeauses a bit-flip at
Mathematically, this is denoted asoutputi at timets and letB be an event that an SEU at node

| (X, { X1, Xk—2}, {Xn, -+~ Xn_1}). Using the conditional j causes a bhit-flip at outputat timets — 1. P(A = 1) is the
independence in directional graph, we arrive at an optinfiobability of occurrence of error and at tirgeP(A = 0) is the
factorized form that involve conditional probabilities seal Probability that SEU doesn’t cause an errotsatP(B) can be
on the parents (or direct causes, inputs) to a node (effé@tplainedin a similar way. The Error probability due to allSE
output): P(X) = [T, P(x/ pa(x)). Even though probabilistic at nodej at timet w.r.t. outputi is the joint probability
inference is worst—c_asg.NP—Hard, these factorized fornms 9AUB) = P(A=1,B=0)+P(A=0,B=1)+P(A=1,B=1)
reduce complexity significantly for general cases. (5)

D. TALI: Timing-aware-Logic-induced Soft error model which is expressed as:

In this section, we first describe the proposed Bayesian net- P(T(i0-) = P(T0- 40 Y T(0- Gite-1))- (6)
work based model, which can be used to estimate the soft eror SEU can have effect on more than one output. The overall
sensitivity of logic blocks. This model captures the demaru effect of an SEUj,t)s on the outputs is computed BET ;1)) =



max;i{P(T(j )} Inthe example the SE(16,5)s is sensitized
to outputs 22,6 and 23,6. Hence the two test signals for tBi$ S
areTi165)_ (226) aNdT(165)_ (236)-

An SEU occurring at nodg¢ at timet, which is eitherSEU! =]
or SEWP (but not both)can cause a bit-flip at the output with
probabilityP(ijt) or P(Tj?t). In order to compute the SEU sen-
sitivity of a node, we take the worst case probability, which
is the maximum of the above two probabilitie(T; ;) = (520D
maX{P(T&,t) )s P(T&t) )}

More than one SEU can originate at a node at different tim¢ @ ®)
frames. Considering the effect of SEUs at node j at all time
frames, we compute the worst case output error probabiliéy drig. 6. (a) A small Logic circuit (b) Time transformed BayasiNetwork
to node j asP(Tj) = maxx {P(T; 1))}, which is the maximum
probability over all time frames.

These detection probabilities depend on the circuit stinatt
dependence, the inputs, dependencies amongst the inptes, gjructure by adding undirected edges between the pareats of
delays and the SEU duration. In this work we assume randé@immon child node and dropping the directions of the links.
inputs for experimentation and validation of our model. The moral graph represents the Markov structure of the under

We construct the TALI-SES Bayesian Network of the SELYing joint function [19]. The dependencies that are preser
detection circuit by nodes which are random variables rept8 the original DAG are also preserved in the moral graph.[19]
senting signal values of the SEU detection circuit. A signial The dashed edges in Fig. 7a are added at this stage. This step
the detection circuit is represented by the random varidpile €nsures that every parent child set is a complete sub graph. T
the Bayesian Network. angularization: In this step, every cycles of length gretitan

In TALI-SES DAG structure the parents of each node are {8 €dual to 4 is reduced to cycles of 3 by inserting additional
Markov boundary elements. Hence the TALI-SES is a bounddtjks (chords) to the moral graph. The moral graph is said to
DAG. For definition of Markov Boundary and boundary DAGPE triangulated if it is chordal [19]. Note that in this pacti
please refer to [18]. Note that TALI-SES is a boundary DA €xample, moral graph is chordal and no additional lires a
because of the causal relationship between the inputs andtféded. Message passing in Junction Tregurktion treeis
outputs of a gate that is induced by logic. It has been provaffined as a tree of cliques (collection of completely cotetbc
in [18] that if graph structure is a boundary DA of a de- Sub graph) of the choral graph (cliques are connected byieniq
pendency modeM, thenD is a minimal I-map ofvi ( [18]). Pathas in Fig 7a). Junction tree possesses running intiensec
This theorem along with definitions of conditional indepene Property [19] that ensures that if two cliques share a common
cies, in [18] (we omit the details) specifies the structurénef Vvariable, the variable should be present n all the clighaslie
Bayesian network. Thus TALI-SES DAG is a minimal I-mag the unique path between them. Fig. 7b is the junction tree

and thus a Bayesian network (BN). derived from the chordal graph of Fig. 7a in this example. In-
terested readers are referred to [2] for a detailed degmmipf
V. BAYESIAN INFERENCE how local message passing is performed in junction trees.

We explore two inference schemes for the TALI-SES. The Note that since junction tree has no cycle and it is also not
first inference scheme is cluster based exact inferencetenddirectional, we can propagate evidence from any node at any
second one is based on stochastic inference algorithm vigiclique and the propagate the evidence in any direction. It is
an approximate non-simulative scalable anytime method.  in sharp contrast with simulative approaches where flow -of in

formation always propagate from input to the outputs. Thus,
A. Junction Tree Based Inference we would be able to use it for input space characterization fo

. . . achieving zero output error due to SEUs. We would instanti-
We demonstrate this inference scheme with a running ex: ! o
. T S .ate a desired observation in an output node (say zero endr) a
ample shown In Fig 6. The combinational circuit is shown in

Fig. 6a and a subset of the time transformed circuit in shawn Iacktrackthe Inputs that can create such a situation. et

Fig 6b. The Bayesian Network captures the effect of SEU g{@\ ce has large distance from_the charactenzed_ Input space
. " . : - can conclude that zero error is reasonably unlikely. Nodéd th
zero” at node 5 at a time instant 2 unit (denoted by the rand

Wis aspect of probabilistic modeling is already used in icedd

variabIeXS,ZSO on the output signal 6 at 3 time unit(denoted b}ﬂiagnosis but are new in the context of input space modeting f
random variableXs 3). Note that the error in output signs 3 soft error

is Te_(5,2)) Which is an xor combination dfs 3 andXe 3s Where

Xe,3s is the node that captures the effect of SEU at node 5 atThis exact inference in expensive in terms of time and hence

2 time unit. This is the original TALI-SES Bayesian Network$or larger circuits, we explore a stochastic sampling dtgar,

that we further process for exact inference. namely probabilistic Logic Sampling (PLS). This algorithm
The steps involved in the exact inference scheme are th@s been proven to converge to the correct probability esti-

scribed below. Moralization: Create an undirected grapicst mates [17], without the added baggage of high space contylexi

ture called themoral graphfrom the Bayesian network DAG and has been used in [16].
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TABLE Il
SIZE OF ORIGINAL AND TIME-EXPANDEDISCASCIRCUITS FOR

FANOUT-DEPENDENT DELAY MODEL
C7=[(X4.2). (X1.1).(x21)]

Gates Gates # of nodes| Time
expanded | (TALI) frames
c432 || 196 476 1989 55
c499 || 243 464 1596 30
c880 || 443 729 2552 51
c1355 || 587 1440 3388 55
c1908 || 913 1524 18118 79
@) c2670 || 1426 2584 4097 81
€3540 || 1719 3795 15670 93
. . c5315 || 2485 4887 13228 90
Fig. 7. (a) Chordal Graph (b) Junction Tree c6288 | 2448 30113 31157 263
c7552 || 3719 10006 45907 88
B. Probabilistic Logic Sampling (PLS)
o ) o ) ) node | SEU SEW
Probabilistic logic sampling is the earliest and the siraple P(Tji22) | P(T123) || P(Tj22) | P(Tj23)
stochastic sampling algorithms proposed for Bayesian Net- ﬁ) 8-32;2 020344 8-‘3‘?;? -
works [_17]. Prpb_abmnes are inferred by a complete set_ams 15 0315 T 01875 T 04375 104375
ples or instantiations that are generated for each nodeindt 19 0 0375 0 04375
work according to local conditional probabilities storéaach 22 0.4375 0 0.5625 0
node. The advantages of this inference are that: (1) its com- 23 0 04375 0 0.5625
plexity scales linearly with network size, (2) it is an atiy TABLE Il
algorithm, providing adequate accuracy-time trade-aff] £3)
. /. ESTIMATED P(Tj_i) VALUES OF NODES IN BENCHMARK €17 FROM EXACT
the samples are not based on inputs and the approach is input INFERENCE

pattern insensitive. The salient aspects of the algoritheraa
follows. tween the inputs and the output of a gate determines the condi
1. Each sampling iteration stochastically instantiatéshal tional probability of a child node, given the states of itsgus,
nodes, guided by the link structure, to create a netwoirkthe TALI-DAG.
instantiation. In Table Il we report the total number of gates in the actual
2. At each nodeyg, generate a random sample of its stateircuit (column 2), total number of gates in the modified ex-
based on the conditional probabilify(x|Pa(x)), where panded circuit (column 3), and the total number of nodesén th
Pa(x) represent the states of the parent nodes. This is tesulting TALI-SES (column 4). Column 5 lists the maximum
local, importance sampling function. time-frames of the circuits.
3. The probability of all the query nodes are estimated by the
relative frequencies of the states in the stochastic sagpliA. Exact Inference

trace. . In this section, we explore a small circuit c17, with exaet in
4. If states of some of the nodes are known (evidence), Syghace where we transform the original graph into juncties
as in diagnostic backtracking, network instantiations thg,, 4 compute probabilities by local message passing between

are incompatible with the evidence set are disregarded. o neighhoring cliques of the junction tree as outlinedeio-s
5. Repeatsteps 1, 2, 3and 4, until the probabilities comverg,, \/a  Note that this inference is proven to be exact [18],
We adopt the tool GeNie [14] for inference using Probablluflg](zero estimation error).

tic Logic Sampling. _ _ Table |1l tabulates the results of the TALI-SES of benchmark
Complexity: The computational complexity of the exact7 ysing the exact inference. In this table, we report tob-pr
method is exponential in terms of number of variables in thgyjjiiies of error at output nodes 22 and 23 due an SEU at each
largest cliques. Spa_ce complexity of the ex_act mferencgdgdej (column 1) namely (1011, 16, 19, 22and23). Column
n.2ma% [2], where n is the number of nodes in the Bayesiaf 4 3 of Table I give error probabilities due &EU! (0-1-
Network, andCmay is the number of variables in the largesg yansition) at output nodes 2ihd 23 respectively. Similarly
clique. The time complexity is given by 2°™ [2] where pis 4 apq 5 give error probabilities due 8E P (1-0-1 transition)

the number of cliques. o at output nodes 2and 23 respectively. We compare the error-
The time complexity, based on the stochastic inferenggeq outputs at 22 and 23 at sampling titgevith correspond-

scheme, is linear in, the number of nodes in the expanded cifp,g error sensitized outputs arriving at time frantes 1 and
cuit, specifically, it isO(n|Nseu|N), whereNsgy is the number ¢ qye to SEUs generated at a node at all possible time frames
of SEUs andN is the number of samples. (as discussed in section Il D). Columns 2, 3, 4 and 5 of Ta-
ble 11l reports the maximum of error probabilities due to SEU
originated at individual nodes at all time frames. From this

We demonstrate the modeling of SEU based on TALI-SHfe it can be seen that for this benchmark cir@&&W’s have
using ISCAS benchmark circuits. The logical relationshé bhigh impact on the output error probabilities th@EU's. Er-

V. EXPERIMENTAL RESULTS



SEW at node 19 such that no bit-flip occur at the outputs. This
is done by setting the output error probability at zero (lwrgg
“evidence” to the detection nodes in the Bayesian Netwankl) a
then back propagating the probabilities. We plot the prdbab
ties of each inputs,12, 3, 6 and7 that gives no output error for
anSEW at 19. Each column in the plot represents an input. The
mi m2  ms | me 7 lighter color represents the probability of that inpu® and the

o

PROBABILITIES
o
>
PROBABILITIES

In1 In2 In3 In6 In7

weuTS e black color represents the probability of inpatl (sum of these
two part should always beng. One can see that for obtaining
(a) (b) zero output error with aBEWL at 19, input 1 can be random, in-
put 2 and 7 have 65% probability of being at logic one and node
" P - Do ' We(n) <1 DPUm) <0 3 and 6 has probability of 30% for logic 1. Note that the input

space is nearly random (p(1)=p(0)=0.5) wigBU" at node 19
produces zero output error at both the outputs. Similar-char
acteristics are shown in Fig. 8c, 8d for characterizing tipait
space with respect to output errors wiE L° or SEU! occurs
ntome e e " s at node 11. Once again it can be seen that zero output error for
SEU! can be more likely by a random inputs than & .

o o o
5 &

=
PROBABILITIES

PROBABILITIES

°
N

(©) (d) B. Larger Benchmarks

Fig. 8. Input probabilities for achieving zero output esr¢at nodes 2and23 We use approximate inference for larger circuit using Proba

in presence of SEU's: (SEL at node 19 (bBEU" at node 19 (cBEU at  pjistic Logic sampling [17] which is pattern independeans

node 11 (d$EU! at node 11 for ¢17 benchmark ' . .
dom markov chain sampling and has shown good results in
many large industry-size applications.

ror probability at output node 22 due to 8EU* at node 11,is N Fig. 9(a), we plot the number of gates and the number of
very low (0.0625) whereas error probability at output 22 tue possibly sensitized SEUs for ISCAS benchmarks. This retdiuce
SEW at 11 is 0.3125. It also shows that the effect of SEUs ark=Y list was created based on fanout-dependent delay model
not the same over all outputs. For example S at node @nd assuming an SEU duratiérequal to one time unit. We

19 causes no error at output 22 whereas error probabilityajué)et @ considerable reduction in the number of listed SEUs com
this SEU at output node 23 is 0.4375. Note that nodes 22 &@fed to the number of gates in a circuit. This is because re-
23 are the output nodes. SEUs occurring at these nodes at sa¢ed SEU list is generated by traversing backward from the
pling timets or timets — 1 will be latched by an output latch, final outputs evaluated at sampling tirgeandts — 1 and only

and are expected to cause very high error probability. HeweJl0Se gates thatlie between the final outputs and duplicaésg
from Table Ill, it is observed that probability of occurrenof Need to be considered for SEU sensitivity analysis. Depend-
an error due t&EU! at node 23 is only 0.4375. Similarly, probNg On the input pattern and the circuit structure, only a éw
ability of occurrence of an error due 8EU! at node 22 is also these SEUs actually cause soft errors. Based on the estimate
0.4375. This is due to the type of input pattern. In this worlEU sensitivityP(Tj) as explained in Section 1l D, we clas-

we assume random inputs. This result shows the dependenc@i¥fthe SEU sensitive gates in a circuit into three categri
input pattern oP(T; ;). gates wherd>(T;) is (i) less than or equal to 0.3 (ii) between

0.3 and 0.6 and (iii) above 0.6. This is plotted in Fig. 9(b).
These results are helpful to apply selective redundancy mea
sures or to modiffP(SEUY) (by changing device features) by
In this section, we describe the input space charactesizatgiving higher priority to nodes those are in the high sevigjti
for a particular observation exploring the diagnostic fieeck- range than those in the lower sensitivity ranges. From Klgj, 9
ing) feature of the TALI-SES model. Note that this featuré can be seen that the SEU sensitive nodes of circuit c432 are
makes it really unique as instead of predicting the effedhof equally distributed within the three probability rangeks (ii)
puts and SEU at a node on the outputs, we try to answer quesad (iii), whereas all the SEU sensitive nodes in circuits3.3
like “What input behavior will make SEU at node j definitelylie within the middle range whei(T;) is between 0.3 and 0.6.
causing a bit-flip the at circuit outputs?” or “What input beResults of c7552 shows thR({T;) of most of the SEU sensitive
havior will be more conducive to no error at output given thatodes is in the lowest range (less than or equal to 0.3), which
there is an SEU at node j?” Resolving queries like this, dids tindicates that gates in this circuit do not require extesnbiard-
designer in observing the input space and helps perfornt ingning techniques, whereas majority of SEU sensitive gates i
clustering or modeling. Let us take an example of c17 benat2670 requires extensive hardening techniques si{de) is
mark. We explore the input space for studying the effect wéry high (above 0.6) for these nodes.
SEW andSEU! at node 19 on errors on both the outputs (22 We implemented the SEU simulator based on the work done
and 23). One can characterize input space for any one of theg4] with a fanout-dependent delay model for the ground
outputs (or in general effect of SEU at any node on any othenth. We performed the simulation with 5@D0 random vec-
subset of nodes). Fig 8a characterizes the input space fort@s obtained by changing seed after every 50000 vectors to

A.1 Input Space Characterization
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Fig. 9. (a)SEU List-Fanout Dependent Delay Model (b)SEUs8m®ity Range-Fanout Dependent Delay Model, with Deltalnput Bias=0.5

TABLE IV of nodes and the number of samples. We show results for Prob-

SEU SNSITIVITY ESTIMATION ERRORS AND TIME FOR9999sampLEs.  abilistic Logic Sampling (PLS) with 9999 samples.
Figure 10(a) shows the number of possibly sensitized SEUs

(Emean (Emav) Ton(S€Q vs. the number of gates in ISCAS benchmarks. From this graph,

432 ]| 0.0031 0.0069 18.57 it can be seen that the number of SEUs in the reduced SEU list is

gggg 8:883‘71 8:8333 5:;"3 low compared to fanout dependent delay model. This is due to
c1355 || 0.0027 0.0120 28.84 high gate delay values with logical effort based delay miodel
c1908 || 0.0028 0.0120 176.63 since we take into account the input capacitance as wellras pa
gggzg 8;g8§‘3‘ 8:3182 22'87.87 asitic delay in addition to fanout. Due to increased gatayel
c5315 || 0.0045 0.0112 191,60 the relative effect of an SEU at an internal gate on a primary
c7552 || 0.0035 0.0100 513.05 output during latching period is less since most of the dgyna

get enough time to restore to their ideal values. Figure 10(b
shows the SEU sensitivity ranges of gates in the circuitt) wi
an input bias of 0.5 and SEU width equal to one time unit. As
with fanout-dependent delay modeling, here also we chatsf

get the ground-truth SEU probabilities. For our probatdis
framework, we use Probabilistic Logic Sampling [17] infiece
scheme. We compute the SEU sensitivitRpsof gates in IS-

CAS benchmark circuits using Probabilistic Logic Samplin EU sensitive gates in a circuit into 3 categories. Gatds et

(PLS) [17] with 9999 samples and compare our results Wiffl, . sensitivity values (1) less than 0.3, (2) betwe@ra@d

grour_wd—truth simulation resglts. Tabl_e IV_ gives the averag- 0.6 and (3) above 0.6. Given any delay library for a logicwirc
timation erroiEmeanand maximum estimation eroax Here o 4el'can be used to classify the gates in the circuitén th

Emteantq fa C|rch|tb|_?che ?;eErSge of_?ﬁ_f:_erencgfgtw;fenﬂ@ order of their SEU sensitivity values capturing logical king
etection probabilities ( sensitivities) obtained from sim- effect, circuit structure, input pattern and SEU duration.

ulation and estimated probabilities from PLS sampling aer Please note the above estimated probability values are rela

p_oss@b_le SEU se_nsitive nodes in the circuit. Simildthyax o_f_a tively high when we consider the overall soft error susd®ity
qrcun IS the max'm“T“ of d|_fference be_tween @EUSGII’.]S.I'[.IV- of individual gates. To get a comprehensive model, the mlect
ities obtained from simulation and estimat8BU sensitivities al masking effect, latching window masking effect and also
fr.om.PLS samp_ling over all possible S.EL_J.sensitive nodesen e SEU generatio,n and propagation characteristics ofiohdi
glrcwrt]. Wi est_ltrr?ated the SE:JJ ls_,epsnlvnlestgll t?e IS?ASOS al gates are to be incorporated with our model. Modeling-ele
enchmarks with an average beliel propagation ime o trical masking effect needs circuit level simulation teicjues,

Sec, yvhgreas the average t|m§ taken for logic simulatiamesi which we are trying to integrate with our current approach as
circuits is 33 hours. Estimation error over all benchmagks f]yture direction

below 0.0034 which shows excellent accuracy-time trade-o
Tonis the total elapsed timé&cluding memory and I/O access VI. CONCLUSION

We are able to effectively model Single-event-Upsets incog
circuits (ISCAS benchmarks) to estimate the SEU sensitivit

In this section we give estimation results from our modehwitof individual nodes in a circuit capturing spatial and temgbo
logical effort based gate delay modeling. In Table V, wetligt signal correlations, specially emphasizing the effectngiuis,
number of nodes in TALI Bayesian network and the estimatigate delay, SEU duration and circuit structure. We showltesu
time in seconds for some of the ISCAS benchmarks. Numbeith exact and approximate inferences. Using exact infexen
of TALI nodes depends on the SEU list as well as the circuite characterize input space which gives zero output errem ev
size, whereas estimation time directly depends on the numbethe presence of some SEUs. Results from approximate infer

C. Results with Delay Model based on Logical Effort
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Fig. 10. (a)SEU List-Logical Effort Delay Model (b)SEU Séivity Range-Logical Effort Delay Model with Delta =1 andput Bias = 0.5

TABLE V
Size OF TALI-M ODEL AND ESTIMATION TIME FOR LOGICAL-EFFORT [10]
BASED DELAY MODEL

# of nodes| Estimation 11
(TALI) Time(s) (11]

c432 || 2390 22.32
c499 || 7814 65.75 [12]

c880 || 1097 12.49

c1355 [| 1773 15.092

c1908 [| 2279 22.22 [13]
c3540 || 14370 135.79 [14]
[15]

ence shows excellent accuracy-time trade-offs. We refget S
sensitivity estimates for fanout dependent delay modelebs w
as for logical effort based delay model. Given an approgri
delay library of gates in a circuit, our model is capable cf es
timating SEU sensitivities of individual gates in the citand [17]
these results can be used for classifying gates for apjolicat [18]
mitigation schemes. Future effort includes modeling wiith b
ased input patterns and also for different SEU widitto study [19]
the effect of these factors on SEU sensitivities. We are also
investigating on the effect of threshold voltage and supply- [20]
age on the electrical masking effect on transient pulsesezthu

. [21]
by particle bombardment.
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