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Abstract—
With device size shrinking and fast rising frequency ranges, effect of

cosmic radiations and alpha particles known as Single-Event-Upset (SEU),
Single-Event-transients (SET), is a growing concern in logic circuits. Ac-
curate understanding and estimation of Single-Event-Upset sensitivities of
individual nodes is necessary to achieve better soft error hardening tech-
niques at logic level design abstraction. We propose a probabilistic frame-
work to the study the effect of inputs, circuits structure and gate delays on
Single-Event-Upset sensitivities of nodes in logic circuits as a single joint
probability distribution function (pdf). To model the effe ct of timing, we
consider signals at their possible arrival times as the random variables of
interest. The underlying joint probability distribution f unction, consists
of two components: ideal random variables without the effect of SEU and
the random variables affected by the SEU. We use a Bayesian Network to
represent the joint pdf which is a minimal compact directional graph for
efficient probabilistic modeling of uncertainty. The attractive feature of
this model is that not only does it use the conditional independence to ar-
rive at a sparse structure, but also utilizes the same for smart probabilistic
inference. We show that results with exact (exponential complexity) and
approximate non-simulative stimulus-free inference (linear in number of
nodes and samples) on benchmark circuits yield accurate estimates in rea-
sonably small computation time.

I. I NTRODUCTION

High-energy neutrons present in cosmic radiations and alpha
particles from packaging materials give rise to single event up-
sets (SEUs) resulting in soft errors in logic circuits. Whenpar-
ticles hit a semiconductor material, electron-hole pairs are gen-
erated, which may be collected by a P-N junction, resulting in a
short current pulse that causes logic upset or Single Event Up-
set (SEU) in the signal value. An SEU may occur in an internal
node of a combinational circuit and propagate to an output latch.
When a latch captures the SEU, it may cause a bit flip, which
can alter the state of the system resulting in a soft error. Incur-
rent technology, soft errors are of serious concern in memories,
whereas in logic circuits soft error rate is comparatively low due
to logical, electrical and temporal masking effects. However, as
process technology scales below 100 nanometers and operating
frequencies increase, the above masking barriers diminishdue
to low supply voltages, shrinking device geometry and small
noise margin. This will result in unacceptable soft error failure
rates in logic circuits even for mainstream applications [1].

Soft error susceptibility of a nodej with respect to a latchL,
SESj QL is the soft error rate at the latch outputQL, contributed
by nodej. The propagation of an SEU generated due to a parti-
cle hit at an internal nodej to an outputi which causes a bit flip
at the output of a latchL is depicted in Fig. 1.

We model the SEU propagation as follows: LetTj i be a
Boolean variable which takes logic value 1 if an SEU at a node
j causes an error at an output nodei. ThenP(Tj i) (measured as
the probability ofTj i being equal to 1) is the conditional proba-
bility of occurrence of an error at output nodei given an SEU at
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Fig. 1. SEU Propagation.

nodej. LetP(SEUj) be the probability that a particle hit at node
j generates an SEU of sufficient strength and letP(QLjTj i) be
the probability that an error at output nodei causes an erroneous
signal at latch outputQL. MathematicallySESj QL is expressed
by Eq. 1.

SESj QL = RHP(SEUj)P(Tj i)P(QLjTj i) (1)

whereRH is the particle hit rate on a chip which is fairly uniform
in space and time.P(SEUj) depends onVdd, Vth and also on
temperature.P(QLjTj i) is a function of latch characteristics
and the switching frequency.

In this work, we exploreP(Tj i) by accurately considering
the effect of (1)SEU duration, (2) effect of gate delayand (3)
timing, (4) re-convergencein the circuit structure and most im-
portantly (5)inputs.

We model internal dependency of the signals taking into con-
sideration timing issues so that the SEU sensitization proba-
bility (P(Tj i)) captures the effect of circuit structure, circuit
path delay and also the input space. A fan-out dependent de-
lay model is assumed where gate delay of each node is equal to
its fan-out. We also use logical effort based delay model where
gate delays are dependent not only on fan-out but also on input
capacitance as well as parasitic capacitance. Due to the tempo-
ral nature of SEUs, not all of the SEUs cause soft errors. Let
th be the time when an SEU originates at a node,δ be the SEU
duration,ts be the time when outputs are sampled andΠ be the
set of propagation delays(td) of sensitized paths from the node
to the circuit outputs. Nodes satisfying the following conditions
do not cause soft error [4]:

th+δ+ td < ts 8td 2 Π: (2)

Even though the above empirical formula doesn’t take into ac-
count of set up and hold time requirements which affect latch-
ing window masking, we use this equation for our modeling
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because this is pretty accurate as far as logical masking effect,
circuit structure and gate delays are concerned.

We use a circuit expansion algorithm similar to that presented
in [4], [15] to embed time-related information in the circuit
topology without affecting its original functionality. From the
expanded circuit, we generate a list of SEUs (possible SEU list)
that are possibly sensitized to the circuit outputs at the time
frame when output signals are latched. From the expanded
circuit and the possible SEU list, we construct an error detec-
tion circuit and model SEU in large combinational circuits us-
ing a Timing aware Logic induced Soft Error Sensitivity model
(TALI-SES), which is a complete joint probability model, rep-
resented as a Bayesian Network.

Bayesian Networks are causal graphical probabilistic models
representing the joint probability function over a set of random
variables. A Bayesian Network is a directed acyclic graphical
structure (DAG), whose nodes describe random variables and
node to node arcs denote direct causal dependencies. A directed
link captures the direct cause and effect relationship between
two random variables. Each node is quantified by the condi-
tional probability of the states of that nodegiven the states of
its parents, or its direct causes. The attractive feature ofthis
graphical representation of the joint probability distribution is
that not only does it make conditional dependency relationships
among the nodes explicit but it also serves as a computational
mechanism for efficient probabilistic updating. Bayesian net-
works have traditionally been used in medical diagnosis, artifi-
cial intelligence, image analysis, and specifically in switching
model [2] and single stuck-at-fault/error model [5] in VLSIbut
their use in timing aware modeling of Single-Event-Upsets is
new. We first explore an exact inference scheme also known
as clustering technique [13], where the original DAG is trans-
formed into special tree of cliques such that the total message
passing between cliques will update the overall probability of
the system. We then explore a stochastic inference strategy,
named Probabilistic Logic Sampling (PLS) [17], where a full
instantiation of the probabilistic network is collected based on a
simplified importance function. The sampling is stopped when
the probabilities of the nodes converge.It is worth pointing out
that unlike simulative approaches that sample the inputs, im-
portance sampling based procedures generate instantiations for
the whole network, not just for the inputs.These samples can
be looked upon as Markov Chain sampling of the circuit state
space.

The salient features of modeling SEU by Bayesian Network
are as follows.

1. We provide a comprehensive model for the underlying
error framework using a graphical probabilistic Bayesian
Network based model TALI-SES that is causal, minimal
and exact.

2. We can model the effect of timing and transient nature
of the SEU’s along with the accurate modeling of re-
convergence in the circuit.

3. This model captures the data-driven uncertainty in the
modeling of soft error that can be used where exact in-
put patterns are not known apriori and also can be used by
building a probabilistic model in case data traces are avail-
able by learning algorithm [21].

4. We infer error probabilities by (1) exact inference that
transforms the graph into a special junction tree structure
and relies on local message passing scheme and also by
(2) smart stochastic non-simulative inference algorithms
that have the feature of any-time estimates and generates
excellent accuracy time trade-off for larger circuits.

5. Bayesian Networks are unique tool where effect of an ob-
servation at a child node can be used to get a probability
space of the parents. This is called backward reasoning.
Our model can be used to generate input space for which
the SEU occurring at a particular nodej might have no
impact on the outputs. Note that in such case, hardening
techniques will not be needed for nodej. Similarly, we
can find input space for which SEU at a nodej cause high
error probability at outputs. If the data trace is similar to
the second type of input space, extensive hardening tech-
niques need to be applied toj.

The remainder of this paper is organized as follows. Sec-
tion II is a summary of the prior works done on soft error mod-
eling and analysis. In section IV we discuss Bayesian infer-
ence schemes - both exact and approximate(stochastic) infer-
ence. This is followed by section V where we give experimental
results using both exact and stochastic inference. Using exact
inference we can characterize the input space to achieve zero
output error even in the presence of some of the SEUs. The
exact inference works well for small circuits. To handle larger
circuits we use a stochastic inference scheme and compare our
results with logic simulation results and found that our model-
ing is accurate (close-to-zero error) and efficient.

II. BACKGROUND

An estimation method for soft error failure rates resulting
from Single Event Upsets proposed in [1] computes soft error
susceptibility of a node based on the rate at which a Single Event
Upset (SEU) occurs at the node(RSEU), the probability that it is
sensitized to an output(Psensitized) and the probability that it is
captured by a latch(Platched). A model that captures the effects
of technology trends in the Soft Error failure Rates (SER), con-
sidering different types of masking phenomena such as electri-
cal masking, latching window masking and logical masking, is
presented in [3]. Another model to analyze Single Event Upsets
with zero-delaylogic simulation, which is accurate and faster
than timing simulators, is presented in [4]. As discussed inthe
previous section, this model uses a circuit expansion algorithm
to incorporate gate delays and a fault list generation algorithm
to get a reduced list of SETs. All of the above methods use sim-
ulation techniques which are highly input pattern dependant.

Zhaoet al. proposes a methodology to evaluate softness or
vulnerability of nodes in a circuit due to compound noise ef-
fects by considering the effects of electrical, logical andtiming
masking [11]. A selective triple modular redundancy technique
(STMR) for achieving radiation tolerance in FPGA designs is
discussed in [10]. Karniket al. suggests that soft error rate
should be considered as a design parameter along with power,
performance and area due to its increasing impact on circuits
and systems with the scaling of process technology [6]. Ef-
fect of threshold voltage on SER of memories and combina-
tional logic has been studied in [7]. Zhanget al. in [12] pro-
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Fig. 2. Time-space transformed circuit of benchmark c17, modeling all SEUs.

posed a composite soft error rate analysis method (SERA) to
capture the effect of supply voltage, clock period, latching win-
dow, logic depth, circuit topology and input vector on soft error
rate. Their method uses a conditional probability based parame-
ter extraction technique obtained from device and logic simula-
tion. In their work, combinational circuits are assumed to have
unbalanced re-convergent paths. However, other design consid-
erations usually drive optimal circuit design to have balanced
paths by adding buffers wherever re-convergence is necessary.
For circuits with balanced paths, soft error analysis basedon
approximations given in [12] might not be the best choice.

Since all the state-of-the-art techniques have resorted tosim-
ulation for logical and device level effects (known to be expen-
sive and pattern-sensitive especially for low probabilityevents),
we felt the need to explore the input data-driven uncertainty in
a comprehensive manner through a probabilistic model to cap-
ture the effect of primary inputs, the effect of gate delay and the
effect of SEU duration on the logical masking. There is future
scope for these kinds of models to be fused with other mod-
els [6], [7], [12] for capturing device effects such as electrical
masking, threshold voltage and supply voltage.

III. T HE PROPOSEDMODEL

In this section, we first focus on handling the timing aware
feature of our probabilistic model, followed by the fault list con-
struction. We conclude the section with discussion about the
model itself, given the timing-aware graph and the fault list.

A. Timing Issues

We first expand the circuit by time-space transformation of
the original circuit, without changing its functionality.The ap-
proach is similar to the method discussed in [4], [15]. Fig. 2is
the expanded circuit of benchmarkc17. A gate in the original
circuit C will have many replicate gates in the expanded circuit
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Fig. 3. Modified time-space transformed circuit of benchmark c17, modeling
only the possibly sensitized SEUs.

C0, corresponding to different time-frames at which the gate out-
put is evaluated. The output evaluation timefTg of each gate
in the circuit is calculated based on variable delay model. We
assume that the delay associated with a gate is equal to its fan-
out. For each gateg whose output is evaluated at timet 2 fTg
a replicate nodeg; t is constructed. In addition to these repli-
cate gates, we insert some duplicate gates (shown by filled gate
symbols in Fig. 2). We explain the reasons for adding these
duplicate gates later in this section.

The inputs ofg; t are the replicate nodes of the gates, which
are the inputs ofg in the original circuit and belongs to the time-
framest 0 < t. We consider the value of signali at timet by (i; t).
Now the random variable that represents the value of a signali
at time t is denoted byXi;t . The circuit outputs reach steady
state values,X22;0 and X23;0 at t = 0, after the application of
the previous inputs,fX1;0;X2;0; X3;0; X6;0; X7;0g. Let the new
inputsfX1;1;X2;1; X3;1; X6;1; X7;1g be applied att = 1. X10;2 is
the signal value at the output of gate 10 at time instant 2.

We insert a few duplicate gates (example:(10;4), (10;5),(19;5), etc. shown by filled gate symbols) due to the following
reasons:

Input signals of certain gates in the circuit might have differ-
ent arrival time due to the difference in path delays. In order
to model the effect of any SEU generated at the junction of the
gates at time instants, later than the signal’s arrival time, we in-
sert additional duplicate nodes for those internal signalswith
less path delay. For example, in Fig. 2, input signals to gate22
have path delays 2 and 5 respectively. The final output signal(22;6) is evaluated with input signals(16;5) and(10;5). If no
SEUs originated at the output of gate 10 between time instants
2 and 5,(10;2) and (10;5) would be the same. However, in
the event an SEU occurs at node 10 att = 5, (10;2) and(10;5)
may differ depending on the inputs, which can cause a wrong
output signal at(22;6). We model the effect of SEU at(10;5)
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by introducing a duplicate gate(10;5) whose inputs are(1;1)
and(3;1). Similarly, (10;3), (10;4), (19;4)and (19;5) are other
duplicate gates. Duplicate gates also model the masking effect
of some of the SEUs generated in the signal path of the input
having lesser path delay. Example: Duplicate gate(10;5) mask
the effect of an SEU originated at the output of gate 10, at time
t = 2. Thus we can arrive at a reduced SEU list which is further
explained later in this section.

Steps for constructing the timing-aware expanded circuit,
based on fan-out dependent delay model are the following:

1. Arrange gates in the order of levels, with the level of input
gates equal to zero.

2. Include all gates that are present in the original circuit.
Output signals of these gates represent the steady state sig-
nal values att = 0, before the application of new inputs.

3. Add additional input nodes representing new input signal
values att = 1;

4. For each level of the circuit starting from levell i = 1, re-
peat the following step:
For each gateg in level l i , create replicate gates at time
framet =tp + fg, wheretp is the maximum time frame of
the previously inserted parent gates ofg and fg is the fan-
out of gate g. Update time frames of gateg.

Output signals of a circuit are sampled att = ts, wherets is the
maximum of the latest signal arrival times of the output signals.
SEUs which do not satisfy Eq. 2 affect circuit outputs resulting
in soft errors. These SEUs are the upsets generated at the output
of gates, which are in the fan-in cones of final outputs (outputs
evaluated at timets). SEUs occurring at certain other gates,
which are not in the fan-in cones of the final outputs, may also
affect circuit outputs. These nodes arise due to the SEU duration
time δ. For example in Fig. 2, we see that the final outputs are
generated at time instant t=6. If an SEU occurs at signal 19 at
4 ns and lasts for one time unit, it will essentially be capable of
tampering the value of node 23 at 6 ns. Note that we assume that
δ is one time unit. The fault list will be different if we change
the value ofδ. Thus we can see that SEUs which are sensitized
to outputs at time frames betweents andts� δ may cause soft
errors, depending on the input signals and circuit structure.

Considering the above factors, we modify the expanded cir-
cuit by including only those gates that propagate SEUs to the
outputs between time instants,ts andts� δ. Thus we get a con-
siderable reduction in the circuit size. Fig. 3 is the modified
expanded circuit of c17, which models all SEUs possibly sensi-
tized to a final output.

Next, we discuss how to generate a list of possible SEUs af-
fecting the circuit outputs. Not all gates in Fig. 3 are SEU sen-
sitive. As discussed above, a duplicate node introduces an ad-
ditional delay of at least one time unit. If the delay introduced
by a duplicate gate is greater than or equal toδ, the SEU du-
ration time, the effect of SEUs originated at any of the gates
in the fan-in cones of the duplicate gate is nullified and correct
signal value is restored at the output of the duplicate gate,and
hence those SEUs are effect-less. Thus we create a reduced list
of SEUs by traversing the modified extended circuit from each
of the circuit outputs at time instants betweents andts�δ, until
a duplicate gate or an input node is reached.

TABLE I

GATE DELAYS BASED ON LOGICAL EFFORT

Gate Type Delay
Inverter f anout+Pinv

n-input NAND n+2
3 � f anout+nPinv

n-input NOR 2n+1
3 � f anout+Pinv

2-input XOR 4� f anout+4nPinv

B. Delay Modeling Based on Logical Effort

We extend this work by using logical effort based model
which is dependent on fan-out, input capacitance as well as par-
asitic delay. In this section we explain how gate delays are cal-
culated based on logical effort [20]. Delay of a logic gate can
be expressed as the sum of two components, effort delay and
parasitic delay. effort delay is the product of logical effort and
electrical effort, where logical effort is defined as the relative
ability of a gate topology to deliver current and electricaleffort
is the ratio of output capacitance to input capacitance. Electrical
effort is sometimes called fan-out. Mathematically, gate delay
is expressed asd = f + p= gh+ p where f is effort delay,p
is the parasitic delay,g is the logical effort andh is electrical
effort. Logical effort is defined to be 1 for an inverter. Hence
logical effort is the ratio of input capacitance of a gate to the
input capacitance of an inverter delivering the same outputcur-
rent. It can be estimated counting capacitance in units of tran-
sistor width. Parasitic delay represents delay of a gate driving
no load and it depends on diffusion capacitance. parasitic de-
lay of an inverter,Pinv � 1. From the above considerations, we
compute basic CMOS gate delays and use these delay values in
our model. Table below shows the delay expressions for basic
gates.

Circuit expansion is performed in a similar way as explained
in the above section. Each gate is replicated several times corre-
sponding to the time frames at which new gate output signals are
evaluated. Here, gate output evaluation time is based on delay
values calculated as above. This is illustrated in Figure 3 which
shows how benchmark circuitc17 is expanded with logical ef-
fort based gate delay model. Delay of a 2-input nand gate with
one fan-out is calculated as 3.33 time units and that of a 2-input
gate nand gate with 2 fan-out is 4.67 time units. Final outputis
evaluated at time unitTs = 13:67. From this expanded circuit,
we arrive at a reduced circuit by traversing backward from out-
puts evaluated atTs andTs� δ until a duplicate gate or an input
is reached, thereby modeling only the possibly sensitized SEUs.

C. Bayesian Networks

Bayesian Networks are graphical probabilistic models repre-
senting the joint probability function over a set of random vari-
ables using a directed acyclic graphical structure (DAG), whose
nodes describe random variables and node to node arcs denote
direct causal dependencies. In a Bayesian network, the exact
joint probability distribution over a set ofn variables,X1 � � � ;Xn

in this network is given by Eq. 3.

P(xn;xn�1; � � � ;x2;x1) = P(xnjxn�1; � � � ;x1)
P(xn�1jxn�2; � � � ;x1) � � � � � �P(x1) (3)
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Any random variable,Xk is independent of all other variables,
given the states of its parent nodes, say,Xk�1 andXk�2. This
conditional independencecan be expressed by Eq. 4.

P(xkjxn;xn�1; � � � ;x1) = P(xkjxk�1;xk�2)) (4)

Mathematically, this is denoted as
I(Xk; fXk�1; Xk�2g; fXn; � � � ; Xn�1g). Using the conditional
independence in directional graph, we arrive at an optimal
factorized form that involve conditional probabilities based
on the parents (or direct causes, inputs) to a node (effect,
output):P(X) = ∏m

k=1 P(xkjpa(xk)). Even though probabilistic
inference is worst-case NP-Hard, these factorized forms can
reduce complexity significantly for general cases.

D. TALI: Timing-aware-Logic-induced Soft error model

In this section, we first describe the proposed Bayesian net-
work based model, which can be used to estimate the soft error
sensitivity of logic blocks. This model captures the dependence

of SEU sensitivity on the input pattern, circuit structure and the
gate delays. Note that this probabilistic modeling does notre-
quire any assumptions on the inputs and can be used with any
biased workload patterns. The proposed model, Timing-Aware-
Logic-Induced-Soft-Error-Sensitivity (TALI-SES) Modelis a
Directed Acyclic Graph (DAG) representing the time-space
transformed, SEU-encoded combinational circuit,< C0; J >
whereC0 is the expanded circuit created by time-space trans-
formation as discussed in section. A andJ is the set of possible
SEUs (also discussed in section A). The error detection cir-
cuit consists of the expanded circuitC

0
, an error sensitization

logic for each SEU and a detection unitT consisting of several
comparator gates. We explain it with the help of a small exam-
ple shown in Fig 5(a), which is the error detection circuit for a
small portion of benchmark c17. The error sensitization logic
for an SEU at node j consists of the duplicate descendant nodes
from j. In Fig. 5(a), the block with the dotted square is the sen-
sitization logic for 16;51

s [An SEU1 at node 16 at timet = 5]. It
consists of nodes 22;5s and 22;6s descending from node 16;5
of the time-space transformed circuit. For simplicity, we show
the modeling of only one SEU in this example. Our model can
handle any number of SEUs simultaneously. Each SEU sensiti-
zation logic has an additional input to model the SEU. Example:
inputSEU1

16;5. This input signal value is set to logic one in order
to model the effect of a 0-1-0 SEU occurring at node 16 at time
frame 5.

As discussed previously in section A, an SEU lasting for a
durationδ can cause an erroneous output if its effect reaches
the output at any instant between the sampling timets and time
framets� δ. In this work we assumeδ to be one. Hence we get
error sensitized outputs at time framets and for some SEUs at
ts� 1 also, if there exist re-convergent paths between SEU lo-
cation and an output. We need to compare the SEU-free output
signals evaluated at the sampling time,ts with the correspond-
ing SEU-sensitized output signals arriving atts�1 andts. Hence
these signals are sent to a detection unitT. The comparators in
the detection unit compare the ideal and error sensitized outputs
with the corresponding error-free outputs and generate test sig-
nals. For example, the test signals for an SEU at nodej at time
t areT( j ;t) (i;ts) andT( j ;t) (i;ts�1). If any of these the test signal
value is 1, it indicates the occurrence of an error. The proba-
bility P(T( j ;t) i), which is a measure of the effect of SEU( j; t)s
on the output nodei is computed as a joint probability which is
explained below:

Let A be an event that an SEU at nodej causes a bit-flip at
output i at time ts and letB be an event that an SEU at node
j causes a bit-flip at outputi at time ts� 1. P(A = 1) is the
probability of occurrence of error and at timets. P(A= 0) is the
probability that SEU doesn’t cause an error atts. P(B) can be
explained in a similar way. The Error probability due to an SEU
at nodej at timet w.r.t. outputi is the joint probability

P(A[B) =P(A= 1;B= 0)+P(A= 0;B= 1)+P(A= 1;B= 1)
(5)

which is expressed as:

P(T( j ;t) i) = P(T( j ;t) (i;ts)[T( j ;t) (i;ts�1)): (6)

An SEU can have effect on more than one output. The overall
effect of an SEU( j; t)s on the outputs is computed asP(T( j ;t)) =
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max8ifP(T( j ;t) i)g. In the example the SEU(16;5)s is sensitized
to outputs 22,6 and 23,6. Hence the two test signals for this SEU
areT(16;5) (22;6) andT(16;5) (23;6).

An SEU occurring at nodej at timet, which is eitherSEU1

or SEU0 (but not both),can cause a bit-flip at the output with
probabilityP(T1

j ;t) or P(T0
j ;t). In order to compute the SEU sen-

sitivity of a node, we take the worst case probability, which
is the maximum of the above two probabilities.P(Tj ; t) =
maxfP(T1( j ;t));P(T0( j ;t))g

More than one SEU can originate at a node at different time
frames. Considering the effect of SEUs at node j at all time
frames, we compute the worst case output error probability due
to node j asP(Tj) = max8tfP(T( j ; t))g, which is the maximum
probability over all time frames.

These detection probabilities depend on the circuit structural
dependence, the inputs, dependencies amongst the inputs, gate
delays and the SEU duration. In this work we assume random
inputs for experimentation and validation of our model.

We construct the TALI-SES Bayesian Network of the SEU
detection circuit by nodes which are random variables repre-
senting signal values of the SEU detection circuit. A signali in
the detection circuit is represented by the random variableXi in
the Bayesian Network.

In TALI-SES DAG structure the parents of each node are its
Markov boundary elements. Hence the TALI-SES is a boundary
DAG. For definition of Markov Boundary and boundary DAG,
please refer to [18]. Note that TALI-SES is a boundary DAG
because of the causal relationship between the inputs and the
outputs of a gate that is induced by logic. It has been proven
in [18] that if graph structure is a boundary DAGD of a de-
pendency modelM, thenD is a minimal I-map ofM ( [18]).
This theorem along with definitions of conditional independen-
cies, in [18] (we omit the details) specifies the structure ofthe
Bayesian network. Thus TALI-SES DAG is a minimal I-map
and thus a Bayesian network (BN).

IV. BAYESIAN INFERENCE

We explore two inference schemes for the TALI-SES. The
first inference scheme is cluster based exact inference and the
second one is based on stochastic inference algorithm whichis
an approximate non-simulative scalable anytime method.

A. Junction Tree Based Inference

We demonstrate this inference scheme with a running ex-
ample shown In Fig 6. The combinational circuit is shown in
Fig. 6a and a subset of the time transformed circuit in shown in
Fig 6b. The Bayesian Network captures the effect of SEU of
“zero” at node 5 at a time instant 2 unit (denoted by the random
variableX5;2s0 on the output signal 6 at 3 time unit(denoted by
random variableX6;3). Note that the error in output signalX6;3
is T6 (5;2)) which is an xor combination ofX6;3 andX6;3S where
X6;3S is the node that captures the effect of SEU at node 5 at
2 time unit. This is the original TALI-SES Bayesian Networks
that we further process for exact inference.

The steps involved in the exact inference scheme are de-
scribed below. Moralization: Create an undirected graph struc-
ture called themoral graphfrom the Bayesian network DAG

X1

X2

X3

X5

X4

X6

X3,1

X2,1

X1,1

X5,2S
0

X5,2

X4,2

X6,3

T6_(5,2)

X6,3S

(a) (b)

Fig. 6. (a) A small Logic circuit (b) Time transformed Bayesian Network

structure by adding undirected edges between the parents ofa
common child node and dropping the directions of the links.
The moral graph represents the Markov structure of the under-
lying joint function [19]. The dependencies that are preserved
in the original DAG are also preserved in the moral graph [19].
The dashed edges in Fig. 7a are added at this stage. This step
ensures that every parent child set is a complete sub graph. Tri-
angularization: In this step, every cycles of length greater than
or equal to 4 is reduced to cycles of 3 by inserting additional
links (chords) to the moral graph. The moral graph is said to
be triangulated if it is chordal [19]. Note that in this particu-
lar example, moral graph is chordal and no additional links are
needed. Message passing in Junction Tree: Ajunction treeis
defined as a tree of cliques (collection of completely connected
sub graph) of the choral graph (cliques are connected by unique
path as in Fig 7a). Junction tree possesses running intersection
property [19] that ensures that if two cliques share a common
variable, the variable should be present in all the cliques that lie
in the unique path between them. Fig. 7b is the junction tree
derived from the chordal graph of Fig. 7a in this example. In-
terested readers are referred to [2] for a detailed description of
how local message passing is performed in junction trees.

Note that since junction tree has no cycle and it is also not
directional, we can propagate evidence from any node at any
clique and the propagate the evidence in any direction. It is
in sharp contrast with simulative approaches where flow of in-
formation always propagate from input to the outputs. Thus,
we would be able to use it for input space characterization for
achieving zero output error due to SEUs. We would instanti-
ate a desired observation in an output node (say zero error) and
backtrack the inputs that can create such a situation. If theinput
trace has large distance from the characterized input space, we
can conclude that zero error is reasonably unlikely. Note that
this aspect of probabilistic modeling is already used in medical
diagnosis but are new in the context of input space modeling for
soft error.

This exact inference in expensive in terms of time and hence
for larger circuits, we explore a stochastic sampling algorithm,
namely probabilistic Logic Sampling (PLS). This algorithm
has been proven to converge to the correct probability esti-
mates [17], without the added baggage of high space complexity
and has been used in [16].
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(a) (b)

Fig. 7. (a) Chordal Graph (b) Junction Tree

B. Probabilistic Logic Sampling (PLS)

Probabilistic logic sampling is the earliest and the simplest
stochastic sampling algorithms proposed for Bayesian Net-
works [17]. Probabilities are inferred by a complete set of sam-
ples or instantiations that are generated for each node in the net-
work according to local conditional probabilities stored at each
node. The advantages of this inference are that: (1) its com-
plexity scales linearly with network size, (2) it is an any-time
algorithm, providing adequate accuracy-time trade-off, and (3)
the samples are not based on inputs and the approach is input
pattern insensitive. The salient aspects of the algorithm are as
follows.

1. Each sampling iteration stochastically instantiates all the
nodes, guided by the link structure, to create a network
instantiation.

2. At each node,xk, generate a random sample of its state
based on the conditional probability,P(xkjPa(xk)), where
Pa(xk) represent the states of the parent nodes. This is the
local, importance sampling function.

3. The probability of all the query nodes are estimated by the
relative frequencies of the states in the stochastic sampling
trace.

4. If states of some of the nodes are known (evidence), such
as in diagnostic backtracking, network instantiations that
are incompatible with the evidence set are disregarded.

5. Repeat steps 1, 2, 3 and 4, until the probabilities converge.
We adopt the tool GeNie [14] for inference using Probabilis-

tic Logic Sampling.
Complexity: The computational complexity of the exact

method is exponential in terms of number of variables in the
largest cliques. Space complexity of the exact inference is
n:2jCmaxj [2], where n is the number of nodes in the Bayesian
Network, andjCmaxj is the number of variables in the largest
clique. The time complexity is given byp:2jCmaxj [2] where p is
the number of cliques.

The time complexity, based on the stochastic inference
scheme, is linear inn, the number of nodes in the expanded cir-
cuit, specifically, it isO(njNSEUjN), whereNSEU is the number
of SEUs andN is the number of samples.

V. EXPERIMENTAL RESULTS

We demonstrate the modeling of SEU based on TALI-SES
using ISCAS benchmark circuits. The logical relationship be-

TABLE II

SIZE OF ORIGINAL AND TIME-EXPANDED ISCASCIRCUITS FOR

FANOUT-DEPENDENT DELAY MODEL

Gates Gates
expanded

# of nodes
(TALI)

Time
frames

c432 196 476 1989 55
c499 243 464 1596 30
c880 443 729 2552 51

c1355 587 1440 3388 55
c1908 913 1524 18118 79
c2670 1426 2584 4097 81
c3540 1719 3795 15670 93
c5315 2485 4887 13228 90
c6288 2448 30113 31157 263
c7552 3719 10006 45907 88

node j SEU1 SEU0

P(Tj 22) P(Tj 23) P(Tj 22) P(Tj 23)
10 0.2813 0 0.4375 0
11 0.0625 0.2344 0.3125 0.6563
16 0.3125 0.1875 0.4375 0.4375
19 0 0.375 0 0.4375
22 0.4375 0 0.5625 0
23 0 0.4375 0 0.5625

TABLE III

ESTIMATED P(Tj i) VALUES OF NODES IN BENCHMARK C17 FROM EXACT

INFERENCE

tween the inputs and the output of a gate determines the condi-
tional probability of a child node, given the states of its parents,
in the TALI-DAG.

In Table II we report the total number of gates in the actual
circuit (column 2), total number of gates in the modified ex-
panded circuit (column 3), and the total number of nodes in the
resulting TALI-SES (column 4). Column 5 lists the maximum
time-frames of the circuits.

A. Exact Inference

In this section, we explore a small circuit c17, with exact in-
ference where we transform the original graph into junctiontree
and compute probabilities by local message passing between
the neighboring cliques of the junction tree as outlined in sec-
tion IVA. Note that this inference is proven to be exact [18],
[19](zero estimation error).

Table III tabulates the results of the TALI-SES of benchmark
c17 using the exact inference. In this table, we report the prob-
abilities of error at output nodes 22 and 23 due an SEU at each
nodej (column 1) namely (10; 11; 16; 19; 22and23). Column
2 and 3 of Table III give error probabilities due toSEU1 (0-1-
0 transition) at output nodes 22and 23 respectively. Similarly
4 and 5 give error probabilities due toSEU0 (1-0-1 transition)
at output nodes 22and 23 respectively. We compare the error-
free outputs at 22 and 23 at sampling timets with correspond-
ing error sensitized outputs arriving at time framests� 1 and
ts due to SEUs generated at a node at all possible time frames
(as discussed in section III D). Columns 2, 3, 4 and 5 of Ta-
ble III reports the maximum of error probabilities due to SEUs
originated at individual nodes at all time frames. From thista-
ble it can be seen that for this benchmark circuitSEU0s have
high impact on the output error probabilities thanSEU1s. Er-
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Fig. 8. Input probabilities for achieving zero output errors (at nodes 22and23
in presence of SEU’s: (a)SEU0 at node 19 (b)SEU1 at node 19 (c)SEU0 at
node 11 (d)SEU1 at node 11 for c17 benchmark

ror probability at output node 22 due to anSEU1 at node 11, is
very low (0.0625) whereas error probability at output 22 dueto
SEU0 at 11 is 0.3125. It also shows that the effect of SEUs are
not the same over all outputs. For example, anSEU1 at node
19 causes no error at output 22 whereas error probability dueto
this SEU at output node 23 is 0.4375. Note that nodes 22 and
23 are the output nodes. SEUs occurring at these nodes at sam-
pling time ts or time ts� 1 will be latched by an output latch,
and are expected to cause very high error probability. However
from Table III, it is observed that probability of occurrence of
an error due toSEU1 at node 23 is only 0.4375. Similarly, prob-
ability of occurrence of an error due toSEU1 at node 22 is also
0.4375. This is due to the type of input pattern. In this work,
we assume random inputs. This result shows the dependence of
input pattern onP(Tj i).
A.1 Input Space Characterization

In this section, we describe the input space characterization
for a particular observation exploring the diagnostic (backtrack-
ing) feature of the TALI-SES model. Note that this feature
makes it really unique as instead of predicting the effect ofin-
puts and SEU at a node on the outputs, we try to answer queries
like “What input behavior will make SEU at node j definitely
causing a bit-flip the at circuit outputs?” or “What input be-
havior will be more conducive to no error at output given that
there is an SEU at node j?” Resolving queries like this, aids the
designer in observing the input space and helps perform input
clustering or modeling. Let us take an example of c17 bench-
mark. We explore the input space for studying the effect of
SEU0 andSEU1 at node 19 on errors on both the outputs (22
and 23). One can characterize input space for any one of the
outputs (or in general effect of SEU at any node on any other
subset of nodes). Fig 8a characterizes the input space for an

SEU0 at node 19 such that no bit-flip occur at the outputs. This
is done by setting the output error probability at zero (by giving
“evidence” to the detection nodes in the Bayesian Network) and
then back propagating the probabilities. We plot the probabili-
ties of each inputs 1; 2; 3; 6 and7 that gives no output error for
anSEU0 at 19. Each column in the plot represents an input. The
lighter color represents the probability of that input= 0 and the
black color represents the probability of input= 1 (sum of these
two part should always beone). One can see that for obtaining
zero output error with anSEU0 at 19, input 1 can be random, in-
put 2 and 7 have 65% probability of being at logic one and node
3 and 6 has probability of 30% for logic 1. Note that the input
space is nearly random (p(1)=p(0)=0.5) whenSEU1 at node 19
produces zero output error at both the outputs. Similar char-
acteristics are shown in Fig. 8c, 8d for characterizing the input
space with respect to output errors whileSEU0 or SEU1 occurs
at node 11. Once again it can be seen that zero output error for
SEU1 can be more likely by a random inputs than forSEU0.

B. Larger Benchmarks

We use approximate inference for larger circuit using Proba-
bilistic Logic sampling [17] which is pattern independent ran-
dom markov chain sampling and has shown good results in
many large industry-size applications.

In Fig. 9(a), we plot the number of gates and the number of
possibly sensitized SEUs for ISCAS benchmarks. This reduced
SEU list was created based on fanout-dependent delay model
and assuming an SEU durationδ equal to one time unit. We
get a considerable reduction in the number of listed SEUs com-
pared to the number of gates in a circuit. This is because re-
duced SEU list is generated by traversing backward from the
final outputs evaluated at sampling timets andts� 1 and only
those gates that lie between the final outputs and duplicate gates
need to be considered for SEU sensitivity analysis. Depend-
ing on the input pattern and the circuit structure, only a fewof
these SEUs actually cause soft errors. Based on the estimated
SEU sensitivityP(Tj) as explained in Section III D, we clas-
sify the SEU sensitive gates in a circuit into three categories,
gates whereP(Tj) is (i) less than or equal to 0.3 (ii) between
0.3 and 0.6 and (iii) above 0.6. This is plotted in Fig. 9(b).
These results are helpful to apply selective redundancy mea-
sures or to modifyP(SEUj) (by changing device features) by
giving higher priority to nodes those are in the high sensitivity
range than those in the lower sensitivity ranges. From Fig. 9(b),
it can be seen that the SEU sensitive nodes of circuit c432 are
equally distributed within the three probability ranges (i), (ii)
and (iii), whereas all the SEU sensitive nodes in circuit c1355
lie within the middle range whereP(Tj) is between 0.3 and 0.6.
Results of c7552 shows thatP(Tj) of most of the SEU sensitive
nodes is in the lowest range (less than or equal to 0.3), which
indicates that gates in this circuit do not require extensive hard-
ening techniques, whereas majority of SEU sensitive gates in
c2670 requires extensive hardening techniques sinceP(Tj) is
very high (above 0.6) for these nodes.

We implemented the SEU simulator based on the work done
in [4] with a fanout-dependent delay model for the ground
truth. We performed the simulation with 500;000 random vec-
tors obtained by changing seed after every 50000 vectors to
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Fig. 9. (a)SEU List-Fanout Dependent Delay Model (b)SEU Sensitivity Range-Fanout Dependent Delay Model, with Delta=1; Input Bias=0.5

TABLE IV

SEU SENSITIVITY ESTIMATION ERRORS AND TIME FOR9999SAMPLES.(Emean) (Emax) Tbn(sec)
c432 0.0031 0.0069 18.57
c499 0.0024 0.0198 13.43
c880 0.0027 0.0090 27.58

c1355 0.0027 0.0120 28.84
c1908 0.0028 0.0120 176.63
c2670 0.0034 0.0130 34.70
c3540 0.0023 0.0101 148.07
c5315 0.0045 0.0112 121.62
c7552 0.0035 0.0100 513.05

get the ground-truth SEU probabilities. For our probabilistic
framework, we use Probabilistic Logic Sampling [17] inference
scheme. We compute the SEU sensitivitiesPj of gates in IS-
CAS benchmark circuits using Probabilistic Logic Sampling
(PLS) [17] with 9999 samples and compare our results with
ground-truth simulation results. Table IV gives the average es-
timation errorEmeanand maximum estimation errorsEmax. Here
Emeanof a circuit is the average of difference between theSEU
detection probabilities (orSEUsensitivities) obtained from sim-
ulation and estimated probabilities from PLS sampling overall
possible SEU sensitive nodes in the circuit. SimilarlyEmax of a
circuit is the maximum of difference between theSEUsensitiv-
ities obtained from simulation and estimatedSEU sensitivities
from PLS sampling over all possible SEU sensitive nodes in the
circuit. We estimated the SEU sensitivities all the ISCAS’85
benchmarks with an average belief propagation time of 140.49
sec, whereas the average time taken for logic simulation of these
circuits is 33 hours. Estimation error over all benchmarks is
below 0.0034 which shows excellent accuracy-time trade-off.
Tbnis the total elapsed time,including memory and I/O access.

C. Results with Delay Model based on Logical Effort

In this section we give estimation results from our model with
logical effort based gate delay modeling. In Table V, we listthe
number of nodes in TALI Bayesian network and the estimation
time in seconds for some of the ISCAS benchmarks. Number
of TALI nodes depends on the SEU list as well as the circuit
size, whereas estimation time directly depends on the number

of nodes and the number of samples. We show results for Prob-
abilistic Logic Sampling (PLS) with 9999 samples.

Figure 10(a) shows the number of possibly sensitized SEUs
vs. the number of gates in ISCAS benchmarks. From this graph,
it can be seen that the number of SEUs in the reduced SEU list is
low compared to fanout dependent delay model. This is due to
high gate delay values with logical effort based delay modeling
since we take into account the input capacitance as well as par-
asitic delay in addition to fanout. Due to increased gate delays
the relative effect of an SEU at an internal gate on a primary
output during latching period is less since most of the signals
get enough time to restore to their ideal values. Figure 10(b)
shows the SEU sensitivity ranges of gates in the circuits, with
an input bias of 0.5 and SEU width equal to one time unit. As
with fanout-dependent delay modeling, here also we classify the
SEU sensitive gates in a circuit into 3 categories. Gates with es-
timated sensitivity values (1) less than 0.3, (2) between 0.3 and
0.6 and (3) above 0.6. Given any delay library for a logic circuit,
our model can be used to classify the gates in the circuit in the
order of their SEU sensitivity values capturing logical masking
effect, circuit structure, input pattern and SEU duration.

Please note the above estimated probability values are rela-
tively high when we consider the overall soft error susceptibility
of individual gates. To get a comprehensive model, the electri-
cal masking effect, latching window masking effect and also
the SEU generation and propagation characteristics of individ-
ual gates are to be incorporated with our model. Modeling elec-
trical masking effect needs circuit level simulation techniques,
which we are trying to integrate with our current approach asa
future direction.

VI. CONCLUSION

We are able to effectively model Single-event-Upsets in logic
circuits (ISCAS benchmarks) to estimate the SEU sensitivity
of individual nodes in a circuit capturing spatial and temporal
signal correlations, specially emphasizing the effect of inputs,
gate delay, SEU duration and circuit structure. We show results
with exact and approximate inferences. Using exact inference
we characterize input space which gives zero output error even
in the presence of some SEUs. Results from approximate infer-



10

0

200

400

600

800

1000

1200

1400

1600

1800

2000

c432 c499 c880 c1355 c1908 c3540

Benchmarks

N
o

. 
o

f 
G

a
te

s
/S

E
U

s

Listed SEUs Gates

0

20

40

60

80

100

120

c432 c499 c880 c1355 c1908 c3540

Benchmarks

N
o

. 
o

f 
S

E
U

 S
e
n

s
it

iv
e
 G

a
te

s

0.0<p<=0.3 0.3<p<=0.6 0.6>p

Fig. 10. (a)SEU List-Logical Effort Delay Model (b)SEU Sensitivity Range-Logical Effort Delay Model with Delta =1 and Input Bias = 0.5

TABLE V

SIZE OF TALI-M ODEL AND ESTIMATION TIME FOR LOGICAL-EFFORT

BASED DELAY MODEL

# of nodes
(TALI)

Estimation
Time(s)

c432 2390 22.32
c499 7814 65.75
c880 1097 12.49

c1355 1773 15.092
c1908 2279 22.22
c3540 14370 135.79

ence shows excellent accuracy-time trade-offs. We report SEU
sensitivity estimates for fanout dependent delay model as well
as for logical effort based delay model. Given an appropriate
delay library of gates in a circuit, our model is capable of es-
timating SEU sensitivities of individual gates in the circuit and
these results can be used for classifying gates for application of
mitigation schemes. Future effort includes modeling with bi-
ased input patterns and also for different SEU widthδ, to study
the effect of these factors on SEU sensitivities. We are also
investigating on the effect of threshold voltage and supplyvolt-
age on the electrical masking effect on transient pulses caused
by particle bombardment.
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