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Collaborative PCA/DCA Learning Methods for
Compressive Privacy
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Abstract—In the internet era, the data being collected on
consumers like us are growing exponentially and attacks on our
privacy are becoming a real threat. To better assure our privacy,
it is safer to let data owner control the data to be uploaded to the
network, as opposed to taking chance with the data servers or
the third parties. To this end, we propose a privacy-preserving
technique, named Compressive Privacy (CP), to enable the data
creator to compress data via collaborative learning, so that the
compressed data uploaded onto the internet will be useful only
for the intended utility and will not be easily diverted to malicious
applications.

For data in a high-dimensional feature vector space, a com-
mon approach to data compression is dimension reduction or,
equivalently, subspace projection. The most prominent tool is
Principal Component Analysis (PCA). For unsupervised learning,
PCA can best recover the original data given a specific reduced
dimensionality. However, for supervised learning environment,
it is more effective to adopt a supervised PCA, known as the
Discriminant Component Analysis (DCA), in order to maximize
the discriminant capability.

The DCA subspace analysis embraces two different subspaces.
The signal subspace components of DCA are associated with
the discriminant distance/power (related to the classification
effectiveness), while the noise subspace components of DCA are
tightly coupled with the recoverability and/or privacy protection.
This paper will present three DCA-related data compression
methods useful for privacy-preserving applications.
• Utility-driven DCA: Because the rank of the signal

subspace is limited by the number of classes, DCA can
effectively support classification using a relatively small
dimensionality (i.e. high compression).

• Desensitized PCA: By incorporating a signal-subspace
ridge into DCA, it leads to a variant especially effective
for extracting privacy-preserving components. In this case,
the eigenvalues of the noise-space are made to become
insensitive to the privacy labels and are ordered according
to their corresponding component powers.

• Desensitized K-means/SOM: Since the revelation of the
K-means or SOM cluster structure could leak sensitive
information, it will be safer perform K-means or SOM
clustering on desensitized PCA subspace.

I. INTRODUCTION

We have all grown to become dependent upon the internet
and the cloud for their ubiquitous data processing services,
i.e. at any time, anywhere, and for anyone. With its packet
switching, bandwidth, storage, and processing capacities, the
data center nowadays manages the server farm, supports
extensive database, and is ready to support, on demand from
clients, a variable number of machines. However, the main
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problem of cloud computing lies on the privacy protection.
With the rapidly growing internet commerce, many of our
daily activities are moving online; abundance of personal
information (such as sale transactions) is being collected,
stored, and circulated around the internet and cloud servers,
often without the owner’s knowledge. This raises concerns on
the protection of sensitive and private data, known as “Online
Privacy” or “Internet Privacy”.

Privacy-preserving data mining and machine learning have
recently become an active research field, particularly because
of the advancement in internet data circulation and mod-
ern digital processing hardware/software technologies. Privacy
protection can be regarded as a special technical area in the
field of pattern recognition. Research and development on
privacy preservation have focused on two separate fronts:
one covering the theoretical aspect of machine learning for
privacy protection and the other covering system design and
deployment issues of privacy protection systems.

From the privacy perspective, the encryption/accessibility
of data is divided into two worlds, cf. Figure 1: (1) private
sphere: where data owners generate and process the decrypted
data; and (2) public sphere: where cloud servers can generally
access only the encrypted data, except the trusted authorities
who are allowed to access the decrypted data confidentially.
In this setting, however, the data become vulnerable to unau-
thorized leakage.

Data owner should have control over data privacy. It
is safer to let data owner control the data privacy and not to
take chance with the cloud servers. To achieve this goal, we
must provide some owner-controlled tools to safeguard private
information against intrusion. New technologies are needed to
better assure that personal data uploaded to the cloud will not
be diverted for malicious applications.

Compressive Privacy (CP) enables the data creator to ”en-
crypt” data using compressive-and-lossy transformation, and
hence, protects user’s personal privacy while delivering the
intended (classification) capability. The objective of CP is to
learn what kind of compressed data may enable classifica-
tion/recognition of, say, face or speech data, while concealing
the original face images or speech contents from malicious
attackers. For example, in an emergency such as a bomb threat,
many mobile images from various sources may be voluntarily
pushed to the command center for wide-scale forensic analysis.
CP may be used to compute the dimension-reduced feature
subspace which can (1) effectively identify the suspect(s) and
(2) adequately obfuscate the face images of the innocent.
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Fig. 1. From the privacy perspective, the encryption/accessibility of data
is divided into two worlds: (1) private sphere: where data owners generate
and process decrypted data; and (2) public sphere: where cloud servers can
generally access only encrypted data, except the trusted authorities who are
allowed to access decrypted data confidentially.

II. COMPRESSIVE PRIVACY ON COLLABORATIVE
MACHINE LEARNING FOR PRIVACY PROTECTION

Machine learning research embraces theories and technolo-
gies for modeling/learning a data mining system model based
on the training dataset. The main function of machine learning
is to convert the wealth of training data into useful knowledge
by learning. The learned system is expected to be able to
generalize and correctly classify, predict, or identify new input
data that are previously unknown.

Collaborative learning is a method for machine learning
in which users supply feature vectors to a cloud in order to
collaboratively train a feature extractor and/or a classifier. In
collaborative learning, the cloud aggregates samples from mul-
tiple users. Since the cloud is untrusted, the users are advised
to perturb/compress their feature vectors before sending them
to the cloud.

A typical Compressive Privacy on collaborative learning
system is described as follows:
• On the cloud side: Since the cloud does not have

access to original samples and, due to the lossy nature
of CP methods, it cannot reconstruct recognizable face
or intelligible speech, so the privacy of the partici-
pants will be protected. The reconstructed samples or
the dimension-reduced feature spaces may be used for
training a classifier.

• On the owner side: Via dimension reduction, some
components are purposefully removed from the original
vectors so that the original feature vectors are not easily
reconstructible by others. The owner produces perturbed
or dimension reduced data based on the projection matrix
provided by the server.

Supervised vs. Unsupervised Learning. Collaborative
learning allows supervised and unsupervised machine learning
techniques to learn from the public vectors collected by
the cloud servers. We shall adopt a PCA and Discriminant
Component Analysis (DCA) for creating dimension-reduced
subspaces useful for privacy protection in collaborative learn-

ing environments. Via PCA or DCA, individual data can be
highly compressed before being uploaded to the cloud, which
results in better privacy protection.

• For unsupervised learning, principal component analy-
sis (PCA) is the most prominent subspace projection
method. PCA is meant for mapping the originally high-
dimensional (and unsupervised) training data to their low-
dimensional representations.

• For supervised learning, we shall introduce the notion of
Discriminant Component Analysis (DCA), an extension
of PCA, to effectively exploit the known class labels
accompanied with supervised training datasets.

III. PRINCIPAL COMPONENT ANALYSIS (PCA)

In unsupervised machine learning applications, the training
dataset is usually a set of vectors: X = { x1,x2, . . . ,xN },
where xi ∈ RM , presumably generated under a certain
underlying statistics which is unknown to the user. Pursuant
to the zero-mean statistical model, it is common to first
have the original vectors “center-adjusted” by its mean-value
−→µ =

∑N
i=1 xi

N , resulting in x̄i = xi − −→µ , i = 1, · · · , N .
This leads to a “center-adjusted” data matrix denoted as:
X̄ = [x̄1 x̄2 · · · x̄N ]. Based on X̄, a “center-adjusted” scatter
matrix [3] may be derived as follows:

S̄ ≡ X̄X̄T =

N∑
i=1

[xi −−→µ ][xi −−→µ ]T , (1)

which assumes the role of the covariance matrix R in the
estimation context. As such, denoting vi ∈ RM as the ith

projection vector, its (normalized) component power is defined
as

P (vi) ≡
vTi S̄vi
||vi||2

, i = 1, · · · ,m (2)

A. PCA via Eigen-Decomposition of Scatter Matrix

The objective of PCA now becomes to find m (m ≤ M )
best components such that

∑m
i=1 P (vi) is maximized, while

vi and vj are orthogonal to each other if i 6= j.
In unsupervised learning scenarios, PCA is typically com-

puted from the eigenvalue decomposition of S̄:

S̄ = V Λ V−1 = V Λ VT , (3)

where Λ is a real-valued diagonal matrix (with decreasing
eigenvalues) and V is a unitary matrix. It follows that The
optimal PCA projection matrix can be derived from the m
principal components of V, i.e.

WPCA = Vmajor = [v1 v2 · · ·vm] ,

and the PCA-reduced feature vector can be represented by:

z = WT
PCAx. (4)
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B. Optimization of Power and Reconstruction Error
It is well known in the PCA literature that the mean-square-

error criterion is equivalent to the maximum component power
criterion. More exactly, PCA offers the optimal solution for
both (1) maximum power and (2) minimal reconstruction error:
• PCA’s power associated with the principle eigenvec-

tors: Vmajor. Note that λi equals to the power of
the i-th component: λi = P (vi). Consequently, the PCA
solution yields the maximum total power:

Max-Power =

m∑
i=1

P (vi) =

m∑
i=1

λi. (5)

• PCA’s reconstruction error (RE) associated with the
minor eigenvectors: Vminor. Let the M -dimensional
vector x̂z denotes the best estimate of x from the m-
dimensional vector z. By PCA, x̂z = WTx. It is well
known that PCA also offers an optimal solution under the
mean-square-error criterion:

min
z∈Rm

E
[
‖x− x̂z‖2

]
(6)

where E[·] denotes the expected value. In unsupervised
machine learning, it is a common practice to replace the
covariance matrix R by the scatter matrix S̄. This leads
to the following “Reconstruction Error”(RE):

RE =

M∑
i=m+1

λi, (7)

where Vminor is formed from the M−m minor columns
of the unitary matrix V.

C. Simulation Results for PCA
Example 1 (PCA for Privacy-preserving Face Recognition):

Figure 2 shows the results from an experiment on the Yale
face-image dataset. There are 165 samples (images) from
15 different classes (individuals) with 11 samples per class.
Each image is 64-by-64 pixels, so the feature vectors derived
from the pixel values have the dimension of 4096. To obtain
the classification accuracies, one sample per class is chosen
randomly to be left out for testing, so there are 15 testing
samples per experiment. The other 150 samples are used for
training. The experiment is repeated 30 times, which amounts
to 30× 15 = 450 testing samples in total. The average accu-
racies of the 450 testing samples are reported in Figure 2(b).

As displayed in Figure 2(a), (b), when the component
eigenvalues gradually decrease, then so does the component
power, further lowering the component classification accura-
cies. This indicates that the increased component power often
implying high capacity to support the intended utility. Figure
2(c) depicts the (unsupervised) PCA eigenfaces for the face
images in the Yale dataset.

2

IV. DISCRIMINANT COMPONENT ANALYSIS (DCA)
In supervised machine learning, a set of training data and

their associated labels are provided to us:

(a)

(b)

(c)

Fig. 2. (a) For PCA, the component powers match exactly with the eigen-
values. (b) As the component powers decrease, the corresponding accuracies
also decrease. (c) PCA eigenfaces: visualization of simulation results on the
Yale dataset.

[X ,Y] = { [x1, y1], [x2, y2], . . . , [xN , yN ] },

where the teacher values, denoted as yi, represent the class
labels of the corresponding training vectors.

A. Between-Class and Within-Class Scatter Matrices

In supervised learning, the scatter matrix S̄ can be further
divided into two useful parts [2]:

S̄ = SB + SW , (8)

where the within-class scatter matrix SW is defined as:

SW =

L∑
`=1

N∑̀
j=1

[x
(`)
j −

−→µ `][x
(`)
j −

−→µ `]
T (9)
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where N` denoting the number of training vectors associated
with the l-th class, −→µ ` denotes the centroid of the `-th class,
for l = 1, · · · , L, and L denotes the number of different
classes.

The between-class scatter matrix SB is defined as:

SB =
N

2

L∑
i=1

L∑
j=1

fij∆ij∆
T
ij , (10)

where fij = rirj , with ri ≡ Ni

N , rj ≡ Nj

N , stands for the
relative frequency of involving classes i and j. Note that the
greater the magnitude of ∆ij , where ∆ij ≡ [−→µ i −

−→µ j ], the
more distinguishable between the ith and jth classes. It is why
SB is also called a Signal Matrix.

For supervised classification, the focus is placed on discrim-
inant power. Naturally, it is preferable to have a far distance
between two different classes. However, a large spread of the
“within-class” data will have an adverse effect. In this sense,
SB and SW have the very opposite roles:

• The noise matrix SW now plays a derogatory role in the
sense that a high directional noise power for SW will
weaken the discriminant power along the same direction.

• The signal matrix is represented by the between-class
scatter matrix as it is formed from the best L class-
discriminating vectors learnable from the dataset.

B. Linear Discriminant Analysis (LDA)

LDA focuses on an important special case when m = 1 and
L = 2 and thus,

SB =
N1N2

N
∆12∆

T
12, (11)

Furthermore, we adopt the following denotations:

• “signal variance”, defined as wT SB w, is proportional
to the square of d12, and

• “noise variance”, defined as wT SW w, represents the
spread of the projected data of the same class around its
centroid.

In the subsequent discussion, we shall simplify the term
“signal variance” to “signal” and “noise variance” to “noise”,
respectively. Linear Discriminant Analysis (LDA) [1] aims at
maximizing the signal-to-noise ratio, SNR = signal

noise . More
exactly,

wLDA = arg max
{w∈RM}

SNR(w) = arg max
{w∈RM}

wT SB w

wT SW w
, (12)

which was originally designed as a single component analysis
for binary classification. Equivalently, due to Eq. 8, we have
an alternative signal-power-ratio formulation:

wLDA = arg max
{w∈RM}

SPR(w) = arg max
{w∈RM}

wT SB w

wT S̄ w
, (13)

where “SPR” stands for “signal-power-ratio”.

C. Multiple Discriminant Component Analysis (MDCA)

In order to facilitate our exploration into an appropriate
criterion for component analysis, we propose an optimization
criterion, based on the sum of the sinal-noise-ratios pertaining
to all the individual components:

Sum of SPRs =

m∑
i=1

si
pi

=

m∑
i=1

wT
i [ SB ] wi

wT
i

[
S̄
]

wi

.

Let the Signal-Power-Ratio (SPR) associated with the i-th
component be defined as SPR(wi) = si

pi
, where

pi = wT
i SB wi + wT

i S̄ wi = si + ni for i = 1, · · · ,m

Thereafter, the (total) discriminant power is naturally defined
as the sum of the individual SPR scores:

SPR(W) ≡
m∑
i=1

SPR(wi) =

m∑
i=1

wT
i SB wi

wT
i S̄ wi

. (14)

In order to preserve the rotational invariance of SPR(W), we
must impose a “canonical orthonormality” constraint on the
columns of W such that

WT S̄W = I. (15)

It can be shown that [11], DCA is equivalent to PCA in the
Canonical Vector Space (CVS). In fact, the component SPR
in the original space is mathematically equivalent to the the
component power in the CVS. The mapping from a vector x
in the original space to its counterpart x̃ in the “Canonical
Vector Space” (CVS) is represented by x̃ =

[
S̄
]− 1

2 x. As
such, DCA may also be derived first as the PCA in CVS and
transform the solution back to the original vector space.

Ridge for Numerical Robustness. We have previously
assumed that S̄ is nonsingular. However, in practice, we must
consider the situations (1) when N < M , then S̄ will be
singular or (2) when S̄ is ill-conditioned. An effective remedy
is to incorporate a ridge parameter ρ into the scatter matrix
[9], [10], resulting the replacement of S̄ by:

S̄′ = S̄ + ρI.

In this case, the optimal solution can be derived as a projection
matrix W∗ ∈M ×m such that [11]

WDCA = arg max
{W:WT [ S̄+ρI ]W=I}

tr
(
WT [ SB ] W

)
. (16)

The DCA solution may be directly obtained from the first m
principal eigenvectors of the regulated Discriminant Matrix:

DDCA ≡
[
S̄ + ρI

]−1
SB (17)

with the columns of the solution matrix V meeting the
“canonical orthonormality” condition prescribed by Eq. 15.
Numerically, the optimal DCA projection matrix can be de-
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rived from the principal eigenvectors of1

eig
(
SB , S̄ + ρI

)
(18)

It follows that the (dimension-reduced) DCA representation is

z = WT
DCAx. (19)

D. Ranking of Signal-Subspace Components

The DCA eigenspace V is primarily spanned by Vmajor ∈
RM×(L−1). Thus, the primary focus of DCA is placed on max-
imizing the SPR-type utility function via adapting Vmajor.
More exactly, in the eigen-transformed vectors space, the
Modified SPR (SPR′) is exactly the same as its corresponding
eigenvalue, for any positive integer i, i.e.

λi =
vTi SB vi

vTi
[
S̄ + ρI

]
vi

= SPR′i (20)

After the modification, the total SPR′ is

SPR′(WDCA) =

m∑
i=1

SPR′i =

m∑
i=1

λi. (21)

Note also that there are only L − 1 nonzero eigenvalues. As
such, we can extract at most L − 1 useful components for
now. For extraction of additional and useful components, see
Section V.

E. Simulation Results: Utility-Driven Applications

To best illustrate the idea, let us provide two examples:
(1) an illustrative Double-Income Problem (DIP) and (2) a
privacy-preserving face recognition (PPFR) problem based on
the Yale face dataset. [12]

Example 2 (PCA/DCA for Double-Income Problem):
In the Double-Income Problem (DIP) training dataset, each

family is represented by a four-dimensional feature vector. The
first two features, x1 and x2, are the two individual incomes
of a couple. Suppose that a query is intended for assessing
the couple’s total income, i.e. u = u(x) = x1 + x2, i.e. the
financial condition of the family. From the privacy perspective,
the query should not pry into the income disparity within the
family, i.e. the privacy function is set as: p = p(x) = x1−x2,
i.e. who is the bread earner of the family. In our current DIP
study, two other related features are also acquired, making it
a four-dimensional vector x = [x1 x2 x3 x4]T .

Suppose that we are given a training dataset: { X } =

 11
7
1
2


 18

8
2
−1


 17

5
−1
−1


 4

10
−1
−4


 5

6
2
2


 4

7
1
−1


 1

2
−1
1


 4

1
1
−1

 ,
with the utility/privacy teacher labels, denoted by { Y } =

[
H
+

] [
H
+

] [
M
+

] [
M
−

] [
M
−

] [
M
−

] [
L
−

] [
L
+

]
1For DCA, all the eigenvalues are generically distinct, therefore, all the

columns of V are canonically orthogonal to each other. [6]

where “H/M/L” denotes the three (High/Middle/Low) utility
classes (i.e. family income) and “+/-” denotes the two privacy
classes (i.e. who-earns-more between the couple).

PCA: We first compute the the scatter matrix:

S̄ =


296 42 11 −2
42 63.5 3 −15.75
11 3 12 7.5
−2 −15.75 7.5 27.875


This yields the following PCA eigenvalues or, equivalently,
the eigen-component powers:

{λ1 = 303.87 λ2 = 62.82 λ3 = 25.25 λ4 = 7.44}

The two principle eigenvectors are

f1 =


0.984
0.174
0.039
−0.016

 and f2 =


0.163
−0.899
0.042
0.405


As demonstrated by Figure 3(a) and (b), with a query marked
as “♥”, we note that while PCA fails to identify the utility
class (i.e. total income classification), neither does it leak
private information (on income disparity).

DCA: For DCA, the utility-driven signal matrix, denoted as
SBU

, can be learned from the training data and their respective
utility labels (i.e. High/Middle/Low), via Eq. 10:

SBU
=


146 67 19 8.5
67 48.5 6.5 −3.26
19 6.5 2.75 2.00
8.5 −3.26 2.00 3.38


The ridge set for the scatter matrix is ρ = 1. The generalized
eigen-decomposition of eig

(
SBU

, S̄ + ρI
)

yields the follow-
ing eigenvalues or, equivalently, the component SPR′:

{λ1 = 0.966 λ2 = 0.264 λ3 = 0 λ4 = 0 }

Thereafter, the two principle eigenvectors corresponding to the
two nonzero eigenvalues are, cf. Eq. 18:

f1 =


0.204
0.839
0.245
0.443

 and f2 =


0.221
−0.535
0.733
0.357


As demonstrated by Figure 3(c) and (d), with a query marked
as “♥”, DCA can confidently identify the utility label, but it
also leaks sensitive information on the privacy label.

2

Example 3 (DCA for PPFR Applications): The experimental
setup basically follows that of Example 1. The difference is
that DCA is used in place of PCA here. DCA components
are derived for the Yale dataset with ρ = .02×max(eig(S̄)).
Figure 4(a) shows that there are L − 1 nonzero eigenvalues,
pursuant closely to their corresponding SPR′. Thus, DCA can
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Fig. 3. Visualization of a query, marked as “♥”, mapped to the optimal
two-dimensional PCA, DCA, and Ridge DCA subspaces. The family income
(utility) class can be confidently assessed as the “M”-class. (d) The privacy
label on the income disparity remains clueless, as both classes (“+” or “-”)
have the equal claim. (a) PCA visualization with utility explicitly labeled;
(b) PCA visualization with privacy explicitly labeled; (c) DCA visualization
with utility explicitly labeled; (d) DCA visualization with privacy explicitly
labeled; (e) Ridge DCA visualization with utility explicitly labeled; and (f)
Ridge DCA visualization with privacy explicitly labeled. When the query
may be identified with sufficient confidence, then a dashed ellipse(s) will be
shown. On the other hand, no ellipse(s) will be shown when the association is
deemed to be ambiguous. Based on the confident identification shown by the
dashed ellipse(s), the learning results are summarized as follows: (1) While
PCA fails to identify the utility class (i.e. total income classification), it leaks
no private information (on income disparity); (2) DCA is the one which most
effectively identifies the utility label, but it also leaks the privacy label; and
(3) Ridge DCA is the only one which simultaneously identifies the utility
label and protects the privacy label.

extract L− 1 rank-ordered principal components to best serve
the purpose of face recognition (FR). As shown in Figure
4(b), the first 14 eigen-components are most discriminative for
face recognition, with per-component accuracy around 23%.
In contrast, the next sixteen noise-subspace eigen-components
(i.e. 15th − 30th) are basically noise ridden and carry little
useful information, with a low accuracy around 6%, par the
random guess. This implies that these noise-subspac compo-
nents contain no useful information for face recognition (FR).

2

V. DESENSITIZED PCA VIA RIDGE DCA

In the previous section, DCA is applied to utility-driven
machine learning applications. Now we shall address a DCA

(a)

(b)

Fig. 4. For the signal-subspace component analysis. (a) The figure shows the
SPR′ of the components of DCA. ( DCA is equivalent to RDCA with ρ′ = 0.)
(b) While each signal-subspace component yields a relatively higher accuracy
around 23%, the 16 noise-subspace components yields a low accuracy around
6%, par the random guess. This implies that these components contain no
useful information for face recognition (FR).

variant tailored for privacy-driven principal component anal-
ysis, i.e. desensitized PCA. An exemplifying application sce-
nario is the so-called Anti-Recognition Utility Maximization
(ARUM), in which the the privacy intruder’s objective is face
recognition itself. As such, the goal of Compressive Privacy
is to find a representation that may prevent the identity of
the faces from being correctly classified. To this end, we first
extract the desensitized PCAs and then apply either supervised
classification, such as SVM [4], or unsupervised clustering,
such as K-means or SOM [5]. The overall flow diagram of
the desensitizing system structure is depicted in Figure 5.

A. Incorporated A Negative Ridge into Signal Matrix

The Ridge DCA incorporates yet another ridge parameter
ρ′ to regulate the signal matrix, i.e. the between-class scatter
matrix:

S′B = SB − ρ′I.

The optimization formulation now searches for a projection
matrix W∗ ∈M ×m such that

WRDCA = arg max
{W:WT [ S̄+ρI ]W=I}

tr
(
WT [ SB − ρ′I ] W

)
. (22)

Numerically, the optimal Ridge DCA solution can be derived
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Fig. 5. The privacy-driven DCA system structure for “Desensitized PCA”
(cf. Section V) and/or “Desensitized K-means” (cf. Section VI).

from the principal eigenvectors of

eig
(
SB − ρ′I , S̄ + ρI

)
(23)

By slightly modifying Eq. 20, we obtain the following eigen-
value analysis:

λi = SPR′i −
ρ′

P (vi) + ρ
(24)

B. Eigenvalues of Eigen-Components of Ridge DCA

Now let us elaborate the implication of Eq. 24:

• Signal-Subspace Components, i.e. when i < L: With
a very small value of ρ′, the eigenvalues for such eigen-
components can be approximately expressed in terms of
their corresponding SPR′ (SPR′i):

λi ≈ SPR′i (25)

For the ARUM application scenario, such eigen-
components are potentially most intrusive and it is why
they are filtered out in our desensitizing system shown in
Figure 5.

• Noise Subspace Components, i.e. when i ≥ L: By
assuming an extremely small positive value of ρ′, it can
be shown that

vTi SB vi ' 0, for all i ≥ L

In this case, the corresponding eigenvalues (λi) and the
component powers (P (vi)) are closely related as follows:

λi ≈ −
ρ′

P (vi) + ρ
, for i ≥ L. (26)

where the (normalized) component power, defined in
Eq. 2. It implies that the eigen-component powers can
be sorted by their corresponding eigenvalues:

P (vi) ≈ −
ρ′

λi
− ρ, for i ≥ L (27)

just like PCA. This is why the Ridge DCA is also named
Desensitized PCA.

C. Simulation Results

Let us now illustrate the application of desensitized PCA
by exploring two examples: (1) a toy application example on
the double-income problem (DIP) and (2) Anti-Recognition
Utility Maximization (ARUM) based on the Yale face dataset.

Example 4 (Ridge DCA for DIP):
Let us revisit the DIP example. For Ridge DCA, via Eq. 10,

the privacy-driven signal matrix, denoted as SBP
, can be

learned from the training data and their respective privacy
labels (i.e. “+/-”).

SBP
=


162 −18 9 4.5
−18 2 −1 −0.5

9 −1 0.5 0.25
4.5 −0.5 0.25 0.13

 .
The ridge for the scatter matrix is set as ρ = 1, and the ridge
for the signal matrix is set as ρ′ = .01 ∗max(eig(SBP

)).
The eigenvalues for the Ridge DCA can be

computed from the generalized eigen-decomposition of
eig

(
SBP
− ρ′I , S̄ + ρI

)
, yielding

{λ1 = 0.7293 λ2 = −0.0201 λ3 = −0.0611 λ4 = −0.1885}

According to Eq. 27, the (latter) three (decreasing) noise-
component eigenvalues

{λ2 = −0.0201 λ3 = −0.0611 λ4 = −0.1885}

correspond to the following (decreasing) component powers

{P (v2) = 80.9 P (v3) = 25.94 P (v4) = 7.73}

The two eigenvectors correspond to the highest component
powers, i.e. P (v2) and P (v3), will be adopted as the two
desensitized PCAs, cf. Eq. 23:

f1 =


0.107
0.941
−0.027
−0.320

 and f2 =


−0.019
0.303
0.457
0.836


With reference to Figures 3(a), (b) and (c), we can summarize
our simulation results as follows (“♥” represents the query):
• While PCA fails to identify the utility class (i.e. total

income classification), it leaks no private information (on
income disparity).

• DCA can most confidently identify the utility label, but
it fails to safely protect the privacy label.

• Ridge DCA is the only one which simultaneously iden-
tifies the utility label and protects the privacy label.

2

For the conventional PPFR problem, DCA can be used to
produce L − 1 most discriminative components. Now let us
consider an alternative application scenario, Anti-Recognition
Utility Maximization (ARUM), which is in a sharp contrasting
to the conventional PPFR application. Let us now discuss how
to apply ridge DCA to ARUM problems. Briefly, the Ridge
DCA starts with removing the first L − 1 eigen-components,
to desensitize the feature vectors, and subsequently sorts the
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(a) (b)

(c)

(d)

Fig. 6. Rank-ordered eigenvalues of RDCA, when ρ′ = 0.00001, for
(a) Signal-subspace component analysis: The figure (diamond vs dash line)
confirms that the component’s SPR′ is dictated by the eigenvalues in a
way consistent with the theoretical prediction given in Eq. 25. (b) Noise-
subspace component analysis: The figure confirms that the desensitized-PCA
component power is a monotonic function of the eigenvalue as theoretically
predicted in Eq. 27 (star vs solid line). Moreover, the component’s SPR′ is
dictated by the eigenvalues as predicted in Eq. 26 (diamond vs star). (c) Each
of the 16 desensitized eigenfaces yields a low accuracy around 6%, par the
random guess. (d) The first 14 principal DCA-eigenfaces are not very different
from DCA. However, in a sharp contrast, the next 16 desensitized eigenfaces,
representing the principal PCA components, are potentially more informative
for the other intended utility.

remaining components based on their component powers, just
like PCA.

Example 5 (Ridge DCA for ARUM):
For ARUM, our objective is to extract an optimal subspace

which may prevent the person from being recognized by the
compressed face image. By performing en experiment on Yale

’ = +0.00001 

<
 

< 

<
 

< 

(a) (b)

< 

<
 

 
< 

(c) (d)

Fig. 7. Original and reconstructed face images using 160 dimensions from
the Yale dataset. (a) The original face. (b) DCA with zero ridge (c) Ridge
DCA with a negative ridge applied to the privacy-driven signal matrix. (d)
Ridge DCA with reversely rank ordered eigen-components. (Courtesy from
[12])

dataset in a similar setup to Example 1, the following results
are achieved.
• Figure 6(a) confirms that the signal-subspace compo-

nent’s SPR′ is dictated by the eigenvalues in a way
consistent with the theoretical prediction given in Eq. 25.

• Figure 6(b) confirms that the component powers of the
desensitized-PCA components can be expressed in terms
of their corresponding eigenvalues pursuant to Eq. 26.

• Figure 6(c) shows that, as theoretically predicted, each
of the desensitized-PCA eigenfaces yields a low accuracy
around 6%, par the random guess.

• Figure 6(d) shows that the first 14 principal DCA-
eigenfaces should be cast away because they are the most
privacy-intrusive. On the other hand, the desensitized
components (from 15th to 30th) now have highest com-
ponent powers, just like PCA, and so they may contain
information possibly useful for the other utility function.

2

The following example provides a preliminary comparison of
face reconstructions between PPFR versus ARUM. It may shed
some light on how the desensitized PCA may facilitate privacy
protection in the ARUM-type scenarios.

Example 6 (Face Reconstructions: PPFR vs. ARUM):
Figure 7(a) shows an original face from the Yale dataset.

Figures 7(b) and (c) depict the reconstructed face image via
DCA and Ridge DCA, respectively. Suppose that the intended
utility is, say, to distinguish (1) smiling versus sad faces or
(2) faces with versus without eyeglasses, then we observe
(somewhat subjectively) that Figure 7(c) (with desensitized
PCAs) compares favorably with (b) or (d). This suggests that,
for ARUM, the desensitized PCA may indeed better facilitate
utility maximization while offering the same privacy protection
as DCA.
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Random
guess

(no training)

Before
desensitiza-

tion

After
desensitiza-

tion
Utility

accuracy
0.500 0.983 0.955

Privacy
accuracy

0.143 0.976 0.444

TABLE I
UTILITY AND PRIVACY ACCURACY PERFORMANCE OF DESENSITIZED

PCA ON THE GLASSES DATASET.

An experiment on the in-house Glasses dataset, which is
derived from Yale and Olivetti databases, confirms that desen-
sitized PCA is effective for ARUM. The dataset consists of
50 samples (images) chosen from Yale and Olivetti databases
such that each individual in the dataset has 50% of his/her
images with glasses on and the other 50% without glasses on.
There are images of seven individuals in the dataset, so the
utility and privacy are defined as followed:
• Utility is the classification of whether the face wears

glasses, so there are two utility classes. Obviously, higher
classification accuracy means better utility gain.

• Privacy is person identification from the face image,
i.e. face recognition. There are seven individuals in the
dataset, so the number of privacy classes is seven. In
this case, higher privacy accuracy means more privacy
loss/leakage.

The experimental setup is the following. In each trial of the
experiment, five samples are randomly chosen to be left out,
while the other 45 are used to train the classifiers. Then, one
of the five left-out samples is chosen randomly for testing.
The performance of the classification on the data both before
and after PCA desensitization is collected for comparison, and
the experiment is repeated for 1000 trials. This experiment is
specifically conducted for identifying whether the face wears
glasses or not for utility, and identifying the person among
possible seven individuals for privacy. SVM is used as the
classifier.

Table I summarizes the results from the experiment. Briefly,
among the 1000 trials:
• In terms of utility, the trained classifiers correctly predict

glasses classes 983 versys 955 times before and after
desensitization, respectively.

• In terms of privacy, the trained classifiers correctly predict
the person’s identification 976 versus 444 times before
and after desensitization, respectively.

The results show that our desensitization has substantially
reduced the privacy accuracy from 97.6% to 44.4%, while
compromising the utility accuracy only by 2.8% down from
98.3% to 95.5%. This suggests that the desensitized PCA is
promising for ARUM-type appications.

2

VI. DESENSITIZED K-MEANS VIA RIDGE DCA

Note that K-means (or SOM) by itself has a natural role for
privacy preservation. By substituting the original vector by its

Fig. 8. Visualization of the 30 centroids of the desensitized K-means.

nearest cluster centroid, there is a built-in natural perturbation
or protection. Despite such perturbation, for some applications,
the substitutes themselves may have adequately covered es-
sential information for the intended purpose of classification.
However, there is an accompanied risk that the revelation of
the K-means (or SOM) cluster structure may inadvertently
leak sensitive information exploitable by malicious intruder.
As a remedy, the desensitized PCA may be performed prior
to the K-means (or SOM) clustering, cf. Figure 5. The process
contains two stages:
• First, extract desensitized PCA components via the Ridge

DCA.
• Second, apply K-means (or SOM) to the lower-dimension

and desensitized PCA vectors.
Since the data vectors are desensitized, the cluster structure
formed by K-means should contain little or no sensitive
information.

Example 7 (Desensitized K-means with Yale dataset):
Figure 8 shows the visualization of 30 K-means centroids

derived from desensitized Yale dataset. Since the data vectors
are already desensitized, it can be expected that the cluster
structure formed by K-means (or for that matter, SOM) should
leak little sensitive information.

2

VII. CONCLUSION AND FURTHER EXTENSION

Compressive Privacy (CP) aims at finding the optimal sub-
space of the original vector space for the purpose of privacy-
preserving data mining (PPDM) and, more generally, privacy-
preserving utility maximization (PPUM).

Extension to Kernel RDCA. Both DCA and Ridge DCA
may be further extended to kernel DCA and kernel RDCA.
More exactly, the optimal query vector in the empirical space,
say a , can be derived from the kernel-DCA optimizer:

argmaxa

aT [KB − ρ′K̄]a

aT [K̄2 + ρK̄]a
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PCA DCA 

DUCA 

Compressive 

Privacy 

(CP) 

 

Fig. 9. Three promising subspace projection methods for CP are PCA, DCA,
and DUCA.

which enables the query to be optimized in the much expanded
nonlinear space so as to further enhance RDCA. For more
detail, see [11], [14].

Extension to DUCA. Briefly, DUCA stands for differential
ultility/cost advantage and is an extension of DCA. DUCA is
based on the joint optimization of utility and privacy. DUCA
is built upon the theoretical foundation of information and
estimation theory, with intended applications to data mining
and other machine learning problems. In short, as depicted in
Figure 9, PCA, DCA, and DUCA, represent three promising
subspace projection methods for compressive privacy (CP).
For more detail, see [13].
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