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Abstract—Data-driven mobile applications are becoming in-
creasingly popular in civilian and law enforcement. RapidGather,
for instance, is an smartphone application that collects data
from individual, and spreads rapid emergency responses. Image
data is widely used in such applications, and machine learning
methods could be utilized to analyze the image data. However,
people would hesitate to share the data without protecting their
privacy. In this paper, we propose to utilize dimensionality
reduction techniques for privacy-preserving machine learning in
face recognition for the image data. To demonstrate the proposed
approach, we implement a client server system, FRiPAL. With
extensive experiments, we show that FRiPAL is efficient, and
could preserve the privacy of data owners while maintaining the
utility for data users.

I. INTRODUCTION

Modern data-driven applications are becoming increasingly

popular in civilian and law enforcement. Such applications

collect data from the smartphones, analyze the data at back-

end systems, and help people to make decisions. RapidGather

[1], for instance, is a data-driven emergency response applica-

tion that collects different types of data from smartphones, and

spreads rapid emergency response to citizens and authorities.

However, smartphone users might hesitate to share their data,

if RapidGather could not protect the data privacy properly.

Gathering and analyzing photos rapidly is of great im-

portance in emergency events. For instance, in the Boston

Marathon bombing scenario (a potential RapidGather use

case), even if information transmission immediately through

Internet, social media and news report, it still took several

days for authorities to gather photos from smartphone users

who were in that area, and pore through thousands of photos

to identify the suspects. We come up with a privacy-preserving

mechanism that could motivate the data owners to share their

photos with the authorities, and the authorities could query

photos from the crowd around the scene rapidly, and recognize

the wanted suspects effectively.

In this paper, we propose a privacy-preserving machine

learning framework for face recognition for the image data in

the RapidGather application. Machine learning is an important

tool to model the appearance of faces and to classify them.

Eigenface [2] and Fisherface [3] have been utilized for a

long time for face recognition. However, those traditional

methods do not consider privacy issues. As the demand

for privacy increasing, privacy-preserving machine learning
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becomes an emerging area. To date, a few approaches rely

on cryptographic protocols (e.g. homomorphic [4] or com-

mutative encryption [5]) or data perturbation (e.g. random

projection [6]) techniques have been proposed. However, the

cryptography-based approaches suffer from low efficiency,

due to high computation and communication cost. The data

perturbation based approaches suffer from low accuracy, due

to the loss of useful information. Therefore, instead of utilizing

cryptography or data perturbation techniques, we propose

to utilize dimensionality reduction techniques for privacy-

preserving machine learning. These techniques can efficiently

transform the raw data from the data owner to a new set of

data before they are given to the data users. Without revealing

the raw data, the transformation is irreversible.

We have implemented our methods in a system called

FRiPAL, Face Recognition in Privacy Abstraction Layer,

which is a privacy-preserving face recognition service de-

sign. RapidGather proposed [1] an architecture of Privacy-

Enhanced Android (PE-Android) which is an extension of

the current Android OS with new privacy features. One of

the most important components in PE-Android is the Privacy

Abstraction Layer (PAL), which is defined as a wrapper of

the low level PE-Android services that allows the developers

to develop privacy preserving applications in their traditional

way. FRiPAL has been integrated into RapidGather as a

privacy-preserving face recognition service for image data.

The contributions of this paper are as follows:

First. We propose to utilize dimensionality reduction tech-

niques for privacy-preserving machine learning in face recog-

nition. We demonstrate the proposed approach with three

dimensionality reduction methods, including Principal Compo-

nent Analysis (PCA) [7], Linear Discriminant Analysis (LDA)

[3] and Discriminant Component Analysis (DCA) [8].

Second. We design and implement a privacy-preserving

face recognition client server system, FRiPAL, which could

preserve the privacy of data owners while maintaining the

utility for data users.

Third. Extensive experiments have been conducted on three

different public datasets to evaluate FRiPAL in terms of

accuracy, privacy and efficiency. The accuracy results show

that our system maintains the utility for face recognition.

The privacy results illustrate that our system protects the

privacy which motivates the data owners to submit photos.

The efficiency results demonstrate that our system is efficient

for practical usage.

The rest of this paper is organized as follows. Section II978-1-5090-5569-2/17/$31.00 c©2017 IEEE



presents the preliminaries of dimensionality reduction meth-

ods. Section III describes the privacy-preserving face recogni-

tion problem and our proposed solution. Section IV describes

the system design of FRiPAL. Section V presents the ex-

perimental evaluation. Section VI presents the related works.

Section VII presents the conclusion and future work.

II. PRELIMINARIES

A. Privacy-preserving by Dimensionality Reduction

In machine learning, dimensionality reduction is a tool to

transform the feature vector from a high dimension space to

a low dimension space. It has been used to deal with: (a)

over-fitting problems when the number of features far exceed

the number of training samples, (b) performance degradation

due to suboptimal search, and (c) high computational cost and

power consumption resulting from high dimensional feature

space. However, in this paper, we investigate the privacy

preserving usage of dimensionality reduction.

Dimensionality reduction is more resilient to reconstruction

attacks [6]. Since the mapping from the original feature vectors

to a low dimensional subspace is a many-to-one mapping, it

is impossible to determine the privately held features from the

reduced feature vectors without knowing any of the original

feature vectors, as there are infinite possible feature vectors

which could lead to identical reduced feature vector. There-

fore, by utilizing dimensionality reduction, the data privacy is

preserved since this transformation is irreversible. In this pa-

per, we utilize three dimensionality reduction methods, Princi-

pal Component Analysis (PCA), Linear Discriminant Analysis

(LDA) and Discriminant Component Analysis (DCA).

B. Principal Component Analysis (PCA)

Consider a training data set consisting of n m-dimensional

vectors: X = {x1,x2, . . . ,xn}, where xi ∈ R
m. Below

shows the general steps of PCA:

1) Compute the m-dimensional mean vector μ of the whole

data set:

μ =
1

n

n∑

i=1

xi (1)

2) Compute the scatter matrix S̄ (alternatively, the covari-

ance matrix) of the whole data set:

S̄ =
n∑

i=1

(xi − μ)(xi − μ)T (2)

3) Compute the eigenvectors {e1, e2, . . . , em} and corre-

sponding eigenvalues {λ1, λ2, . . . , λm} of scatter matrix

S̄ through spectral decomposition, e.g. eigen decompo-

sition.

4) Sort the eigenvectors by non-increasing eigenvalues and

choose d eigenvectors with the largest eigenvalues to

form a projection matrix Wpca ∈ R
m×d, where each

column is an eigenvector.

5) Transform each sample onto the new subspace:

x′
i = W T

pca × xi (3)

where xi ∈ R
m, and x′

i ∈ R
d.

Wpca is the PCA projection matrix. The parameter d deter-

mines the dimension of the subspace of the transformed data,

and the signal power retained after dimensionality reduction.

For instance, suppose the original feature vectors have full

signal power
∑m

i=1 λi, the transformed data has signal power∑d
i=1 λi, and signal power

∑m
i=d+1 λi has been irreversibly

lost. We consider more privacy is preserved, as more signal

power losing. Therefore, d could be utilized to control the

level of privacy.

C. Linear Discrimenant Analysis (LDA)

Consider a k-class training data set consisting of n m-

dimensional vectors X = {x1,x2, . . . ,xn}, where xi ∈ R
m.

Each training sample xi associates with a class label yi
indicating its belonging to one of the k classes C1, C2, . . . , Ck.

Each class Cj contains nj training samples in this data set.

Below shows the general steps of LDA:

1) Compute the total mean vector μ ∈ R
m, and the class

mean vector μj ∈ R
m, j = 1, 2, . . . , k:

μ =
1

n

n∑

i=1

xi μj =
1

nj

∑

yi∈Cj

xi (4)

2) Compute the between-class scatter matrix SB and the

within-class scatter matrix SW :

SB =

k∑

j=1

nj(μj − μ)(μj − μ)T (5)

SW =

k∑

j=1

∑

yi∈Cj

(xi − μj)(xi − μj)
T (6)

3) Compute the eigenvectors {e1, e2, . . . , em} and corre-

sponding eigenvalues {λ1, λ2, . . . , λm} of scatter matrix

S−1
W SB through spectral decomposition, e.g. eigen de-

composition.

4) Sort the eigenvectors by non-increasing eigenvalues and

choose d eigenvectors with the largest eigenvalues to

form a projection matrix Wlda ∈ R
m×d, where each

column is an eigenvector.

5) Transform each sample onto the new subspace:

x′
i = W T

lda × xi (7)

where xi ∈ R
m, and x′

i ∈ R
d.

Wlda is the LDA projection matrix. Unlike PCA, LDA can

reduce the m dimensionality at most to k− 1, because of the

k-discriminant constraint of LDA.

D. Discrimenant Componenet Analysis (DCA)

The training data set is the same as described in Sec-

tion II-C. Below shows the general steps of DCA:

1–2) The same as LDA’s 1–2)



3) Compute the regulated between-class scatter matrix S′
B ,

the regulated within-class scatter matrix S′
W , and the

regulated total scatter matrix S̄′:

S′
B = SB + ρ′I S′

W = SW + ρI (8)

S̄′ = S′
B + S′

W = S̄ + (ρ+ ρ′)I (9)

where ρ′ and ρ are ridge parameters, and S̄ = SB+SW .

4) Compute the eigenvectors {e1, e2, . . . , em} and corre-

sponding eigenvalues {λ1, λ2, . . . , λm} of scatter ma-

trix S−1
W S̄′ through spectral decomposition, e.g. eigen

decomposition.

5) Sort the eigenvectors by non-increasing eigenvalues and

choose d eigenvectors with the largest eigenvalues to

form a projection matrix Wdca ∈ R
m×d, where each

column is an eigenvector.

6) Transform each sample onto the new subspace:

x′
i = W T

dca × xi (10)

where xi ∈ R
m, and x′

i ∈ R
d.

Wdca is the DCA projection matrix. Similar to LDA, DCA

could at most reduce the m dimensionality to k−1. There are

works [8] discussing about the influence of parameters ρ and

ρ′ on the performance of DCA. In this paper, we set ρ = 0.02
and ρ′ = 0.1.

III. PRIVACY-PRESERVING FACE RECOGNITION

A. Problem Description

We consider a two-party problem, where the data user (e.g.

authorities) has a centralized face database (e.g. suspects),

and the data owner (e.g. smartphone users) owns face images

for testing. The goal of privacy-preserving face recognition is

to allow the data user to determine if a face from the data

owner is contained in his database, without compromising the

privacy of data owner. Our privacy preserving face recognition

framework contains three steps: feature extraction, privacy-

preserving dimensionality reduction and classification. Below

describes the details of the methods we utilized for each

step to test our framework. However, in practice, the specific

methods utilized in each step could also be replaced by other

corresponding (more advanced) methods.

B. Feature Extraction

In this step, we transform the face image into feature vector

(FV). Two feature extraction methods are utilized, respectively.

1) Pixel Feature: Pixel feature is a vector of all pixel values

of a grayscale image. For instance, a 100×100 grayscale face

image has a FV of 10, 000 length.

2) Gabor Feature: Gabor feature is utilized for edge detec-

tion and texture representation of images. For a face image, a

set of Gabor filters are applied, and the downsized magnitude

results forms its Gabor feature. For instance, applying 40

Gabor filters on a 100×100 face image, and downsizing each

reuslt to 30× 30, results in a FV of 36,000 length.

C. Privacy-preserving Dimensionality Reduction

To preserve the privacy of testing data, PCA, LDA and

DCA are utilized to transform FV to dimension reduced

feature vector (DRFV), respectively. Below shows the three

dimensionality reduction methods in detail.

PCA. Suppose the projection matrix is Wpca. Each testing

phase begins with selecting a parameter d. Then, project FV
on the m× d matrix Wpca to get DRFV .

PCA-LDA. In our case, the dimension of FV of a image

is usually much larger than the number of training data.

For LDA, this would result in (a) the within class scatter

matrix Sw becoming singular, and (b) the overfitting of

the transformed data. To overcome this issue, a two step

dimensionality reduction method applies. In the training, the

m-dimensional training data is projected to a r-dimensional

subspace using a m× r PCA projection matrix Wpca, where

r < n−k, n is the number of training data, and k is the number

of unique classes. Then, the r-dimensional data is projected

into a k − 1 dimensional subspace using a r × (k − 1) LDA

projection matrix Wlda. In the testing, each FV is projected

on a m× (k − 1) matrix Wpca ·Wlda to get DRFV .

PCA-DCA. Comparing with LDA, adding the ridge pa-

rameters in DCA makes the within class scatter matrix Sw

non-singular. However, applying two step dimensionality re-

duction could also relax the overfitting issue and improve the

efficiency. Therefore, we apply PCA before DCA in the same

way as described for LDA.

PCA is the common step for all three dimensionality re-

duction methods. As discussed in Section II-B, the number

of Principal Components (PCs) in PCA, namely parameter d,

has an impact on the balance between privacy and utility. For

instance, in our problem, the data user can determine the range

of acceptable number of PCs they want to keep for them to

have good utility of the data. The data owner can choose to

share their data at any of the dimensions in that range, or not

at all. Therefore, we could use the number of PCA PCs as the

privacy policy level. In this paper, we use the privacy policy

level and the number of PCs interchangeably.

D. Classification

Support Vector Machine (SVM) [9] is utilized as our

classification method. Each subject is trained multiple models,

where each model subjects to a feature type, a dimensionality

reduction method and one privacy policy level. Each model

specifies a threshold of the probability θ ∈ [0, 1].

In the testing phase, given a DRFV of a face image, each

two-class SVM model outputs a binary result and a probability

calculated from the SVM decision value. If the probability

is larger than a model’s θ, we consider that the testing face

belongs to the corresponding subject. The testing face might be

recognized as multiple subjects, we return the subject whose

model outputs the highest probability as the final result. If the

testing face is not recognized as any subject, we consider it is

not in the database.
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Fig. 1: FRiPAL Framework.

IV. FRIPAL SYSTEM DESIGN

FRiPAL is a privacy-preserving face recognition framework,

which enables rapid photo collection and face recognition,

while ensuring the data owner control over the data privacy.

FRiPAL supports two feature extraction methods (Pixel Fea-

ture and Gabor Feature), and three dimensionality reduction

methods (PCA, LDA and DCA). Fig. 1 shows the main

components of FRiPAL: back-end server, mobile application,

communication server, and command center.

Fig. 1 also shows the work flow of FRiPAL. The back-

end server begins with an off-line training to prepare the

classification models, mean vectors, projection matrices and

data scale parameters. In each use case,

1) The mobile application updates the mean vectors and

the projection matrices from the back-end server.

2) The end user selects photos for face detection. Then,

the mobile application performs feature extraction and

dimensionality reduction on the selected faces.

3) The mobile application sends DRFVs to the back-end

server.

4) The back-end server performs face recognition and sends

results to the command center.

Below describes the design and implementation details about

each components.

A. Back-end server

This component provides the server side support of

FRiPAL, including 1) information synchronization, 2) privacy-

preserving face recognition, and 3) results update.

1) Information synchronization: This process synchronizes

the mean vector and the projection matrix with the mobile

application. In each use case, mobile application sends the

client-side version number to the back-end server. The back-

end server updates the newest projection matrix and mean

vectors to the mobile application if any update is available.

2) Privacy-preserving face recognition: In each use case,

the server receives DRFV, the feature type, the dimensionality

reduction method, and privacy policy level from the mobile

application. Then, each DRFV is tested against all the subjects’

models with corresponding settings (Section III-D).

3) Results update: If a wanted subject (e.g. suspect) is

recognized in a given photo, the back-end server sends the

face recognition results to the command center.

B. mobile application

The mobile application is developed upon Android API

level 23, including 1) face detection, 2) feature reduction, and

3) DRFV upload.

1) Face detection: The Haar Feature-based Cascade Classi-

fiers [10] are adopted for face detection, which is implemented

using OpenCV 3.0.0 library. The library contains a pre-trained

classifier and API calls to do the face detection over an

grayscale image.

2) Feature reduction: Given a detected grayscale face, the

application first resizes it to a predefined width and height (e.g.

100 × 100). Then, the specified type of feature is extracted.

The same dimensionality reduction procedure (Section III-C)

applies on the FV to generate DRFV. As mentioned in Sec-

tion III-C, the end user is allowed to specify the preferred

privacy level (the number of PCs).

3) DRFV upload: The application uploads the DRFV, along

with the feature type, the dimensionality reduction method and

selected privacy policy level to the back-end server.

C. Communication Server and Command Center

Communication Server. The communication server is built

upon RabbitMQ [11], which is an open source message broker

software that supports the AMQP [12]. The mobile application

works as a message producer, which creates and publishes

messages to the communication server. The back-end server

works as the message consumer that handles the message

routed through the communication server.

Command Center. The command center displays the face

recognition results and provides an interface for the agents and

authorities to analyze and make further decision.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate FRiPAL through extensive

experiments, in terms of accuracy, privacy and efficiency.



TABLE I: The Summaries of Experimental Datasets

Number of Subjects (tr. / te.) Number of Photos (tr. / te.)

Yale 28 / 28 5600 / 840

Gatech 0 / 50 0 / 714

Caltech 0 / 11 0 / 126

Total 28 / 89 5600 / 1680

A. Experiment Setup

1) Environment: The back-end server and commend center

have been deployed on the same commodity computer with

an 8 core Intel i7-4770 Processor, 32GB RAM, 400GB SSD,

running 64-bit Ubuntu 14.04 LTS operating system. The

communication server is a Ubuntu 14.04 LTS virtual machine,

with 1 Processor, 8GB RAM and 20GB SSD, running on the

same commodity computer. The mobile application has been

deployed on two Android devices, a Nexus 5X and a Nexus 6P,

respectively. The communication between the mobile devices

and the commodity computer is through a wireless access point

(MWR102 USB Powered Travel Router).

2) Dataset: The experiment dataset consists of data from

three public datasets: the Caltech Faces 1999 (Caltech) [13],

the Gatech Face Database (Gatech) [14], and the Yale Face

Database B (Yale) [15]. More details for training data (tr.)

and testing data (te.) are shown in Table I. The training data

contains 28 subjects all from Yale, each has 200 photos. Thus,

5600 photos in total.

In order to make the experimental evaluation as unbiased

and practical as possible, we generate the testing data from

three different public datasets, which contains subjects both

from and distinct from the training data. Specifically, the

testing data consists of 28 subjects from Yale, each contains 30

photos; 50 subjects from Gatech, 714 photos in total; and 11

subjects from Caltech, 126 photos in total. Thus, 1680 photos

in total.

3) Off-line Training: As discussed in Section III, we trained

multiple models for each subject. Each training model subjects

to a feature type, a dimensionality reduction method and

one privacy policy level. In this experiment, we utilized two

feature types, Pixel Feature and Gabor Feature and three

dimensionality reduction methods, PCA, LDA and DCA, for

the training of six types of models, namely, P-PCA, P-LDA,

P-DCA, G-PCA, G-LDA and G-DCA. Furthermore, for each

dimensionality reduction method, 18 different privacy policy

levels (the number of PCA PCs) are selected, namely, 200,

190, 180, 170, 160, 150, 140, 130, 120, 110, 100, 90, 80,

70, 60, 50, 40, 30. For each subject in the training data, we

utilize 200 (all) of his/her photos as the positive samples and

200 randomly selected photos of other subjects as the negative

samples. For each subject, 2× 3× 18 two-class SVM models

are trained in total.

B. Accuracy

Threshold Selection. We use the ROC curve to select the

threshold of each model (Section III-D), which is created by

plotting the true positive rate (TPR) against the false positive

rate (FPR) at various threshold settings. In our experiments,

we use 101 threshold settings, namely, {0, 0.01, 0.02, . . . ,

0.99, 1}. Fig. 2 illustrates six models of subject yaleB11 in

Yale, where the x-axis is FPR and the y-axis is TPR. For

each model, we consider the point of intersection of the ROC

curves and y = 1−x as the threshold. For instance, in Fig. 2,

the intersection point of P-PCA is around (0.005, 0.91), and

the corresponding threshold is 0.71, which means when the

threshold is 0.71, the TPR is around 0.91 and the FPR is

around 0.005.
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Fig. 2: The ROC curves of six models (P-PCA, P-LDA, P-DCA, G-PCA,
G-LDA and G-DCA, with 200 PCA PCs) of subject yaleB11 in Yale.
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Fig. 3: F1-Score.

Accuracy Evaluation. We use F1-Score as the measure of

accuracy. Fig. 3 shows the accuracy results of six methods.

The x-axis shows 18 privacy policy levels. The y-axis shows

the corresponding F1-Score results. Each result is the average

over the results of all (28) subjects’ models. It is clear that for

three dimensionality reduction methods, as the number of PCs

increasing, the accuracy increases gradually. It should be noted

that the fluctuation in F1-Score is mostly due to the SVM



parameter selection. The Gabor feature achieves an overall

higher accuracy than the Pixel feature. The lowest accuracy is

around 78% when we adopt P-PCA.

Considering the results mentioned above, for PCA, LDA

and DCA, the pattern that the accuracy is positive correlated

to the number of PCA PCs, is consistent.

(a) (b)

(c) (d)

Fig. 4: PCA reconstruction of subject s10 in Gatech Face

Database. (a) Original image. (b) 40 PCs reconstructed image

(0.26 HS). (c) 120 PCs reconstructed image (0.35 HS). (d)

200 PCs reconstructed image (0.39 HS).

C. Privacy

Privacy Metrics. We utilized two metrics as the measure of

privacy, namely Relative Error (RE) and Histogram Similarity

(HS). The privacy metrics is conducted on the feature domain.

We measure the difference between the original and the recon-

structed FV, rather than the original image and reconstructed

image. However, it is worth noting that the Pixel feature

actually equals to the original image.

The RE is defined as equation (11), where N is the number

of testing samples and m is the number of features. xij is the

original value of jth feature in ith testing sample, and x̃ij is

the corresponding value of the reconstructed data. Higher RE

means more difference, thus, in our setting, more privacy is

protected.

RE =
1

N ×m

N∑

i=1

m∑

j=1

|xij − x̃ij

xij
| (11)

We utilize HS as the measure of image data’s privacy. Since

we only use grayscale images, the domain of feature value is

[0, 255], which is suitable for generating histograms. Let H
and H̃ be the histograms of the original data and reconstructed

data respectively. Then, the HS between H and H̃ is defined

as equation (12), where M is the color dictionary (256) of

grayscale images, and S = max(hi− h̃i), i = 0, 1, . . . ,M−1.

The value of HS is in [0, 1]. Lower HS means less similarity,

thus, in our setting, more privacy is protected.

HS(H, H̃) =
1

M

M∑

i=1

(
1− |hi − h̃i|

S

)
(12)

The histogram of an image describes its color distribution.

Two distinct images may have a similar total color distribu-

tion, but it is rare that they have all the same partial color

distributions. Therefore, we divide the image into grids. For

instance, Fig. 4a is divided into four grids by the red dot

lines. Then, we apply HS on each grid of the original data

and the corresponding grid of the reconstructed data. Finally,

we calculate the average HS among all the grids. In this

experiments, we divide each image into 40 grids.

To demonstrate the effectiveness of HS, Fig. 4a is the

original face, Fig. 4b is the reconstructed face after reduced the

FV to 40 dimensions with PCA. Fig. 4d is the reconstructed

face after reduced the FV to 200 dimensions with PCA. It

can be seen that Fig. 4b is more blurred than Fig. 4d, while

the HS value of Fig. 4b, 0.26 is lower than Fig. 4d, 0.39.

It implies Fig. 4b preserves more privacy Fig. 4d. Therefore,

the HS could be utilized to measure the privacy-preserving of

images.
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Privacy Evaluation. Fig. 5 shows the RE of PCA, LDA

and DCA, with two feature types. For all privacy policy levels

listed, the RE of DCA is always the largest one, the RE of



PCA is always the smallest one, and the RE of LDA is always

slight less than DCA. This pattern implies that DCA and LDA

are more effective than PCA in terms of privacy preserving.

Furthermore, as the privacy policy level increasing, the RE

of PCA decreases, while the RE of DCA stays around the

same value, and the RE of LDA slightly increases. This pattern

shows that DCA and LDA are more consistent than PCA in

terms of privacy preserving.

Fig. 6 shows the HS results, which presents the same

patterns as the RE results. In addition, the maximum HS of

LDA and DCA are less than the minimum HS of P-PCA (30

PCs). As shown in Fig. 4b, when using 40 PCs in PCA, the

reconstructed face is already too blurred to be recognized from

the original face. Therefore, LDA or DCA might get even more

blurred reconstructed faces comparing with Fig. 4b.

Considering the results mentioned above, in terms of pri-

vacy preserving, DCA and LDA performs better and more

consistent than PCA. From Fig. 3, it could be seen that PCA,

DCA and LDA has similarity accuracy results, with the same

feature types. Therefore, the data owners could choose to use

DCA and LDA, which gives better and more consistent privacy

protection, and could use the number of PCs to control the

utility.
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Fig. 7: Performance evaluation results on Nexus 6P.

D. Efficiency

We designed three experiments to show the system per-

formance. The first experiment measures the time cost of

updating projection matrix from the back-end server to the

mobile application. The second experiment measures the time

cost of the privacy preserving face recognition process, which

is the core task of our proposed system. This process covers the

face detection and feature reduction on the mobile device, the

face recognition on the server side, and the data transmission

between the two parties. The third experiment measures the

time cost of uploading image to the back-end server. We select

10 images of each subject from the Yale testing data, which

results in 280 images in total, and put them on the mobile

device. We measure the performance with different privacy

policy levels on P-PCA, P-LDA, P-DCA, G-PCA, G-LDA and

G-DCA, respectively. In the second and third experiment, 10

images is grouped and processed together.

TABLE II: The Size of Different Projection Matrices

Projection Matrix (privacy policy level)
40 80 120 160 200

P-PCA 3.2 MB 6.4 MB 9.6 MB 12.8 MB 16 MB
P-LDA 2.2 MB 2.2 MB 2.2 MB 2.2 MB 2.2 MB
P-DCA 2.2 MB 2.2 MB 2.2 MB 2.2 MB 2.2 MB
G-PCA 11.5 MB 23.0 MB 34.6 MB 46.1 MB 57.6 MB
G-LDA 7.8 MB 7.8 MB 7.8 MB 7.8 MB 7.8 MB
G-DCA 7.8 MB 7.8 MB 7.8 MB 7.8 MB 7.8 MB

Table II shows the size of different projection matrices.

Table III summarizes the results of the first and second

experiments. For instance, for G-PCA, with 200 PCs, when

running on Nexus 6P, it takes 27 seconds to update the

corresponding projection matrix (the size is 57.6 MB), and it

takes 28.5 seconds to accomplish the privacy preserving face

recognition of 10 images. Figure 7 shows the performance

of the second experiment on Nexus 6P. It can be seen that,

since DCA and LDA reduced the feature vector to an identical

number, their performance are invariant against the change of

privacy policy levels. For the PCA method, the more PCs, the

more time it takes for processing. The experiment on Nexus

5X gives a similar result.

Considering all the experiment results above, FRiPAL is

efficient, and through DCA and LDA, FRiPAL could preserve

the privacy of data owners while maintaining the utility for

data users.

VI. RELATED WORKS

Data Transformation for privacy-preserving. Data pertur-

bation is an important technique for protecting the data privacy.

[16] proposes to perturb the individual data with additive or

multiplicative noise that is generated from certain distributions

(e.g., Gaussian). [17] proposes to transforms the original whole

data set by applying a random rotation matrix. However,

both approaches suffer from a decreasing of the accuracy.

Moreover, the first approach cannot resistant against the attack

of noise filtering out [18], while the perturbed data obtained

by the second approach can be restored by another rotation

matrix [19]. Our proposed method maintains the utility, while

is more resistant to the reconstruction attack.

Privacy-preserving face recognition. [20] has proposed

the first privacy preserving face recognition. They consider

a two party problem, data user owns a database of face

images, and data owner wants to know whether the face

image he owns is in data user’s database. The data owner

does not want to reveal the image nor the recognition result,

while the data user does not want to leak the privacy of his

face image database. To resolve the problem, an additively

homomorphic public key encryption scheme has been used

to securely calculate the distance between the data owner’s

data and the data in the database. Their work suffers from a



TABLE III: The Performance of UpdateProjectionMatrix and UploadProjectedData

UpdateProjectionMatrix (second) UploadProjectedData (second / 10 images)
Nexus 5X Nexus 6P Nexus 5X Nexus 6P

30 200 30 200 30 200 30 200
P-PCA 1.305 10.647 2.058 7.566 1.331 10.797 1.608 10.493
P-DCA 1.325 1.294 1.020 1.208 1.634 1.197 1.833 1.41
P-LDA 1.266 1.277 1.133 1.024 1.472 1.212 1.786 1.378
G-PCA 3.878 30.881 3.924 27.062 6.251 29.957 5.248 28.543
G-DCA 5.135 4.476 4.030 3.653 7.198 5.365 5.259 5.170
G-LDA 4.344 4.116 3.499 3.861 6.982 5.2 5.88 4.667

heavy computation and communication cost by involving the

homomorphic encryption, and it cannot be applied to other

machine learning methods directly. [21] has proposed a hybrid

solution using homomorphic encryption and garbled circuits,

which improves the previous work by shifting most of the

computation and communication cost to the pre-computation

phase. Rather than encryption, we propose a more efficient

and general method by using the dimensionality reduction

methods.

VII. CONCLUSION

This paper explores the usage of dimensionality reduction

techniques on privacy preserving face recognition. To demon-

strate the proposed approach, we implement an efficient pri-

vacy preserving face recognition client server system, FRiPAL,

using three dimensionality reduction methods, PCA, LDA and

DCA with two types of features. The system performance

is evaluated on two Android devices, Nexus 5X and Nexus

6P. The results confirm the efficiency of your system for

real life usage. Through the extensive experiments, all three

methods have similar accuracy results when using the same

feature type. RE and HS is utilized to illustrate the privacy

preserving performance. As the privacy policy level increasing,

the privacy preserving of PCA degrades, while DCA and LDA

has a more consistent and better results than PCA. Therefore,

DCA and LDA maintain the utility while privade abetter

privacy preserving. In the future, we will work on applying

our methods on the multiple data owner and multiple data

user scenario.
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