
Security and Privacy Implications on Database
Systems in Big Data Era: A Survey

G. Dumindu Samaraweera , Student Member, IEEE and J. Morris Chang , Senior Member, IEEE

Abstract—For over many decades, relational database model has been considered as the leading model for data storage and

management. However, as the Big Data explosion has generated a large volume of data, alternative models like NoSQL and NewSQL

have emerged. With the advancement of communication technology, these database systems have given the potential to change the

existing architecture from centralized mechanism to distributed in nature, to deploy as cloud-based solutions. Though all of these

evolving technologies mostly focus on performance guarantees, it is still being a major concern how these systems can ensure the

security and privacy of the information they handle. Different datastores support different types of integrated security mechanisms,

however, most of the non-relational database systems have overlooked the security requirements of modern Big Data applications.

This paper reviews security implementations in today’s leading database models giving more emphasis on security and privacy

attributes. A set of standard security mechanisms have been identified and evaluated based on different security classifications.

Further, it provides a thorough review and a comprehensive analysis on maturity of security and privacy implementations in these

database models along with future directions/enhancements so that data owners can decide on most appropriate datastore for their

data-driven Big Data applications.

Index Terms—Big data, database systems, attacks, threats, security, privacy, performance

Ç

1 INTRODUCTION

EVERY new wave of computing technology from main-
frame era to Big Data era has accelerated data growth in

numerous ways. Thus, the volume increase of data in a fast
pace has been identified as one of the ongoing challenges for
any database system [1]. Starting from the early stages, rela-
tional database systems have been considered as the key
data management technology for many organizations and it
has been served as the backbone for structured data. How-
ever, the increased volume and variety of the data types has
led to existence of alternative database designs that can even
facilitate semi-structured and unstructured data without
compromising the performance of the database engine. As a
result, NoSQL models have given the rise. However, despite
the fact that usage of DBMS for data management, data ana-
lytics also plays a major role in any organization, particu-
larly with fast growth of data. To facilitate such data
analytics with large volume of data, the idea of combining
strong Atomicity, Consistency, Isolation and Durability
(ACID) guarantees of relational database systems together
with performance guarantees of NoSQL models has been
proposed and termed as NewSQL which is held to be one of
the emerging database models for future data-driven
applications.

When the organizations increase their usage of database
systems as the key data management technology, especially
with Big Data management, the security of the information
managed by these systems becomes vital. Confidentiality,
Integrity and Availability (CIA) are considered as the foun-
dation of data security and privacy, but whether modern
database systems can exhibit these properties in their archi-
tectures is still a major concern. On the other hand, moving
database infrastructures from on-premise to distributed
cloud-based architectures has increased the risk of security
and privacy breaches. Thus, majority of organizations, do
not store mission critical data in the cloud as they argue
there is a higher degree of confidence of security when the
data stored on-site [1]. Hence, utilizing the state-of-the-art
performance benefits provided by the database systems for
Big Data applications, without compromising the security,
is the new challenge for modern-day database systems.
There has been a lot of research in the comparison of differ-
ent datastores over the past [2], [3], [4] based on perfor-
mance and quality attributes; yet, there has been no security
and privacy focused classification of different database
models giving more emphasize on security/privacy aspects
of database systems.

This article aims to fulfill this gap by providing a thor-
ough and comprehensive analysis on maturity of security
(and privacy) implementations of today’s leading database
models, and their competency for serving modern Big Data
applications by investigating the existing security models of
different database systems and current efforts of the research
community towards strengthening these mechanisms. At
first, authors have investigated and identified set of industry
standard technical approaches and the mechanisms that can

� The authors are with the Department of Electrical Engineering, University
of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620 USA.
E-mail: samaraweera@mail.usf.edu, chang5@usf.edu.

Manuscript received 16 July 2018; revised 17 June 2019; accepted 16 July
2019. Date of publication 18 July 2019; date of current version 7 Dec. 2020.
(Corresponding author: G. Dumindu Samaraweera.)
Recommended for acceptance by L. Chen.
Digital Object Identifier no. 10.1109/TKDE.2019.2929794

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 1, JANUARY 2021 239

1041-4347� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of South Florida. Downloaded on April 13,2021 at 20:59:53 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4097-5585
https://orcid.org/0000-0003-4097-5585
https://orcid.org/0000-0003-4097-5585
https://orcid.org/0000-0003-4097-5585
https://orcid.org/0000-0003-4097-5585
https://orcid.org/0000-0002-0660-7191
https://orcid.org/0000-0002-0660-7191
https://orcid.org/0000-0002-0660-7191
https://orcid.org/0000-0002-0660-7191
https://orcid.org/0000-0002-0660-7191
mailto:
mailto:

be utilized to implement security on database systems. Then,
modern database systems (that are actively being discussed)
have been classified in to multiple categories based on their
usage and popularity. Thereafter, those datastores have been
individually evaluated based on the identified security mec-
hanisms and an extensive comparison has been provided.
As per the key findings of this survey, even though relational
database systems are facilitated with reasonably strong secu-
rity mechanisms that can ensure the protection for most of
the modern-day Big Data applications, a larger fraction of
NoSQL and New SQL systems are still lacking strong secu-
rity guarantees. Therefore authors believe that it is the right
time to properly revisit the security offerings of modern
database solutions toward designing a robust security fram-
ework for next generation database systems.

The rest of the survey is organized as follows: Section 2
presents summary of underlying technologies of different
database systems and Section 3 discusses about the threats,
vulnerabilities and adversarial models that can lead to data
breaches in database systems. We extend the security discus-
sion in Section 4 with a comprehensive analysis and an evalu-
ation of security and privacy mechanisms available with
leading data management systems. Finally, paper concludes
with Section 5 providing further observations for futurework.

2 UNDERLYING DATA PROCESSING MECHANISMS

OF DATABASE SYSTEMS

Database systems have been evolving over the last few dec-
ades attributed to couple of driving factors, mainly, advan-
ces in hardware, increased volume expansion of data,
emerging applications and so on. In order to understand
the synergies of security mechanisms and its implementa-
tions, it is vital to look in to the underlying data processing
technologies of these database systems on which the essen-
tial performance and security principles are performed and
heavily rely on.

2.1 Database Transaction Models

The idea of transactions and their logical semantics were
evolved with the data management techniques. A transac-
tion is bundling of multiple operations on database state into
a single set of sequence. When multiple users share the same
set of data in a database, handling concurrent transactions
have raised issues as it needs to ensure consistency and
integrity of data. In late 1970s Jim Gray defined the most
widely accepted transactionmodel and later it became popu-
larized as ACID transactions [5]. ACID transactions offer
guarantees of synchronous access to mutable database state.
The atomicity property guarantees that either all or none of
the updates of a transaction are committed. This is significant
in replicated databases in order to maintain the consistency.
The consistency property stipulate that all transactions must
follow defined rules and restrictions of the database. The iso-
lation property of a DBMS ensures that synchronous execu-
tion of transactions results in a system state that could be
obtained if transactions were executed serially. Finally, the
durability property guarantees that the updates (of a transac-
tion) are intact once the transaction is committed.

With the increased level of scalability requirements of web
applications, it became apparent that no ACID compliant

database could ever satisfy the needs of handling large
distributed volume of data. In 2000, Eric Brewer presented
a conjecture explaining trade-offs in distributed systems,
later popularized as Consistency, Availability, and Partition
tolerance (CAP) theorem [6]. The CAP theorem states that
it is possible to have at most only two of consistency, avail-
ability, and partition tolerance. Consistency defines that all
replicas of the same data will carry the same value across the
distributed system at a given instant. Availability means even
in an event of failure, the database remains operational with
the help of remaining live nodes in the distributed system. In
contrast, partition tolerance defines that the system is designed
to operate in the face of unplanned network outage between
replicas. Later, as an alternative design, Basically Available,
have a Soft state, Eventually consistent (BASE) model [7]
has been proposed which was derived from the CAP theo-
rem in which consistency and isolation in ACID transactions
have given lower priority in order to favor the availability
and scalability. Thus, ACID and BASE represent the two
design considerations at the opposite ends of the consis-
tency-availability spectrum and most of today’s cloud based
distributed systems use a mix of both approaches [8].

2.2 Data Management Systems

Over the last few decades, Relational Database Management
Systems (RDBMS) were identified as the most suitable solu-
tion for large-scale storage and management (irrespective of
their naturally fit to the relational data model), due to strong
guarantees of ACID properties. The Oracle, MySQL, Micro-
soft SQL Server and PostgreSQL are some of the most popu-
lar relational database systems available today. However,
with the increasing demand for Big Data systems that are
typically composed with variety of data models in struc-
tured, semi-structured and unstructured representations,
relational databases faced several challenges in terms of stor-
age and performance. At first, they were required to cater
the intensive needs of data access on database systems, mak-
ing them to change the architecture from centralized to dis-
tributed in nature. Second, traditional relational databases
impose challenges in maintaining the guaranteed perfor-
mance due to the volume expansion of data in a much fast
pace. This vacuum brings the existence of NoSQL (Non SQL)
models.

The NoSQL systems usually comes with many added
advantages compared to the relational databases including
the support for unstructured datamodels, high concurrency,
low latency, high flexibility, high scalability and availability.
The termNoSQLwas first appeared somewhere in late 1980s
to name a relational database that did not have an SQL int-
erface and it was then brought back in 2009 for naming
an event introducing non-relational databases [2]. These
NoSQL systems provide data partitioning and replication as
in-built features and usually run on cluster computers
deployed on commodity hardware that can provide horizon-
tal scalability. There are different types of NoSQL data mod-
els that are actively being discussed and these can be
categorized in to four basic types. 1) Key-Value Store having
a big Hash Table of keys and values (e.g., Riak KV, Amazon
DynamoDB) 2) Document-Oriented Store that stores docu-
ments made up of tagged elements (e.g., MongoDB,
CouchDB) 3) Column-Oriented Store where each storage

240 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 1, JANUARY 2021

Authorized licensed use limited to: University of South Florida. Downloaded on April 13,2021 at 20:59:53 UTC from IEEE Xplore. Restrictions apply.

block contains data from only one column (e.g., Cassandra,
HBase) 4) Graph Store which is a network database that uses
edges and nodes to represent and store data (e.g., Neo4J,
OrientDB).

As the name suggests, key-value systems store data as key-
value pairs. However, these datastores differ widely in func-
tionality and performance while some systems store data
ordered on the key and others do not. Some keep entire data
in the memory while others persist data into the disk. The
most defining characteristics of key-value databases include
real-time processing of Big Data, horizontal scalability across
nodes in a cluster, reliability and availability. Hence, they
can achieve extremely fast response times even with com-
modity type processors [9]. Document-oriented databases are
used to manage semi-structured data typically in the form of
key-value pairs as JSON [10] documents. Customarily, each
document is an independent entity with varied and/or
nested attributes, generally indexed by their primary identi-
fiers as well as semi-structured document field values.
Thereby, document datastores are ideal for applications that
involve aggregates across document collections. Tradition-
ally, relational database systems are row-oriented systems as
their processing is row-centric and are designed to efficiently
return rows of data. In contrast, column-oriented datastores
are column-centric. Conceptually, it can be represented as a
relational database having an index on every column, with-
out incurring any additional overhead. Due to the inherent
characteristics in the design, these column oriented data-
bases have set of column families (nested key-value systems)
and a column family may have any number of columns of
any type of data, as long as the latter can be persisted as byte
arrays [9]. Moreover, columns in a family are logically
related to each other and physically stored together hence,
they can be used in applications that are characterized by
flexible database schema, sparse data, high speed insert and
read operations. Graph databases on the other hand are
applied in areas where relationship about data interconnec-
tivity is more, or as important as, the data itself [11]. These
relationships can be either static (or may be dynamic) never-
theless, introducing graphs as a modeling tool has several
advantages for this type of data viz. more natural modeling
of data, applying queries directly to the graph (e.g., finding
shortest path) and so on. Hence, most of the social network
applications are naturally modeled using graphs. Despite all
the benefits, these NoSQL databases lose the support for

ACID transactions as a trade-off for increased scalability and
availability [12]. Hence, larger fraction of NoSQL databases
consider BASE as the transaction model which was derived
fromBrewer’s CAP theorem.

The NewSQL on the other hand is a class of modern
RDBMS that brings the benefits of performance and scalabil-
ity of NoSQL while still maintaining the ACID guarantees of
relational database systems. Organizations that handle high-
profile data which requires strong consistency requirements
(such as financial and/or order processing), are unable to
admit the direct benefits of NoSQL due to the property of
eventual consistency. In order to challenge this barrier, the
idea of combining both relational andnon-relational database
architectures was proposed. NewSQL datastores meet many
of the requirements for modern data management in cloud
infrastructures, as it brings the best of both relational and
non-relational architectures. The term NewSQL was first
appeared in 2011 in a research paper discussing the rise of
new database systems as challenges to established vendors
[13]. Even though, different NewSQL systems vary greatly in
their internal architectures, these datastores seem to be one of
the promising database technologies in the near future. Most
of the NewSQL systems are completely new and are written
from the scratch with a distributed architecture in mind [13].
The VoltDBwhich is the commercial version of research proj-
ect H-Store [14] and Google Spanner are considered to be the
most prominent database systems in this category while
Clustrix, NuoDB are also considered as commercial SQL
compliant datastores under the roof of NewSQL. However, it
is worth to note that no NewSQL systems (currently) are as
general purpose as traditional relational SQL database sys-
tems set out to be. In addition, most of these systems are in-
memory architectures in which may be inappropriate to
directly use for volumes exceeding few petabytes [15].

2.3 Data Models and Processing Techniques

In a broader term, a database is simply a collection of data
stored in a logically coherent manner so that the retrieval of
data is efficient. Themodel of the database describes the logi-
cal structure and typically resolve the functionality of the
database. When the workload of database grows, it is neces-
sary to scale out and distribute the workload amongmultiple
servers and this process is termed as horizontal scalability.
One of the main disadvantages with relational model is the
lack of support for horizontal scalability becausewhen a rela-
tional database system is scaled out, it can become overwhel-
mingly complex. Even though they offer limitless indexing
features with strong SQL support while having built-in data
integrity, they were unable to share the common Big Data
characteristics of Volume, Velocity and Variety (3Vs).

The NoSQL datastores are primarily designed with even-
tual consistency algorithms in mind hence they do not pro-
vide support for ACID transactions. But, these systems have
strong performance guarantees that can handle massive vol-
umes of data in terms of Big Data analytics. In addition, it is
well understood that one data model does not fit into all
requirements of today’s data-driven applications. Hence,
some of the datastores put availability first (e.g., Cassandra,
DynamoDB) and some put flexibility first (e.g., MongoDB,
CouchDB)while some of them are focused on alternative data
models (e.g., Neo4j). This categorization is depicted in Fig. 1.

Fig. 1. Database systems according to the CAP theorem.

SAMARAWEERA AND CHANG: SECURITYAND PRIVACY IMPLICATIONS ON DATABASE SYSTEMS IN BIG DATA ERA: A SURVEY 241

Authorized licensed use limited to: University of South Florida. Downloaded on April 13,2021 at 20:59:53 UTC from IEEE Xplore. Restrictions apply.

2.3.1 Transaction Processing versus

Analytical Processing

Historically, database systems were mainly utilized for On-
line Transaction Processing (OLTP) where they access and
process comparatively only small portions of the entire data-
base and, therefore can be executed quite fast (e.g., sales
order processing or banking transactions). However, the lack
of support for ACID transactions made many NoSQL data-
stores not suitable for on-line transaction processing. For an
example, financial applications that handle large number
of short on-line transactions (Insert/Update/Delete), need
strong consistency requirements. In such circumstance, most
NoSQL database systems cannot cope with OLTP. Lately,
another new usage of database systems has evolved and
popularized as Business Intelligence (BI). Applications that
support BI integrations rely on long term running On-line
Analytical Processing (OLAP) queries (e.g., statistical data-
bases) that process substantial portions of the data to
produce analytical reports (e.g., aggregated sales statistics).
In oder to process OLAP transactions, NoSQL datastores
require lots of application code support. Applications that
deals with greater amount of archive data or that have com-
plex queries which use data aggregations, have issues with
NoSQL models as they do not have direct support for joins
and different levels of indexing.

In practice, most of the organizations with high rate of
mission-critical transactions have split their data into two
different systems, making one database for OLTP transac-
tions while other (data warehouse) serving for OLAP
queries. Despite the capability of decent transaction rates,
there are many disadvantages of this separation including
data freshness issues due to the delay caused by periodic
synchronizations and excessive resource consumptions due
to maintaining two separate data processing systems. As
real-time data analytics play an increasingly important role
in operations, most modern-day organizations are seeking
to provide access to data across enterprises, by avoiding
data silos to whatever limits possible. Earlier attempts to
execute both types of transactions on operational OLTP
database such as SAP EIS project [16], were dismissed as
OLAP query processing led to resource contentions and
severely hurt the mission-critical OLTP queries [17]. In
order to fulfill this gap, the NewSQL datastores were pri-
marily designed to utilize the main-memory database archi-
tectures. At first glance, the current explosion of data
volume seems contradicting with the premise of keeping all

transactional data memory resident. However, some studies
[17] demonstrated that transactional data volume is limited
in size and it favors in-memory data management even for
larger commercial enterprises. For this reason, NewSQL
database systems received much attention from many of the
today’s data-driven applications that requires business
intelligence. Fig. 2 summarizes the database landscape of
modern-day big data applications.

2.3.2 Disk-Based versus In-Memory Systems

Another common classification of data models is categoriz-
ing them either as disk-based or or in-memory data process-
ing systems [18]. Most of the traditional relational database
systemswere developed to work on disk-based architectures
where data processing (or larger portion of it) happens on
disk. The introduction of Solid State Disks (SSDs) was highly
favorable for disk-based database systems as the perfor-
mance of SSDs were on orders of magnitude superior to
magnetic disk devices. Regardless of the data model, none of
those disk-based systems were able to support data analytics
in real-time, as they need very high transactional processing.
With the development of multi-core CPU architectures and
availability of large amounts of main memory, created new
breakthroughswith faster accessmaking it viable to build in-
memory systems where significant part of the database fits
into thememory.

In order to take the full advantage of a large memory sys-
tem, in-memory datastores requires an architecture that is
aware that the database is completely memory resident. Tra-
ditional database systems almost habitually cache data in
mainmemory tominimize disk IO. But, this is pointless in an
in-memory system since database is already resides in mem-
ory. Thus, it requires to have cache-less architecture. On the
other hand, since whole database is in memory, there should
be some alternative persistence mechanisms to ensure that
there is no data loss due to power failures. In order to facili-
tate this, in-memory systems generally use some combina-
tion of techniques such as replicating data within the cluster,
writing complete images (snapshots/ check points) to disk
and writing out transaction records to append-only disk
files. MonetDB [19], [20] is one of the most influential data-
base systems in the category of in-memory OLAP datastores.
The SAP-SE’s TREX [21] is another project under the same
category, utilizing a columnar storage. On the other hand,
VoltDB and Timesten can be categorized as dedicated OLTP
main memory systems. Table 1 summarizes the top ranked
(ranking is based on DB Rankings [22]) most popular disk-
based and in-memory data processing/management sys-
tems that are available today.

The next section discusses the database security risks,
threats and vulnerabilities with a discussion on different
threat/adversarial models.

3 DATABASE SECURITY RISKS, THREATS,
AND VULNERABILITIES

Security is an important part of any datastore especially in
the cloud paradigm. Despite the different benefits offered
by divergent database architectures (either relational or
non-relational), ensuring data confidentiality, integrity and
availability in any system is one of the important aspects in

Fig. 2. Summary of database landscape.

242 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 1, JANUARY 2021

Authorized licensed use limited to: University of South Florida. Downloaded on April 13,2021 at 20:59:53 UTC from IEEE Xplore. Restrictions apply.

database security. Today, data security is of relatively gre-
ater concern than expanding capacity and moving to the
cloud for enterprise information systems [54]. Moreover,
majority of organizations do not store their mission-critical
data in the cloud simply because of the security and privacy
concerns. Several discussions have been going on [55], [56],
[57] related to the latest security mechanisms and evolving
trends to protect database systems against potential vulner-
abilities/threats. Different types of cryptographic mecha-
nisms, secret-key based methods, digital signatures and
certificates are some of the means that are currently avail-
able to protect database systems. However, when moving a
database system from on-premise to a cloud computing
environment where dynamically scalable and virtualized
resources are available for use over the Internet, ensuring
database security (and privacy) is a challenging task. On the
other hand, while it is a challenging task, it is one of the
major necessities in today’s Big Data applications than ever.

Continuing large scale compromises in database systems
that manage sensitive information have influenced the active
research on design of new technologies for securing informa-
tion beyond the typical security mechanisms available in
database systems. On the other hand, with the requirements
of modern Big Data applications, various protocols have also
been proposed for securely outsourcing data to a third party
database servers based on strong cryptographic primitives
such as fully homomorphic encryption (FHE), oblivious
RAM, searchable symmetric encryption, order preserving
encryption and so on. However, on the flip side, some of the
recent work [57], [58], [59] have demonstrated successful
attacks specially on encrypted databases and found that
these systems are still vulnerable. Hence we envisage the
requirement of having formal understanding of performance
and security trade-off in database systems giving emphasis
on different attacking strategies.

3.1 Adversarial Models

As suggested in the literature [60], [61] the strongest threat
model in database systems is the active attacker who fully
compromise the database server (e.g., administrator of a
cloud service provider) and perform arbitrary malicious
database operations. However, as discussed by Grubbs et al.
[57] such attacks are difficult to defend against and instead
latest security models focus on passive attacks that do not
interfere with the functionality of database but passively
observes all its operations (honest-but-curious model). This
can include observing the queries issued by the data-user
and how these queries access the data in the database. Typi-
cal abstraction of database deployment is described in Fig. 3
that is used to explain the threat models and attacks exist in
actual database systems in production environment. It is
also worth to note here that, most of these theoretical threat
models are conceptions. They are not really digging into ana-
lyzing the actual material available in an event of database
compromise (e.g., database log files, VM snapshot leaks) to
look how they infer sensitive information. Hence, in this clas-
sification we have also considered the importance of these
auxiliary information when discussing attack strategies in
database systems.

For most of the attacks that are focused on violating con-
fidentiality of data, adversary is honest-but-curious who
has some means of access to the database server or is resid-
ing at the server-side sniffing the communication. However,
for injection attacks attacker can be at the client-side who is
injecting the malicious code to a remote web access request
(through an API), when processed by the database client or
protocol wrapper. Comparatively, in most of the attacks
that are focused on privacy breaches, adversary can be a
legitimate data-user who has unrestricted access to the data-
base (e.g., data analyst) [62].

3.2 Attacks on Database Systems

In general, attacks on database systems can be categorized
into two main classes. The first category discusses about
how confidentiality of data can be compromised while the
second category discusses about how data privacy can be
revealed.

3.2.1 Attacks based on Confidentiality of Data

a) Injection Attacks: SQL injection is one of the typical attacks
[63] that works on inserting malicious code into the query
statements when application passes them to the database
client. Most of the databases store performance statistics as
system level diagnostic tables that can be used for database
tuneups and to resolve diagnosed issues. These tables

TABLE 1
Classification of Disk-Based and In-Memory Database Systems

Disk-based Systems In-Memory Systems

Relational

Oracle [23] Informix [24]
MySQL [25] Oracle TimesTen [26]
SQL Server [27]
PostgreSQL [28]
DB2 [29]

NoSQL

DynamoDB [30] Redis [31]
Riak KV [32] Memcached [33]
Cassandra [34] MongoDB [35]
Hbase [36] Aerospike [37]
Accumulo [38] ArangoDB [39]
Google Bigtable [40] Hazelcast [41]
Couchbase [42]
CouchDB [36]
OrientDB [43]
Neo4j [44]
Amazon Neptune [45]

NewSQL

Google Spanner [46] SAP HANA [47]
Vertica [48] VoltDB [49]

MemSQL [50]
Apache Ignite [51]
NuoDB [52]
Hekaton [53]

Fig. 3. Typical abstraction of database server deployment.

SAMARAWEERA AND CHANG: SECURITYAND PRIVACY IMPLICATIONS ON DATABASE SYSTEMS IN BIG DATA ERA: A SURVEY 243

Authorized licensed use limited to: University of South Florida. Downloaded on April 13,2021 at 20:59:53 UTC from IEEE Xplore. Restrictions apply.

sometimes store timestamped list of currently executing
queries (e.g., information_schema, performance_schema
database in MySQL) where an attacker can easily obtain a
list of queries made by other users. Moreover, Ron et al. [63]
discussed about the same in a context where NoSQL data-
bases and demonstrated that an attacker can even bypass
the authentication mechanism and extract data illegally by
injecting a malicious code.

b) Leakage-abuse/Inference and Reconstruction Attacks: This is
an attacking strategy where adversary exploits some leakage
to recover the query information. In 2016, kellaris et al. devel-
oped generic reconstruction attack model [59] which can
recover significant fraction of the search keys with a good
probability in a polynomial time. In their study, they have
categorized the attacking strategy into two main classes
based on query access pattern and communication volume.
Reconstruction attack using query access pattern refers to
the server learning which records are returned as a result of
a particular query. In contrast, the reconstruction using com-
munication volume refers to the server learning how many
records are returned as a result of a query.

This attack is even possible with encrypted databases
(EDB). Roughly speaking, most EDBs rely on some kind of
property-preserving encryption (PPE) mechanisms (e.g.,
deterministic, order-preserving) which enables them to exe-
cute various database operations. However, still these solu-
tions are prone to leak some amount of information. This
has steered various reconstruction attack models [58], [64],
[65], [66] where the attacks are even possible with partial
information about a single record in the DB.

c) Concrete Attacks: This refers to the theft of persistent stor-
age (disk theft). ACID compliant databases use on-disk log
files in order to facilitate roll-back operations for most recent
transactions. By using standard forensic techniques, these log
files can be used to reconstruct the past query transactions
issued on the database [67]. Furthermore, in [68] Grubbs et al.
revealed that the timing of queries carries sensitive informa-
tion which can be extracted from log files that support repli-
cated transactions. Typically, these attacks can be mitigated/
minimized using data-at-rest encryptionmechanisms.

d) Snapshot Leaks: Today’s database systems are increas-
ingly deployed on Virtual Machines (VM) hence they are
exposed to the threat of VM image leakage attacks [69], [70].
In this scenario, attacker obtains an image of the virtual
machine and hence reveals the point-in-time state of the
entire persistent and/or volatile memory. By accessing indi-
vidual pages in the cache, attacker can reveal the information
about past queries. In [57] Grubbs et al. have performed this
attack on MySQL database and revealed the ability to dump
thewholememory of theMySQL process.

e) Full System Compromise: This is the attack in which root-
ing the database system and gain full access to the database
and OS states. This can be a persistent passive or an active
attack but as mentioned earlier as well, passive attacks are
more common.

3.2.2 Attacks based on Privacy of Data

One of the major threats in terms of privacy in database sys-
tems is linking different types of datasets together to reveal
unique fingerprint of an individual or sensitive information
(also known as re-identification). These type of attacks can

be categorized into two subclasses and often they are
insider attacks.

a) Correlation Attacks: In this class of attack, values in a
dataset is linked with other sources of information to create
more unique and informative entries. For an example, if one
published database lists user information with medication
prescriptions and another lists user information with phar-
macies visited, once both are linked the correlated database
can have information such as which patient bought its med-
ication from which pharmacy [71]. Hence, final correlated
dataset can have more information per user.

b) Identification Attacks: In identification attacks, an adver-
sary tries to find out more information about a particular
individual by linking entries in a database. This can be con-
sidered as themost threatening type of data privacy attack as
it has more impact on an individual’s privacy. For instance,
if an employer searches for occurrences of its employees in a
pharmacy customer database, it may reveal some informa-
tion aboutmedical treatments and illnesses of its employees.

In terms of mitigating these attacks, data anonymization
or data pseudonymization techniques can play a big role in a
way such that linkage of datasets are still feasible, but identi-
fying an individual from that dataset becomes hard. Follow-
ing section provides a comprehensive assessment of security
mechanisms in leading database systems with a discussion
on how tomitigate these threats.

4 DATA PROTECTION MECHANISMS IN

DATABASE SYSTEMS

In terms of mitigating the risks, database systems are
equippedwith different types of securitymechanisms. There
are sufficient number of surveys [2], [4], [56], [72] carried out
in the past to compare the security implementations in
RDBMSs andNoSQL datastores. Compared to these RDBMS
models, database security is overlooked by many of the
NoSQL and NewSQL datastores. As more attention has
given for the performance of the database engine, some of
these systems even do not facilitate at least sufficient authen-
tication mechanisms (e.g., Redis). On the other hand, distrib-
uting data over multiple servers in different data centers
provides more avenues for security breaches. This section
reviews existing security mechanisms giving emphasis on
industry standard security and privacy best practices and
concepts [73] along with current efforts of the database and
cryptographic communities to extend these existing mecha-
nisms (Fig. 4 summarizes the classification of these database
securitymechanisms).

4.1 Authentication, Authorization, and Access
Control Mechanisms

Authentication is the mechanism that identify (and verify)
the users associated with a database system, before allowing
them to access data/resources. This can be provided in dif-
ferent ways ranging from single user authentication to
mutual authentication of user with database server [74]. A
typical implementation is password-based authentication
model allied with a user login. Some database systems have
its own integrated authentication mechanisms while rest of
the systems employ some other mechanisms such as user
certificates and integrated directory services, where database

244 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 1, JANUARY 2021

Authorized licensed use limited to: University of South Florida. Downloaded on April 13,2021 at 20:59:53 UTC from IEEE Xplore. Restrictions apply.

users (and user roles) are authenticated through an organiza-
tional level directory service like Lightweight Directory
Access Protocol (LDAP) or Active Directory and Kerberos
servers. Multi-factor authentication and certificate based
authentication are some of other well known authentication
techniques while Secure Sockets Layer (SSL) and Kerberos
are widely used authentication protocols.

Authorization plays a major role in any database system
in security perspective. Once the identity of the user has
been verified, it is then required to map/grant the user to the
resources within the database system. Authorization is the
mechanism throughwhich it can be ensured that only autho-
rized database users/roles are allowed to access defined set
of objects or the entire database. It is usually performed
through controlling a set of policies/permissions associated
with each user. DiscretionaryAccess Control (DAC),Manda-
tory Access Control (MAC) and Role Based Access Control
(RBAC) are three of conventional access control models [55].
Beside these models, Policy Based Access Control (PBAC)
and Attribute Based Access Control (ABAC) have gained
more attention during the recent past which can satisfy
various other security requirements within an application
domain. Relational database systems usually have RBAC
mechanisms hence they implement authorization at the
table level while most of the NoSQL database systems allow
column-family level authorization.

Today, most of the relational database systems are
equipped with some means of authentication mechanisms.
As an example, Oracle database [23] has a powerful set of
authentication mechanisms including means to authenticate
through network using protocols like Kerberos, PKI-based
services or directory-based services. As of the case of
NoSQL datastores, not every NoSQL datastore comes with
authentication mechanisms and some of them are not strong
enough. For an example, in Redis [31] admin password is
sent in clear-text for admin functions and data access does
not support authentication [4]. However, Cassandra, Mon-
goDB, HBase are some of the NoSQL datastores that pro-
vide comparatively stronger authentication mechanisms.

In terms of authorization, most RDBMSs customarily
equipped with role-based access control mechanisms. These
systems usually allow authorization at the table level, how-
ever systems like PostgreSQL [28] even allow per user based
row-level security (RLS), broadly termed as fine-grained

authorization/access control. In PostgreSQL, by default,
database tables do not have any policies. Therefore, if a user
has some level of access privilege to a particular table, all
rows within that table are equally available for querying or
updating. But with RLS, row level security can be defined so
that only specified rows will be available for querying and
updating. These fine-grained access control mechanisms
allow database administrators to define object level security
within the datastore and in terms of relational database sys-
tems, these can be further classified into row level or cell
level. In the matter of NoSQL database systems, there is no
schema associated with; hence they store heterogeneous
data together. Thus, most of them cannot provide authoriza-
tion at the table or object level instead, they allow mecha-
nisms such as column-family level authorization. However,
wide-column stores like Apache Accumulo [38] provide cell-
based access control mechanism using an access control list
(ACL). Apart from that, almost all the NewSQL datastores
that have been surveyed, are also enabled with fine-grained
role-based access control mechanisms. This can be most
probably attributed to the availability of relational models in
the NewSQL datastores. On the other hand, systems such as
Apache Ignite [51] do not provide any sort of authorization
features. As the case of most NewSQL systems, Ignite also
utilizes main memory as the default storage and processing
tier, hence they might have not invested more on authoriza-
tion since the system completely runs onmemory.

It is noteworthy that some of the non-relational datastores
completely operate on cloud as services hence they inher-
ently absorb the identity and access management (IAM) sys-
tems implemented at the cloud infrastructure level. Amazon
DynamoDB [30], one of the leading key-value stores and
Amazon Neptune [45] a NoSQL graph database, both utilize
the identity and access management services provided by
Amazon Web Services. Moreover, systems such as Google
Cloud Bigtable [40]-a wide-column store-and Google Span-
ner [46]-a distributed NewSQL database-both utilize the
inherent features of Google Cloud identity and access man-
agement services to implement the database authentication
and authorization. Moreover, it is also noteworthy that
distributed (sharded) database systems need to have addi-
tional layer of properly managed access control policies
to maintain consistent authorization throughout the cluster
in order to ensure unrestricted access to legitimate/autho-
rized users [75].

4.2 Encryption Mechanisms

Encryption is the mechanism which ensure the confidential-
ity of data in a database system such that malicious intruders
and unauthorized parties cannot access any valuable infor-
mation. In order to secure data by means of encryption, it is
required to protect them not only when they are at rest but
also in transit or in motion. Data at rest refers to the data that
has been flushed from the memory and written to the disk.
Data Encryption Standard (DES) and Advance Encryption
Standard (AES) are two of widely used algorithms for data-
at-rest encryption. Data in transit (motion) usually refers to
the data that is in communication or is being exchanged in a
communication. With the existence of modern distributed
architectures, data in transit (communication) can be further
classified in to two categories;

Fig. 4. Classification of database security mechanisms.

SAMARAWEERA AND CHANG: SECURITYAND PRIVACY IMPLICATIONS ON DATABASE SYSTEMS IN BIG DATA ERA: A SURVEY 245

Authorized licensed use limited to: University of South Florida. Downloaded on April 13,2021 at 20:59:53 UTC from IEEE Xplore. Restrictions apply.

a) Client to server communication: Almost all datastores
allow remote connections to database so that clients can
remotely connect to the database to retrieve or process data.
However, this connection needs to be secure and private
hence channel must be encrypted.

b) Inter-node communication: Some of the relational data-
base systems and most of the NoSQL and NewSQL data-
stores are equipped with distributed processing mechanisms
and also equipped with different integrated replication strat-
egies where nodes in a database cluster needs to communi-
cate between each other in order to synchronize data. This
communication can also be eavesdropped, hence, needs to
have a server-server encryptionmechanism.

4.2.1 Industry Established Solutions

Most relational database systems available today are equi-
pped with the mechanisms to protect both data-at-rest and
data-in-transit. Some of these encryption technologies are
more specific for a given database system and some of them
are mostly applied by many vendors. Transparent Data
Encryption (TDE) is one of such technology employed by
many vendors such as Microsoft, IBM and Oracle to provide
protection for data-at-rest. Oracle database and Microsoft
SQL Server are some of the popular relational database sys-
tems that use TDE as primary data encryption mechanism in
which they basically implement protection at file level, by
encrypting database both on the hard drive and backup
media. The encryption key used by these technologies can be
either a symmetric key which is secured using a certificate
stored in themaster database or an asymmetric key provided
by a keymanagement service. Apart from that, in most of the
cases TDE employ either AES [76] or 3DES [77] encryption
algorithm in order to encrypt data. However, many NoSQL
solutions such as Riak [32], Redis [31], Memcached [33] and
CouchDB [36] are initially designed to be worked on secure
and trusted environments, hence they do not provide any
sort of encryption mechanisms. Nevertheless, NoSQL data-
stores such as Cassandra and HBase now facilitate TDE
(with their enterprise version) to provide encryption for
data-at-rest. While most of the database solutions deliver
inbuilt mechanisms to encrypt data, some systems such as
Accumulo and Neo4j (even though they do not have inte-
grated encryption mechanisms) provide the necessary fea-
tures to integrate them with third party on-disk encryption
tools to ensure security for data-at-rest. On the other hand, as
they are still in the evolving stage, NewSQL solutions such
as Apache Ignite, VoltDB and NuoDB do not provide any
mechanisms to protect data-at-rest other than relying on
third party tools.

As the protection for data-at-rest is implemented at the
database engine, it is also equally important to ensure the pro-
tection when data being exchanged or in communication
betweendatabase server and client applications or other nodes
within the same cluster. Traditionally, most of the database
systems employed firewall policies, operating system level
configurations or organizational level virtual private networks
(VPN) to ensure security of these inter-node communi-
cations as most of the time they have been deployed in on-
premise trusted environments. However, when datastores
become more and more distributed and their deployment
architecture changes fromon-premise to cloud infrastructures,

special mechanisms are required to ensure protection for
data-in-transit. Most database systems including NoSQL and
NewSQL, now supports encryption for data-in-transit by
using Transport Layer Security (TLS) [78].

Apart from the network level encryption mechanisms
there are some other set of technologies where data is encr-
ypted at the client side transparently by the data connection
layer so that data then remains encrypted over the network,
in memory and on the drive. With SQL Server 2016 (Azure
SQL Database), Microsoft introduced a technology called
Always Encrypted [79], which belongs to this category of pro-
tection where both encryption for data-at-rest and data-in-
transit can be ensured. Hence, it provides a clear-cut separa-
tion between those who own the data and those whomanage
the data, especially with cloud based services. Further, it
ensures that on-premise database administrators, cloud data-
base operators, or other high-privileged but unauthorized
users cannot access the sensitive information henceminimize
the risk of concrete attacks.

4.2.2 Solutions Provided by Cryptographic Community

Several studies have also been carried out to protect database
from curious insiders and malicious outsiders by encrypting
the content at the client side using different approaches. In
2011, Popa et al. presented CryptDB [60] an encrypted query
processing mechanism that works on relational database sys-
tems. The main idea was, client encrypt the original data at a
middle-ware application at client-side in a trusted vicinity
and store them in the database located in an untrusted envi-
ronment in such a way that it can query over the encrypted
data. Their design was bundled with layered architecture of
encryption schemes,which enables execution of SQL equality
checks, order comparisons, aggregates and joins. This idea
has given the momentum for research on security-aware
database systems and CryptDB ensures that in an event of
database server get compromised (full system compromise),
most of the data is secured. Later, multiple CryptDB based
frameworks [80], [81], [82] were able to serve in different
dimensions making themwell-suited for outsourced produc-
tion databaseswith third party service providers.

Different approaches have also been proposed to imple-
ment secure encrypted NoSQL datastores. BigSecret [83] is a
framework that enables secure outsourcing and processing
of encrypted data over key-value stores where indexes are
encoded in a way that allow comparisons and range queries.
In another quite different approach, Yuan et al. [84] proposed
an encrypted, distributed, and searchable key-value store
with a secure data partition algorithm that distributes
encrypted data evenly across a cluster of nodes. In Secure-
NoSQL, Ahmadian et al. [85] looked in to the aspects of
ensuring both confidentiality and integrity of data on a docu-
ment store NoSQL data model. Also, Macedo et al. [86] pre-
sented a generic NoSQL framework and set of libraries
supporting data processing and cryptographic techniques
that can be usedwith existingNoSQL engines.

It is noteworthy that good fraction of above solutions are
rely on PPE based schemes such as [87], [88] which makes
them vulnerable for various inference attacks. Hence, there
is another line of work focusing on secure hardware along
with trusted execution environments such as enclaves (e.g.,
Intel SGX [89]) to enable secure query processing. The

246 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 1, JANUARY 2021

Authorized licensed use limited to: University of South Florida. Downloaded on April 13,2021 at 20:59:53 UTC from IEEE Xplore. Restrictions apply.

Cipherbase [90] and TrustedDB [91] are some of the works
that can harness the power of enclaves by placing part of
the db engine inside some allocation of trusted hardware.
Recently, Priebe et al. [92] has proposed EnclaveDB that
guarantees confidentiality and integrity of data by hosting
all sensitive data in an enclave memory.

4.3 Ensuring Data Integrity

Data integrity is a fundamental concept which enables the
protection for data from unauthorized modification (unin-
tentionally or maliciously). It refers to the accuracy and con-
sistency of data stored in a database system and verifies
that the data has remained unaltered in transit from creation
to the reception of data. Consistency model of a database
system defines how well that datastore can ensure data
integrity. Database systems with strong ACID guarantees
can ensure higher level of data integrity compared to other
consistency models such as BASE. In practice, data integrity
can be enforced in a database system by series of integrity
constraints or rules. In relational database systems integ-
rity constraints are an inherent part of the system and they
can be generally classified into three types as 1) entity integ-
rity, 2) referential integrity and 3) domain integrity. Entity
integrity is basically the concept of primary key where every
value in a particular column (or combination of columns)
can be identified using a unique (and not null) value. Com-
paratively, referential integrity means the concept of foreign
key. This helps to define the relationship between tables.
Domain integrity concerns the validity of entries for a spe-
cific data column by ensuring the appropriate data type, for-
mat etc. Maintaining data integrity in a database system
means making sure that data remains intact and unchanged
throughout the entire life cycle.

Whenever data is processed at the database, there is a risk
of data cloud get corrupted/changed either accidentally
or maliciously. With all the different types of integrity con-
straints, relational database systems canminimize the chances
for accidental data corruption. However, due to the heteroge-
neous nature and schema-less architecture of NoSQL data-
stores and as larger fraction of their consistency model is
“eventual consistent”, most of the NoSQL datastores are
unable to facilitate data integrity. On the other hand, it is also
hard for them to ensure referential integrity and transactional
integrity because of their design constraints. But, there are
some NoSQL databases that are capable of providing data
integrity. Document datastores like MongoDB and graph
datastores such as Neo4j, Virtuoso and Amazon Neptune
now provide the strong support for ACID guarantees making
them compatible for data integrity validations. Nevertheless,
as NewSQL datastores primarily designed to ensure strong
ACID guarantees, most of today’s NewSQL database systems
are able to provide data integrity.

While, combining different integrity constraints in a data-
base system can minimize the risk of accidental data corrup-
tion or update, it is hard for these constraints itself to ensure
all the requirements that satisfy data integrity. Therefore, in
practice, organizations usually enforce othermechanisms such
as implementing regular data-backup policies, ensuring
proper functioning of IT network and well-defined security
policies etc. in order to safeguard data integrity. On the other
hand, especially to provide protection from malicious

activities on thedatabase, it is equally important to havemech-
anisms not only within DBMS but also beyond DBMS level
such as network layer. In such circumstance, most database
systems employ transport layer security protocols (TLS/SSL)
to facilitate and ensure data integrity beyondDBMS level.

4.4 Inference Control Mechanisms and Maintaining
Privacy of Sensitive Information

Maintaining data privacy is one of the key challenging tasks
with any database system. However, it is even more chal-
lenging with cloud-based distributed architectures as when
database systems are hosted in a public cloud, curious cloud
operators might have the access to private data. Hence, it is
required to implement proper and fine-grained mechanisms
to protect data privacy in database systems. In a broader
sense, data privacy (or information privacy) is the necessity
to preserve and protect personal (or sensitive) information
from being accessed/disseminated by a third party [93]. As
per Agrawal et al. [94] privacy can be identified as the right
of individuals to determine for themselves when, how and
up to what extent information about them is communicated
to others. Typically, privacy preserving data protection
mechanisms (such as encryption, authentication and infor-
mationmasking) determinewhat data within a database sys-
tem can be shared with others and which should be
restricted. Privacy can be in the form of different types of
data; 1) on-line privacy which contains personal data shared
during on-line transactions 2) Financial privacy that contains
any financial information 3) Medical privacy which contains
privileged medical information such as medical treatments
4) Location privacy that shares location-based data and 5)
Political privacywhich contains political preferences.

However, asmostmodern databasemanagement systems
do not consider privacy as a key feature, it is not an explicit
characteristic of the underlying data model upon which
these systems are built. On the other hand, due to the volume
expansion of data in a fast pace, it is quite difficult for a gen-
eral purpose data management system to provide real-time
filtering mechanism to define what data is sensitive and
what is not. With the introduction of encryption and access
control mechanisms, database designers were able to ensure
some level of data privacy. However, it is well understood
that these mechanisms itself does not guarantee the security
and privacy for outsourced database systems [57], especially
when the systems are deployed on public cloud infrastruc-
tures. Even though none of the database systems available
today are capable enough to provide complete, separate or
integrated mechanisms to safeguard data privacy, some
work has been carried out by the database research commu-
nity towards developing privacy preserving data manage-
ment techniques, as discussed next.

4.4.1 Privacy-Preserving Data Management

Techniques

Broadly, there are three classes of techniques dealing with
privacy preserving data management [95]. First class is deal-
ingwith the techniqueswhen data to be released to third par-
ties. These techniques have nothing much to do with
database systems as once data are released, database systems
do not have any control over it. They usually incorporate

SAMARAWEERA AND CHANG: SECURITYAND PRIVACY IMPLICATIONS ON DATABASE SYSTEMS IN BIG DATA ERA: A SURVEY 247

Authorized licensed use limited to: University of South Florida. Downloaded on April 13,2021 at 20:59:53 UTC from IEEE Xplore. Restrictions apply.

data sanitization with the use of data anonymization techni-
ques such as k-anonymity [96]. The second class of techni-
ques are related to the context of data mining in database
systems. Even though a database is sanitized by removing
private data, strong data mining techniques may allow some
features to recover the original information from the data-
base. As a solution, several different approaches have been
proposed to achieve privacy preserving data mining by
modifying or perturbing data so that it is no longer represent
the original information [97]. However, one of the major
problemswith these techniques is the quality of the resulting
database. When data undergo too many modifications, the
resultant database may not be much useful. Several techni-
ques have also been developed to address this problem by
estimating the errors introduced by the modifications [98].
Moreover, in a context where privacy preserving distributed
data mining, several techniques have been proposed based
on encryption methods where multiple data owners can
work together without releasing original data [97]. The third
and final class of privacy preserving data management tech-
niques is dealingwith theDBMSs specifically tailored to sup-
port privacy policies and standards like W3Cs Platform for
Privacy Preferences Project (P3P) [99] initiative. In [94],
authors have introduced the concept of Hippocratic data-
bases, basically a privacy protection mechanism for rela-
tional database systems. However, implementing such
system poses several challenges, even though articulating a
privacy preserving DBMS is quite straightforward. More-
over, it is worth to note that in order to implement a produc-
tion ready privacy preserving database solution, it might
require to have a combined approach of data anonymization
alongwith privacy preserving datamining.

4.4.2 Prerequisites for Implementing

Privacy-Preserving Database Systems

As suggested by Bertino et al. [100], in a context where tailor-
made privacy preserving DBMS solutions, it is crucial that
once data being collected, privacy promises be enforced
by the information systems managing them. In their study,
they have discussed set of requirements towards developing
privacy preserving DBMS solution that can be utilized to
support wide range of privacy policies. Following key points
highlight the most important requirements for a privacy pre-
serving database solution.

a) Support for Rich Privacy Related Meta-data: In mecha-
nisms such as P3P often requires the data users to specify the
intended purpose of the data retrieved by them in order to
ensure privacy guarantees. Thus, to facilitate access to such
meta-data, privacy preserving DBMSs should implement the
mechanisms to store privacy specific meta-data in the data-
base together with the data. Further, it should be associated
with the data according to a range of possible granularities
with the adequate flexibility and without degrading the
overall performance of the datastore.

b) Support for Attribute-based Access Control:Most database
systems usually equipped with role-based access control
mechanisms. However, RBAC does not provide the possibil-
ity of specifying application dependent user profiles for use
in privacy enforcement. Hence, there should be mechanisms
to extend the support for attribute-based or purpose-based
access control mechanisms in privacy preserving DBMSs.

c) Fine-grained Access Control to Data: In order to imple-
ment a comprehensive privacy preserving DBMS solution, a
fine-grained access control mechanism is of utmost impor-
tance. In conventional relational databases, only way to have
some level of fine granularity in access control is with use of
Views. However, in order to implement a privacy enhanced
DBMS solution, these View mechanisms should be extended
to the level of each tuple or set of tuples that are being pro-
tected and these should be implemented per user basis.

d) Privacy-preserving Information Flow: In most distributed
database systems, information/data flow across different
domains. Thus, it is important that all privacy policies asso-
ciated with these data also traverse along with the data
when they move within organization or across different
organizations. The main idea is to assure that if data have
been collected under a given privacy promise of an individ-
ual, this should also be enforced when data are passed to
different parties.

e) Protection from Insider Attacks: The misuse of privileges
by the legitimate high privileged users, is one of another pri-
vacy breach exists in database systems that has not received
much attention. This can be mitigated by implementing per-
user based layered encryption mechanisms or adoption of
user access profiling techniques.

4.4.3 Inference Control in Statistical Databases

In a different context yet related to the same, there is another
line of work discussing about privacy preserving data man-
agement in statistical databases. Typically, Statistical Data-
base (SDB) system enables its users to retrieve aggregate
statistics (e.g., count, sum, sample mean etc.) for a subset of
entities presented in the database [101]. In today’s data
driven applications, data analytics (with OLAP) plays a vital
role in terms of statistical information extraction for decision
making purposes. Current approaches for data security can-
not guarantee privacy of individuals when providing general
purpose access (for internal users) especially for OLAP
queries in a database system. Common mechanisms like
access control policies can limit the access to a particular data-
base, but once an inside analyst has access to data, these poli-
cies cannot really control how data is used. As demonstrated
by many insider attacks [102], [103], [104] allowing unre-
stricted access to data is one of the major causes of privacy
breaches. Therefore, providing security on statistical data-
bases has already become a growing public concern. Over the
time, several techniques have been proposed by the research
community for preventing statistical database compromise
and those can bemainly categorized into two classes.

a) Noise Addition: In this method, all data in the datastore
are available for the use but only approximate values will
be returned rather than exact. The primary focus in noise
addition techniques is to mask the true values of the sensi-
tive data by adding some level of noise/error to it. This is
usually done in a controlled way so as to balance the com-
peting needs of privacy and information loss [105]. Based
on the how noise is added, these techniques can be further
classified (Figs. 5a and 5b).

� Data Perturbation: In this approach the original con-
tent in the database is replaced by a perturbed data-
base where the statistical queries are performed.

248 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 1, JANUARY 2021

Authorized licensed use limited to: University of South Florida. Downloaded on April 13,2021 at 20:59:53 UTC from IEEE Xplore. Restrictions apply.

� Output Perturbation: Queries are evaluated on the
original data and the noise is added to the results of
the queries.

b) Data Restriction: Techniques that restrict data statistics
can be broadly divided into three classes namely Global
Recording, Suppression and Query Restriction [105]. Global
recording transforms an attribute into another domain (e.g.,
defines a set of ranges for numerical values and then replace
each single value with its corresponding range). Suppres-
sion is the technique that replaces the value of an attribute
in one or more records by a missing value. Finally in query
restriction technique, users are not provided with micro
data directly, instead they can ask queries through a chan-
nel. These queries are either answered exactly or are
rejected. The decision of which queries to answer is made
by using different techniques/parameters such as query set
size, query set overlap so on [101].

In general, noise addition perturbation methods work by
multiplying or adding a stochastic/randomized number to
confidential quantitative attributes in a database. Typically,
this stochastic value is chosen from a normal distribution
with zero mean and a very small standard deviation. Addi-
tive noisemethodswere first introduced in late 1980s by Kim
et al. [106] and this idea was brought back with improve-
ments [107] and later multiplicative noise approach and its
variants were proposed [108]. In 2005 Dwork et al. intro-
duced Differential Privacy (DP) [109], [110] that utilizes Lap-
lace noise addition, yet the most promising technique with
strong formal guarantee of privacy. This method enforces
confidentiality by returning perturbed aggregated query
results from databases such that users of the database cannot
distinguish if particular data item has been altered or not.
Because of its desirable privacy guarantees, DP has received
growing attention from the research community and various
mechanisms have been proposed over the couple of years
towards implementing DP for SQL queries [62], [111], [112],
[113], [114]. Following Fig. 5 shows a summary of techniques
used in statistical databases tomaintain privacy of data.

By exploring these different privacy aspects, it is evident
that protecting private data in a database system is an
important concern. But, ensuring data privacy with such set
of complex issues, is still a considerable challenging task.
Therefore, in order to cope with with today’s data driven

applications, these data management systems should have
comprehensive mechanisms to protect the privacy of data
in terms of unauthorized data access, sharing of data, mis-
use and reproduction of individual information.

4.5 Auditing and Monitoring Mechanisms
in Database Systems

Generally, database auditing and monitoring refers to the
recording of individual and collective actions performed by
database users or system events [115]. It is usually associated
with generating (automated) audit trails that logs series of
events occurred in a database system such as which database
object or data record was touched by which user/account.
These event logs are much important in an event of forensic
analysis of security events. While all other different security
mechanisms are trying tomitigate the occurrence ofmalicious
attacks, in a case of security breach, these audit trails can be
used to identify the root cause of the incident. Hence, most of
the information security and privacy standards such asHealth
Insurance Portability andAccountabilityAct of 1996 (HIPAA),
Payment Card Industry Data Security Standard (PCI-DSS),
Family Educational Rights and Privacy Act (FERPA) and
European Union Data Protection Directive, require the exis-
tence of these audit trails in datastores that goes in production
environment. In practice, database auditing and monitoring
can be classified into several different categories [115].

a) Authentication and Access Control Auditing: Process of
identifying the information of who accessed which systems
and what components, including when and how.

b) Subject/user Auditing: Process of identifying what activ-
ities (e.g., insert, update, delete etc.) have been performed
by the users/administrators of the database system.

c) Security Activity Monitoring: Process of identifying and
flagging any suspicious, abnormal or unusual activity/
access to sensitive data.

d) Vulnerability and Threat Auditing: Process of identifying
the vulnerabilities in the database and monitor for users
attempting to exploit them.

e) Change Auditing: Implementing baseline policy for dif-
ferent database objects, configurations, schemas, users and
privileges and then track deviations from that baseline.

In order to facilitate above list of different security audits,
database systems usually maintain several types of logs.
Implementation of these logging and monitoring mecha-
nisms varies from system to system. Some cloud-based, ser-
vice oriented database systems like Amazon DynamoDB,
Azure Cosmos DB and Google Bigtable take the advantage
of cloud infrastructure level diagnostic and logging tools in
order to implement the database logging mechanisms while
most of the other database systems usually have integrated
logging mechanisms. In some systems like Apache Ignite,
even though they do not have integrated logging mecha-
nisms, those can be configured with third party logging lib-
raries and frameworks such as Log4j [116] and SLF4J [117] to
enable auditing and logging.

4.6 Are Today’s Database Systems Ready
to Take the Challenge?

By considering diverse security characteristics available in
today’s popular database systems, a summary of findings
are listed on Table 2. It is worthy of note here that though

Fig. 5. Techniques used in statistical databases to protect privacy.

SAMARAWEERA AND CHANG: SECURITYAND PRIVACY IMPLICATIONS ON DATABASE SYSTEMS IN BIG DATA ERA: A SURVEY 249

Authorized licensed use limited to: University of South Florida. Downloaded on April 13,2021 at 20:59:53 UTC from IEEE Xplore. Restrictions apply.

TABLE 2
Summary of Comparison of Database Systems Based on Security and Privacy

250 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 1, JANUARY 2021

Authorized licensed use limited to: University of South Florida. Downloaded on April 13,2021 at 20:59:53 UTC from IEEE Xplore. Restrictions apply.

TABLE 2
Continued

SAMARAWEERA AND CHANG: SECURITYAND PRIVACY IMPLICATIONS ON DATABASE SYSTEMS IN BIG DATA ERA: A SURVEY 251

Authorized licensed use limited to: University of South Florida. Downloaded on April 13,2021 at 20:59:53 UTC from IEEE Xplore. Restrictions apply.

TABLE 2
Continued

252 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 1, JANUARY 2021

Authorized licensed use limited to: University of South Florida. Downloaded on April 13,2021 at 20:59:53 UTC from IEEE Xplore. Restrictions apply.

TABLE 2
Continued

SAMARAWEERA AND CHANG: SECURITYAND PRIVACY IMPLICATIONS ON DATABASE SYSTEMS IN BIG DATA ERA: A SURVEY 253

Authorized licensed use limited to: University of South Florida. Downloaded on April 13,2021 at 20:59:53 UTC from IEEE Xplore. Restrictions apply.

TABLE 2
Continued

254 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 1, JANUARY 2021

Authorized licensed use limited to: University of South Florida. Downloaded on April 13,2021 at 20:59:53 UTC from IEEE Xplore. Restrictions apply.

there are hundreds of different database systems available,
for this survey it was considered only the most popular data-
base systems in each different category according to the DB-
Engines rankings [22]. As the summary of results in Table 2
implies, the first two columnswere grouped according to the
different data storagemodels based on their storage architec-
ture and popularity. The security criterion/mechanisms that
were investigated are listed in the rest of the columns. Addi-
tionally, the encryption mechanisms have been further clas-
sified into two different groups to have a broader intuition
about how data encryption mechanisms have been imple-
mented on different database systems. Moreover, the consis-
tency model explains how strong the devisedmechanism for
data integrity in these database solutions.

It is noted that in overall relational database systems have
very strong set of security assurances compared to other data
models. All datastores that have been surveyed under the cat-
egory of relational database model have demonstrated
required standard security mechanisms which can ensure
better protection for the data. Moreover, systems like Micro-
soft SQL Server has outperformed most established systems
and presented some additional offerings such as client-side
encryption mechanisms. Along with such client-side encryp-
tion tools, it ensures that data remains encrypted not just
over the network, but also in memory and on the drive as
well. It is well understood that availability of such integrated
security mechanisms have influenced much to establish rela-
tional model as the most prominent data model for handling
complexweb-based applications during the last fewdecades.

On the flip side, it can be seen that most of the NoSQL
models do not have sufficient mechanisms to ensure data
security. Majority of them have simple password based cli-
ent-side authentication mechanisms but it is clear that rest of
the security mechanisms (such as authorization, access con-
trol, encryption etc.) are not appeared in most of the NoSQL
systems. In the case of key-value systems Redis provides
password based authentication however, these passwords
are stored in plain-text set by system administrators and it
does not provide authentication by default (listens all con-
nections on port 6,739). In fact, it also does not provide any
sort of encryption, access control or logging mechanisms. It
is further observed that only DynamoDB has the integrated
mechanisms to provide data encryption while rest of the sys-
tems do not have such mechanism other than relying on
third party SSL/TLS implementations to protect the data
transmission over the network.

However, in the category of wide-column datastores, all
of the surveyed databases have demonstrated at least some
combination of multiple security mechanisms. But still, Cas-
sandra only provides comparatively weak password based
authentication where passwords are stored just using MD5
hash, and inter-node communication in Cassandra does not
have authentication and encryption by default. Thereby, it is
somewhat vulnerable for malicious attackers who might
have access to the communication network (they have a sep-
arate Datastax enterprise version which supports TDE). In
the case of HBase, it does not support high level auditing
and logging facilities.

From the survey of document-oriented databases Couch-
base, CouchDB and RethinkDB do not have integrated mech-
anisms to provide encryption for data-at-rest even though

they have slightly different implementations for rest of the
security mechanisms. On the other hand, majority of the
graph databases do not facilitate most of the security mecha-
nisms except some means for authentication. In the case of
Apache Giraph, it has none of the security mechanisms
except simple authentication. Moreover, it is also noteworthy
that most of the NoSQL solutions only provide very basic
built-in support for network level security (inter-node and
client server) instead they recommend to integrate third party
solutions such as VPN or SSL/TLS based mechanisms for
data communication. Most of the databases support auditing
and logging at database/table level but they lack the provi-
sion for automated auditing features in their open-source
releases. Hence, in overall, NoSQL systems still requires
much attention to improve the security; at least by providing
several different built-in data protectionmechanisms.

In a context where NewSQL systems, it is observed that
even though the NewSQL systems are still serving/perform-
ing at their learning curve, they have sufficiently high set of
security mechanisms compared to NoSQL data models. Yet,
Apache Ignite, one of the popular database in this category
does not even have integrated mechanism to protect data in
terms of access control, data encryption and auditing. In
addition, VoltDB andNuoDB do not support this functional-
ity either, even though larger fraction of otherNewSQL data-
bases support encryption at-rest.

Finally, it is also worthy to note that most of the cloud-
based database services that have been surveyed (such as
Azure Cosmos DB, Google Bigtable, Amazon DynamoDB)
are having complete fine-grained set of security mechanisms
making them well-suited for secure Big Data applications.
Moreover, because of the integrated security mechanisms,
the value and the popularity of NewSQL databases have
risen, making numerous avenues for today’s data-driven
applications in Big Data paradigm.

5 CONCLUSION AND AVENUES FOR ENHANCING

SECURITY IN DATABASE SYSTEMS

Over the past 15 years, cloud-computing has emerged as
a distributed computing paradigm which can cater the
immense requirements of database systems of modern
data-driven applications. In par with this new wave of tech-
nology, a lot of different new database architectures such as
NoSQL and NewSQL have emerged. However, the contin-
ued role of relational databases still has a significant impact
on today’s promising database architectures because of
their integrated implementations of security mechanisms
compared to other database models. Information security is
one of the top priorities of today and many organizations
store their mission-critical data still on-premises with rela-
tional databases where they believe it is safer. Hence, most
of the non-relational datastores do not fit in to a potential
avenue in enterprise level integrations even they are more
heightened for on-cloud distributed operations.

However, organizations are still exploring the different
possibilities to move towards data management technolo-
gies other than the relational model. As with the perfor-
mance attributes provided by different NoSQL models,
there are many outperforming alternatives for relational
database systems that are bundled with lot of additional

SAMARAWEERA AND CHANG: SECURITYAND PRIVACY IMPLICATIONS ON DATABASE SYSTEMS IN BIG DATA ERA: A SURVEY 255

Authorized licensed use limited to: University of South Florida. Downloaded on April 13,2021 at 20:59:53 UTC from IEEE Xplore. Restrictions apply.

benefits. However, ensuring security on these systems is a
challenging task. This study has mainly focused on security
and privacy implementations on different database solu-
tions and as of the findings of this survey suggested, it is
high time for most of the NoSQL datastores to revisit their
security mechanisms and remodel them as fine-grained
secure solutions. Most importantly, many of the NoSQL
database systems lack encryption mechanisms that support
security for data-at-rest and data-in-transit, which is one of
the crucial requirements for datastores in the cloud-based
production environment. Hence, it is worth to note that
exhaustive studies on secure non-relational database sys-
tems have prominent opportunities and great potential for
future research in security-aware database systems.

On the other hand, there are several factors which drive
the choice of storage infrastructure for different kind of data.
Business analytics is one of the key considerations in today’s
applications. As traditional relational model does not fit
well with business analytics, NewSQL datastores has the
potential to cater this demand. On an information security
perspective, as most NewSQL database systems are still
evolving, their guarantees for data security are considerably
low compared to the relational database systems. Moreover,
most of them are in-memory solutions and they have
relatively overlooked the requirements of data security and
privacy. Hence, sophisticated security provisions are still
needed for NewSQL datastores. Furthermore, it was
revealed that tightening security on these systems should
not degrade the performance of the datastore irrespective of
the demand for real-time transactions.

In such circumstance, continuing to look for ways to build
cryptographic primitives and systems that achieve better
security and privacy in stronger threat models while preserv-
ing performance is the future research direction for next gen-
eration database systems. Finally, over the past decade
several new exciting technologies including Hadoop have
been introduced and those technologies have had great influ-
ence in database systems. Thus, as some of the literature sug-
gested, these open-source database solutions should no
longer be seen as “new” approach. Instead these should be
matured as viable alternatives for existing traditional data-
base systems where these too can fit in to the actual produc-
tion environment. Hence, most promising approach to
popularize those systems is to strengthen the security and
privacy guarantees of these database systems.

REFERENCES

[1] E. King, “The 2016 enterprise data management,” 2016.
[Online]. Available: http://www.dbta.com/DBTA-Downloads/
ResearchReports/The-2016-Enterprise-Data-Management-
Survey-6555.aspx. Accessed: Jan. 1, 2018.

[2] J. R. Lourenço, B. Cabral, P. Carreiro, M. Vieira, and J. Bernardino,
“Choosing the right NoSQL database for the job: A quality attri-
bute evaluation,” J. Big Data, vol. 2, no. 1, 2015, Art. no. 18.

[3] M. A. Mohamed, O. G. Altrafi, and M. O. Ismail, “Relational vs.
NoSQL databases: A survey,” Int. J. Comput. Inf. Technol., vol. 3,
no. 03, pp. 598–601, 2014.

[4] K. Grolinger, W. A. Higashino, A. Tiwari, and M. A. Capretz,
“Data management in cloud environments: NoSQL and NewSQL
data stores,” J. Cloud Comput., vol. 2, no. 1, 2013, Art. no. 49.

[5] G. Harrison, Next Generation Databases: NoSQL, NewSQL, and Big
Data. Jan. 2015.

[6] E. A. Brewer, “Towards robust distributed systems,” in Proc. 19th
Annu. ACM Symp. Principles Distrib. Comput., 2000, Art. no. 7.

[7] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier,
“Cluster-based scalable network services,” ACM SIGOPS Operat-
ing Syst. Rev., vol. 31, pp. 78–91, 1997.

[8] E. Brewer, “Cap twelve years later: How the “rules” have
changed,” Comput., vol. 45, no. 2, pp. 23–29, 2012.

[9] V. N. Gudivada, D. Rao, and V. V. Raghavan, “NoSQL systems
for big data management,” in Proc. IEEE World Congress Services,
2014, pp. 190–197.

[10] D. Crockford, “The application/json media type for JavaScript
object notation (JSON),” 2006.

[11] R. Angles and C. Gutierrez, “Survey of graph database models,”
ACM Comput. Surv., vol. 40, no. 1, 2008, Art. no. 1.

[12] N. Leavitt, “Will NoSQL databases live up to their promise?”
Comput., vol. 43, no. 2, pp. 12–14, Feb. 2010.

[13] G. Harrison, Next Generation Databases: NoSQLand Big Data. New
York, NY, USA: Apress, 2015.

[14] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik,
E. P. Jones, S. Madden,M. Stonebraker, Y. Zhang, et al., “H-store: A
high-performance, distributedmainmemory transaction processing
system,” Proc. VLDBEndowment, vol. 1, no. 2, pp. 1496–1499, 2008.

[15] J. Piekos, “SQL vs. NoSQL vs. NewSQL: Finding the right sol-
ution,” 2015. [Online]. Available: http://dataconomy.com/2015/
08/sql-vs-nosql-vs-newsql-finding-the-right-solution/. Accessed:
Jan. 1, 2018.

[16] J. Doppelhammer, T. H€oppler, A. Kemper, and D. Kossmann,
“Database performance in the real world: TPC-D and SAP R/3,”
ACM SIGMOD Rec., vol. 26, pp. 123–134, 1997.

[17] A. Kemper and T. Neumann, “HyPer: A hybrid OLTP&OLAP
main memory database system based on virtual memory snap-
shots,” in Proc. IEEE 27th Int. Conf. Data Eng., 2011, pp. 195–206.

[18] H. Zhang, G. Chen, B. C. Ooi, K.-L. Tan, and M. Zhang, “In-
memory big data management and processing: A survey,” IEEE
Trans. Knowl. Data Eng., vol. 27, no. 7, pp. 1920–1948, Jul. 2015.

[19] M. B. V., “MonetDB,” 2002. [Online]. Available: https://www.
monetdb.org/. Accessed on: Jan. 01, 2018

[20] S. Manegold, M. L. Kersten, and P. Boncz, “Database architecture
evolution: Mammals flourished long before dinosaurs became
extinct,” Proc. VLDB Endowment, vol. 2, no. 2, pp. 1648–1653,
2009.

[21] C. Binnig, S. Hildenbrand, and F. F€arber, “Dictionary-based
order-preserving string compression for main memory column
stores,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2009,
pp. 283–296.

[22] DB-Engines, “DB-engines ranking,” 2018. [Online]. Available:
https://db-engines.com/en/ranking. Accessed on: May 20, 2018

[23] O. Corporation, “Oracle database,” 1979. [Online]. Available:
https://www.oracle.com/database/index.html. Accessed on:
May 20, 2018

[24] IBM, “IBM informix,” 2001. [Online]. Available: https://www.
ibm.com/analytics/informix. Accessed on: Jul. 01, 2018

[25] O. Corporation, “MySQL,” 1995. [Online]. Available: https://
www.mysql.com/. Accessed on: May 30, 2018

[26] O. Corporation, “Oracle TimesTen,” 1996. [Online]. Available:
https://www.oracle.com/database/timesten-in-memory-
database/index.html. Accessed on: Jul. 01, 2018

[27] Microsoft, “SQL server,” 1989. [Online]. Available: https://
www.microsoft.com/en-us/sql-server/default.aspx. Accessed on:
May 20, 2018

[28] P. G. D. Group, “PostgreSQL,” 1996. [Online]. Available:
https://www.postgresql.org/. Accessed on: May 20, 2018

[29] IBM, “IBM DB2,” 1983. [Online]. Available: https://www.ibm.
com/analytics/us/en/db2/. Accessed on: Jul. 01, 2018

[30] Amazon, “Amazon DynamoDB,” 2012. [Online]. Available:
https://aws.amazon.com/dynamodb/.Accessed on:May 30, 2018

[31] S. Sanfilippo, “Redis,” 2009. [Online]. Available: https://redis.io.
Accessed on: May 30, 2018

[32] B. Technologies, “RIAK KV,” 2010. [Online]. Available: http://
basho.com/products/riak-kv/. Accessed on: May 30, 2018

[33] D. Interactive, “Memcached,” 2003. [Online]. Available: https://
memcached.org/. Accessed on: Jun. 10, 2018

[34] A. S. Foundation, “Cassandra,” 2008. [Online]. Available: http://
cassandra.apache.org/. Accessed on: May 30, 2018

[35] M. Inc, “MongoDB,” 2009. [Online]. Available: https://www.
mongodb.com/. Accessed on: May 30, 2018.

[36] A. S. Foundation, “CouchDB,” 2005. [Online]. Available: http://
couchdb.apache.org/. Accessed on: May 30, 2018

[37] Aerospike, “Aerospike,” 2010. [Online]. Available: https://
www.aerospike.com/. Accessed on: Jul. 01, 2018

256 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 1, JANUARY 2021

Authorized licensed use limited to: University of South Florida. Downloaded on April 13,2021 at 20:59:53 UTC from IEEE Xplore. Restrictions apply.

http://www.dbta.com/DBTA-Downloads/ResearchReports/The-2016-Enterprise-Data-Management-Survey-6555.aspx
http://www.dbta.com/DBTA-Downloads/ResearchReports/The-2016-Enterprise-Data-Management-Survey-6555.aspx
http://www.dbta.com/DBTA-Downloads/ResearchReports/The-2016-Enterprise-Data-Management-Survey-6555.aspx
http://dataconomy.com/2015/08/sql-vs-nosql-vs-newsql-finding-the-right-solution/
http://dataconomy.com/2015/08/sql-vs-nosql-vs-newsql-finding-the-right-solution/
https://www.monetdb.org/
https://www.monetdb.org/
https://db-engines.com/en/ranking
https://www.oracle.com/database/index.html
https://www.ibm.com/analytics/informix
https://www.ibm.com/analytics/informix
https://www.mysql.com/
https://www.mysql.com/
https://www.oracle.com/database/timesten-in-memory-database/index.html
https://www.oracle.com/database/timesten-in-memory-database/index.html
https://www.microsoft.com/en-us/sql-server/default.aspx
https://www.microsoft.com/en-us/sql-server/default.aspx
https://www.postgresql.org/
https://www.ibm.com/analytics/us/en/db2/
https://www.ibm.com/analytics/us/en/db2/
https://aws.amazon.com/dynamodb/
https://redis.io
http://basho.com/products/riak-kv/
http://basho.com/products/riak-kv/
https://memcached.org/
https://memcached.org/
http://cassandra.apache.org/
http://cassandra.apache.org/
https://www.mongodb.com/
https://www.mongodb.com/
http://couchdb.apache.org/
http://couchdb.apache.org/
https://www.aerospike.com/
https://www.aerospike.com/

[38] A. S. Foundation, “Apache Accumulo,” 2008. [Online]. Available:
https://accumulo.apache.org/. Accessed on: Jun. 05, 2018

[39] A. GmbH, “ArangoDB,” 2011. [Online]. Available: https://
www.arangodb.com/. Accessed on: Jul. 02, 2018

[40] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
distributed storage system for structured data,” ACM Trans.
Comput. Syst., vol. 26, no. 2, 2008, Art. no. 4.

[41] Hazelcast, “Hazelcast,” 2009. [Online]. Available: https://
hazelcast.com/. Accessed on: Jul. 01, 2018

[42] C. Inc., “Couchbase,” 2010. [Online]. Available: https://www.
couchbase.com/. Accessed on: Jul. 01, 2018

[43] O. Ltd, “OrientDB,” 2010. [Online]. Available: https://orientdb.
com/. Accessed on: May 30, 2018

[44] N. Technology, “Neo4J,” 2007. [Online]. Available: https://
neo4j.com/. Accessed on: May 30, 2018

[45] Amazon, “Amazon Neptune,” 2017. [Online]. Available:
https://aws.amazon.com/neptune/. Accessed on: Jun. 05, 2018

[46] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, et al.,
“Spanner: Google’s globally distributed database,” ACM Trans.
Comput. Syst., vol. 31, no. 3, 2013, Art. no. 8.

[47] S. SE, “SAP HANA,” 2010. [Online]. Available: https://www.
sap.com/products/hana.html. Accessed on: Jul. 02, 2018

[48] A. P. Stonebraker and Michael, “Vertica,” 2005. [Online]. Avail-
able: https://www.vertica.com/. Accessed on: Jul. 01, 2018

[49] V. Inc, “VoltDB,” 2015. [Online]. Available: https://www.
voltdb.com/. Accessed on: May 20, 2018

[50] M. Inc, “MemSQL,” 2013. [Online]. Available: https://www.
memsql.com/. Accessed on: May 20, 2018

[51] A. S. Foundation, “Apache Ignite,” 2015. [Online]. Available:
https://ignite.apache.org/. Accessed on: May 25, 2018

[52] NuoDB, “NuoDB,” 2008. [Online]. Available: http://www.
nuodb.com/. Accessed on: May 20, 2018

[53] M. Inc., “Hekaton,” 2014. [Online]. Available: https://docs.
microsoft.com/en-us/sql/relational-databases/in-memory-
oltp/sql-server-in-memory-oltp-internals-for-sql-server-2016?
view=sql-server-2017. Accessed on: Jul. 02, 2018

[54] SAP, “Data 2020: State of big data study data sources, connectiv-
ity & IT frameworks,” 2017. [Online]. Available: https://news.
sap.com/wp-content/blogs.dir/1/files/SAPData-2020-Study
Infographic.pdf/. Accessed: Jan. 1, 2018.

[55] E. Bertino and R. Sandhu, “Database security-concepts, appro-
aches, and challenges,” IEEE Trans. Depend. Sec. Comput., vol. 2,
no. 1, pp. 2–19, Jan.–Mar. 2005.

[56] S. Srinivas and A. Nair, “Security maturity in NoSQL databases-
are they secure enough to haul the modern it applications?” in
Proc. Int. Conf. Advances Comput. Commun. Informat., 2015, pp. 739–
744.

[57] P. Grubbs, T. Ristenpart, andV. Shmatikov, “Why your encrypted
database is not secure,” inProc. 16thWorkshopHot Topics Operating
Syst., 2017, pp. 162–168.

[58] P.Grubbs,M.-S. Lacharit�e, B.Minaud, andK.G. Paterson, “Learning
to reconstruct: Statistical learning theory and encrypted database
attacks,” inProc. IEEE Symp. Secur. Privacy, 2019, pp. 1–62.

[59] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill, “Generic
attacks on secure outsourced databases,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., 2016, pp. 1329–1340.

[60] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan,
“CryptDB: Protecting confidentiality with encrypted query proc-
essing,” in Proc. 23rd ACM Symp. Operating Syst. Principles, 2011,
pp. 85–100.

[61] R. Poddar, T. Boelter, and R. A. Popa, “Arx: A strongly encrypted
database system,” IACR Cryptology ePrint Archive, vol. 2016, 2016,
Art. no. 591.

[62] N. Johnson, J. P. Near, and D. Song, “Towards practical differ-
ential privacy for SQL queries,” Proc. VLDB Endowment, vol. 11,
no. 5, pp. 526–539, 2018.

[63] A. Ron, A. Shulman-Peleg, and A. Puzanov, “Analysis and miti-
gation of NoSQL injections,” IEEE Secur. Privacy, vol. 14, no. 2,
pp. 30–39, Mar./Apr. 2016.

[64] M. Naveed, S. Kamara, and C. V. Wright, “Inference attacks on
property-preserving encrypted databases,” in Proc. 22nd ACM
SIGSAC Conf. Comput. Commun. Secur., 2015, pp. 644–655.

[65] M.-S. Lacharit�e, B. Minaud, and K. G. Paterson, “Improved
reconstruction attacks on encrypted data using range query
leakage,” in Proc. IEEE Symp. Secur. Privacy, 2018, pp. 297–
314.

[66] F. B. Durak, T. M. DuBuisson, and D. Cash, “What else is
revealed by order-revealing encryption?” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., 2016, pp. 1155–1166.

[67] P. Fr€uhwirt, P. Kieseberg, S. Schrittwieser, M. Huber, and
E. Weippl, “InnoDB database forensics: Reconstructing data
manipulation queries from redo logs,” in Proc. 7th Int. Conf.
Availability Rel. Secur., 2012, pp. 625–633.

[68] P. Grubbs, R. McPherson, M. Naveed, T. Ristenpart, and
V. Shmatikov, “Breaking web applications built on top of
encrypted data,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2016, pp. 1353–1364.

[69] T. Garfinkel and M. Rosenblum, “When virtual is harder than
real: Security challenges in virtual machine based computing
environments,” in Proc. 10th Conf. Hot Topics Operating Syst.,
2005, pp. 20–20.

[70] T. Ristenpart and S. Yilek, “When good randomness goes bad:
Virtual machine reset vulnerabilities and hedging deployed
cryptography,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2010,
pp. 1–18.

[71] M. Jensen, “Challenges of privacy protection in big data analy-
tics,” in Proc. IEEE Int. Congress Big Data, 2013, pp. 235–238.

[72] J. R. Palanco, NoSQL Security. 1 Ed. Amsterdam, Netherlands:
Elsevier Inc., 2011.

[73] U. C. Framework, “Database security requirements guide,”
2017. [Online]. Available: https://www.stigviewer.com/stig/
database_security_requirements_guide/. Accessed on: Jan. 15, 2019

[74] R. Duncan, “An overview of different authentication methods and
protocols,” SANS Institute, 2001.

[75] N. Delessy, E. B. Fernandez, M. M. Larrondo-Petrie, and J. Wu,
“Patterns for access control in distributed systems,” in Proc. 14th
Conf. Pattern Lang. Programs, 2007, Art. no. 3.

[76] U. S. N. I. of Standards and T. (NIST), “Announcing the
advanced encryption standard (AES),” 2001. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf.
Accessed: Jan. 1, 2018.

[77] T. Nie and T. Zhang, “A study of DES and Blowfish encryption
algorithm,” in Proc. IEEE Region 10 Conf., 2009, pp. 1–4.

[78] E. Rescorla, SSL and TLS: Designing and Building Secure Systems,
vol. 1. Boston, MA, USA: Addison-Wesley Reading, 2001.

[79] Microsoft, “Always Encrypted (Database Engine),” 2017. [Online].
Available: https://docs.microsoft.com/en-us/sql/relational-
databases/security/encryption/always-encrypted-database-
engine?view=sql-server-2017. Accessed on: Jun. 25, 2018

[80] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich, “Processing
analytical queries over encrypted data,” Proc. VLDB Endowment,
vol. 6, pp. 289–300, 2013.

[81] J. Li, Z. Liu, X. Chen, F. Xhafa, X. Tan, andD. S.Wong, “L-EncDB: A
lightweight framework for privacy-preserving data queries in
cloud computing,”Knowl.-Based Syst., vol. 79, pp. 18–26, 2015.

[82] A. Papadimitriou, R. Bhagwan, N. Chandran, R. Ramjee,
A.Haeberlen, H. Singh, A.Modi, and S. Badrinarayanan, “Big data
analytics over encrypted datasets with seabed,” in Proc. 12th USE-
NIX Symp. Operating Syst. Des. Implementation, 2016, pp. 587–602.

[83] E. Pattuk, M. Kantarcioglu, V. Khadilkar, H. Ulusoy, and
S. Mehrotra, “BigSecret: A secure data management framework
for key-value stores,” in Proc. IEEE 6th Int. Conf. Cloud Comput.,
2013, pp. 147–154.

[84] X. Yuan, X. Wang, C. Wang, C. Qian, and J. Lin, “Building an
encrypted, distributed, and searchable key-value store,” in Proc.
11th ACM Asia Conf. Comput. Commun. Secur., 2016, pp. 547–558.

[85] M. Ahmadian, F. Plochan, Z. Roessler, and D. C. Marinescu,
“SecureNoSQL: An approach for secure search of encrypted
NoSQL databases in the public cloud,” Int. J. Inf. Manage.,
vol. 37, no. 2, pp. 63–74, 2017.

[86] R. Macedo, J. Paulo, R. Pontes, B. Portela, T. Oliveira, M. Matos,
and R. Oliveira, “A practical framework for privacy-preserving
NoSQL databases,” in Proc. IEEE 36th Symp. Reliable Distrib.
Syst., 2017, pp. 11–20.

[87] F. Kerschbaum, “Frequency-hiding order-preserving encryption,”
in Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Secur., 2015,
pp. 656–667.

[88] A. Boldyreva, N. Chenette, and A. O’Neill, “Order-preserving
encryption revisited: Improved security analysis and alternative
solutions,” in Proc. Annu. Cryptology Conf., 2011, pp. 578–595.

[89] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions
and softwaremodel for isolated execution,” inProc. 2nd Int.Workshop
Hardware Architectural Support Secur. Privacy, 2013, vol. 10, Art. no. 10.

SAMARAWEERA AND CHANG: SECURITYAND PRIVACY IMPLICATIONS ON DATABASE SYSTEMS IN BIG DATA ERA: A SURVEY 257

Authorized licensed use limited to: University of South Florida. Downloaded on April 13,2021 at 20:59:53 UTC from IEEE Xplore. Restrictions apply.

https://accumulo.apache.org/
https://www.arangodb.com/
https://www.arangodb.com/
https://hazelcast.com/
https://hazelcast.com/
https://www.couchbase.com/
https://www.couchbase.com/
https://orientdb.com/
https://orientdb.com/
https://neo4j.com/
https://neo4j.com/
https://aws.amazon.com/neptune/
https://www.sap.com/products/hana.html
https://www.sap.com/products/hana.html
https://www.vertica.com/
https://www.voltdb.com/
https://www.voltdb.com/
https://www.memsql.com/
https://www.memsql.com/
https://ignite.apache.org/
http://www.nuodb.com/
http://www.nuodb.com/
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/sql-server-in-memory-oltp-internals-for-sql-server-2016?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/sql-server-in-memory-oltp-internals-for-sql-server-2016?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/sql-server-in-memory-oltp-internals-for-sql-server-2016?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/sql-server-in-memory-oltp-internals-for-sql-server-2016?view=sql-server-2017
https://news.sap.com/wp-content/blogs.dir/1/files/SAPData-2020-Study Infographic.pdf/
https://news.sap.com/wp-content/blogs.dir/1/files/SAPData-2020-Study Infographic.pdf/
https://news.sap.com/wp-content/blogs.dir/1/files/SAPData-2020-Study Infographic.pdf/
https://www.stigviewer.com/stig/database_security_requirements_guide/
https://www.stigviewer.com/stig/database_security_requirements_guide/
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf.
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine?view=sql-server-2017

[90] A.Arasu, S. Blanas, K. Eguro,M. Joglekar, R. Kaushik,D.Kossmann,
R. Ramamurthy, P. Upadhyaya, and R. Venkatesan, “Secure data-
base-as-a-service with cipherbase,” in Proc. ACMSIGMOD Int. Conf.
Manage. Data, 2013, pp. 1033–1036.

[91] S. Bajaj and R. Sion, “TrustedDB: A trusted hardware-based data-
base with privacy and data confidentiality,” IEEE Trans. Knowl.
Data Eng., vol. 26, no. 3, pp. 752–765, Mar. 2014.

[92] C. Priebe, K. Vaswani, andM.Costa, “EnclaveDB:A secure database
using SGX,” inProc. IEEE Symp. Secur. Privacy, 2018, pp. 264–278.

[93] K. Barker, M. Askari, M. Banerjee, K. Ghazinour, B. Mackas,
M. Majedi, S. Pun, and A. Williams, “A data privacy taxonomy,”
in Proc. Brit. Nat. Conf. Databases, 2009, pp. 42–54.

[94] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Hippocratic data-
bases,” inProc. 28th Int. Conf. Very LargeDatabases, 2002, pp. 143–154.

[95] A. Aldini, R. Gorrieri, and F. Martinelli, Foundations of Security
Analysis and Design III: FOSAD 2004/2005 Tutorial Lectures,
vol. 3655. Berlin, Germany: Springer, 2005.

[96] L. Sweeney, “k-anonymity: A model for protecting privacy,” Int.
J. Uncertainty Fuzziness Knowl.-Based Syst., vol. 10, no. 05,
pp. 557–570, 2002.

[97] J. Vaidya and C. Clifton, “Privacy-preserving data mining: Why,
how, and when,” IEEE Secur. Privacy, vol. 2, no. 6, pp. 19–27,
Nov./Dec. 2004.

[98] C. Clifton, “Using sample size to limit exposure to data mining,”
J. Comput. Secur., vol. 8, no. 4, pp. 281–307, 2000.

[99] W3C, “The Platform for Privacy Preferences 1.0 (P3P1.0) Specifi-
cation,” 2002. [Online]. Available: https://www.w3.org/TR/
P3P/. Accessed on: Jun. 25, 2018

[100] E. Bertino, J.-W. Byun, and N. Li, “Privacy-preserving database
systems,” in Proc. Int. School Found. Secur. Anal. Des. III, 2005,
pp. 178–206.

[101] N. R. Adam and J. C. Worthmann, “Security-control methods for
statistical databases: A comparative study,” ACM Comput. Surv.,
vol. 21, no. 4, pp. 515–556, 1989.

[102] M. Hosenball, “Swiss spy agency warns U.S., britain about huge
data leak,” 2012. [Online]. Available: https://reut.rs/2SEZCdw.
Accessed on: Jan. 15, 2019

[103] C. Terhune, “Nearly 5,000 patients affected by UC Irvine medical
data breach,” 2015. [Online]. Available: https://www.latimes.
com/business/la-fi-uc-irvine-data-breach-20150618-story.html.
Accessed on: Jan. 15, 2019

[104] J. Vijayan, “Morgan stanley breach a reminder of insider risks,”
[Online]. Available: https://securityintelligence.com/news/
morgan-stanley-breach-reminder-insider-risks/. Accessed on:
Jan. 15, 2019

[105] L. Brankovic and H. Giggins, Statistical Database Security. Berlin,
Germany: Springer, 2007, pp. 167–181.

[106] J. J. Kim, “A method for limiting disclosure in microdata based
on random noise and transformation,” in Proc. Section Surv. Res.
Methods, 1986, pp. 303–308.

[107] P. Tendick, “Optimal noise addition for preserving confidential-
ity in multivariate data,” J. Statistical Planning Inference, vol. 27,
no. 3, pp. 341–353, 1991.

[108] J. Kim andW. Winkler, “Multiplicative noise for masking contin-
uous data,” Statist., vol. 1, pp. 1–18, 2003.

[109] C. Dwork, “Differential privacy: A survey of results,” in Proc. Int.
Conf. Theory Appl. Models Comput., 2008, pp. 1–19.

[110] C. Dwork, A. Roth, et al., “The algorithmic foundations of diff-
erential privacy,” Found. Trends� Theoretical Comput. Sci., vol. 9,
no. 3/4, pp. 211–407, 2014.

[111] F. D. McSherry, “Privacy integrated queries: An extensible plat-
form for privacy-preserving data analysis,” in Proc. ACM SIG-
MOD Int. Conf. Manage. Data, 2009, pp. 19–30.

[112] P. Mohan, A. Thakurta, E. Shi, D. Song, and D. Culler, “GUPT:
Privacy preserving data analysis made easy,” in Proc. ACM SIG-
MOD Int. Conf. Manage. Data, 2012, pp. 349–360.

[113] A. Narayan and A. Haeberlen, “DJoin: Differentially private join
queries over distributed databases,” in Proc. 10th USENIX Conf.
Operating Syst. Des. Implementation, 2012, pp. 149–162.

[114] K. Nissim, S. Raskhodnikova, and A. Smith, “Smooth sensitivity
and sampling in private data analysis,” in Proc. 39th Annu. ACM
Symp. Theory Comput., 2007, pp. 75–84.

[115] P. Huey, “Oracle database security guide,” 2017. [Online].
Available: https://docs.oracle.com/cd/E1188201/network.112/
e36292/toc.htm. Accessed: Jan. 1, 2018.

[116] A. S. Foundation, “Apache Log4j,” 2001. [Online]. Available:
https://logging.apache.org/log4j/2.x/.Accessed on: Jun. 25, 2018

[117] C. Gulcu, “Simple logging facade for Java,” 2013. [Online]. Avail-
able: https://www.slf4j.org/manual.html. Accessed on: Jun. 25,
2018

G. Dumindu Samaraweera received the BSc
degree in computer systems and networking from
Curtin University, Australia, and MSc degree in
enterprise application development from Sheffield
Hallam University, United Kingdom, in 2009 and
2013, respectively. He started his carrier as a sys-
tems analyst/software engineer and then served
as an electrical engineer, currently reading for the
PhD degree in electrical engineering. His current
research interests include cloud computing, secu-
rity/privacy preserving database systems, and

cyber security. He is an associate member of the Institution of Engineers,
Sri Lanka, member of BCS (United Kingdom), and a student member of
the IEEE.

J. Morris Chang received the BSEE degree from
the Tatung Institute of Technology, Taiwan, and
the MS and PhD degrees in computer engineer-
ing from North Carolina State University. He is
currently a professor with the Department of
Electrical Engineering, University of South Flor-
ida. His industrial experience includes positions
at Texas Instruments, Taiwan, Microelectronics
Center of North Carolina, and AT&T Bell Labora-
tories, Pennsylvania. He was on the faculty of the
Department of Electrical Engineering, Rochester

Institute of Technology, Rochester, the Department of Computer
Science, Illinois Institute of Technology, Chicago, and the Department of
Electrical and Computer Engineering, Iowa State University, IA. His
research interests include cyber security, wireless networks, energy-
aware computing, and object-oriented systems. Currently, he is a han-
dling editor of the Journal of Microprocessors and Microsystems and the
associate editor-in-chief of IEEE IT Professional. He is a senior member
of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

258 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 1, JANUARY 2021

Authorized licensed use limited to: University of South Florida. Downloaded on April 13,2021 at 20:59:53 UTC from IEEE Xplore. Restrictions apply.

https://www.w3.org/TR/P3P/
https://www.w3.org/TR/P3P/
https://reut.rs/2SEZCdw
https://www.latimes.com/business/la-fi-uc-irvine-data-breach-20150618-story.html
https://www.latimes.com/business/la-fi-uc-irvine-data-breach-20150618-story.html
https://securityintelligence.com/news/morgan-stanley-breach-reminder-insider-risks/
https://securityintelligence.com/news/morgan-stanley-breach-reminder-insider-risks/
https://docs.oracle.com/cd/E1188201/network.112/e36292/toc.htm
https://docs.oracle.com/cd/E1188201/network.112/e36292/toc.htm
https://logging.apache.org/log4j/2.x/
https://www.slf4j.org/manual.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

