
CGN 6933-002

Transport in Porous Media

Spring 2005 University of South Florida

Homework #3 Civil & Environmental Eng.

Due Fri., Feb. 11, 2005 J. A. Cunningham

The purpose of this assignment is to begin developing an understanding of (1) the processes of advection,

dispersion, and reaction, and (2) how these processes are represented in the advective-dispersive equation

and its solutions.

Suppose you have a very long column filled with a porous medium – this could be, for instance, a reactor

filled with catalyst beads, a column of activated carbon, a tube filled with sand, or something similar. You

are pumping water through the column at a volumetric flow rate Q. The porosity of the medium is n. The

cross-sectional area of the column is A. The longitudinal direction along the column (i.e., the direction of

flow) is defined as the +x-direction. See the figure below.

At time t = 0, a mass M of conservative tracer (e.g., bromide) is added very rapidly into the center of the

column, which we shall designate x = 0. Suppose that you could inject the mass in such a way that it is

distributed evenly across the cross-section of the column, but is added over a negligible thickness ∆x in the

direction of flow. In such a case, the initial concentration of the tracer in the column can be described by

C(x, t = 0) =
M

n A
δ(x)

where C is the concentration of the tracer, and δ(x) is the Dirac function. For a conservative tracer, the

transport through the porous medium can be described by the partial differential equation
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n
∂C(x, t)

∂t
= n D

∂2C(x, t)
∂x2

− n v
∂C(x, t)

∂x

where D is the dispersion coefficient, and v is the water velocity through the column, which we can calculate

from Q, A, and n.

If the column is long enough, then we can pretend it is infinitely long, in which case we can write the

boundary conditions

C(x → ±∞, t) = 0

So we have a partial differential equation with an initial condition and boundary conditions. The solution

to the PDE with the given initial and boundary conditions is [see Kreft and Zuber, Chem. Eng. Sci., 1978,

vol. 33, pp. 1471-1480]:

C(x, t) =
M

n A

1√
4 π D t

exp

[
− (x − vt)2

4 D t

]

which gives us the concentration of the tracer in the column at any time and position.

(1) Suppose that the column has a cross-sectional area A = 50 cm2, a velocity v = 2 cm/d (which would

be realistic for groundwater flow), and a dispersion coefficient D = 10 cm2/d. The tracer mass added

is M = 1500 mg. The porosity is n = 0.4.

(a) Plot the concentration profile for the tracer (C vs. x) at time t1 = 50 d and at time t2 = 200 d.

Plot both profiles on the same graph. For each curve, determine Cmax and the x-value at which

Cmax occurs. Hint: it is fine to do this problem in Excel, but in the long run, you will probably be

happier if you do it in Matlab.

(b) For each curve, calculate the standard deviation of the spatial distribution, σx. On your curves,

indicate (e.g., label by hand) the x values that correspond to distances of ±σx and ±2σx from

the peak location. Hint: if you are having trouble getting started on this part, then look up the

equation for the probability density function (PDF) of the normal distribution, also called the

Gaussian distribution or the “bell-shaped curve.” Does the PDF look familiar? (It should!) What

is the standard deviation of the normal distribution? You can use that to help you find σx for our

problem here.

(c) How does the elapsed time affect the peak concentration, Cmax? How does the elapsed time

affect the location of the peak? How does the elapsed time affect the spread of the concentration

distribution, Lx? (There are different ways to define Lx; one good way would be to say that Lx is

the range of x for which C > 0.01Cmax).
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Now suppose that, instead of the conservative tracer that you considered above, you injected a soluble form

of Strontium 89 (89Sr), which undergoes radioactive first-order decay. The half-life of 89Sr is about 50 days,

which means it has a first-order decay constant k = 0.014 d−1. Then the transport equation needs to be

modified to the following:

n
∂C(x, t)

∂t
= n D

∂2C(x, t)
∂x2

− n v
∂C(x, t)

∂x
− n k C(x, t)

which has the following solution for the given initial and boundary conditions.

C(x, t) =
M

n A

1√
4 π D t

exp

[
− (x − vt)2

4 D t

]
exp (−k t)

(2) Suppose that you inject 1500 mg of soluble 89Sr instead of 1500 mg bromide. All other conditions are

the same as in problem 1.

(a) For 89Sr, again plot the concentration profile (C vs. x) for times t1 = 50 d and t2 = 200 d. Compare

to the conservative tracer. How does the first-order decay affect the peak concentration, Cmax?

How does the first-order decay affect the spread of the concentration distribution, Lx?

(b) What fraction of the original mass remains at time t1 = 50 d? What fraction remains at time

t2 = 200 d? How would these results be different if the 89Sr were put into a plug-flow reactor,

i.e., into a reactor with no dispersion? How would the results be different if the 89Sr were put into

a batch reactor, i.e., into a reactor with no flow? In other words, how does the mass remaining

depend upon D and v?
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You might be thinking that these problems are not so realistic, because in reality, it is not possible to inject

the mass over a negligible thickness ∆x. You might be right; let’s find out. Suppose that, instead, you

injected the mass M of bromide or strontium over a time interval ∆tpulse. Then the concentration in the

column is given by the following equation.

C(x, t) =
1
2

C0

(
erf

(
0.5 v ∆tpulse − (x − v t)

2
√

D t

)
+ erf

(
0.5 v ∆tpulse + (x − v t)

2
√

D t

))
exp (−k t)

where C0 is the initial concentration that results from the pulse addition, and erf is the error function.

(3) Suppose that you injected 1500 mg of conservative tracer (e.g., bromide) over a time period −7.5 d <

t < 7.5 d, i.e., ∆tpulse = 15 d.

(a) What is the initial concentration, C0, of tracer that results from the pulse addition?

(b) Plot the spatial distribution of the tracer (i.e., C vs. x) for the times t1 = 50 d and t2 = 200 d.

Hint: Excel doesn’t handle error functions very well, so you might want to try MatLab. Compare

the peak heights and the spreads to those that you calculated in problem 1.

(c) Discuss briefly the effect of the pulse form (infinitesimal vs. short duration) on the concentration

distribution.

(d) Do you think it is OK to use the idealized scenario given in problem 1, rather than the more realistic

scenario given in problem 3? When might this idealization be OK? When would it not be OK?

Explain.

(4) Suppose that you injected 1500 mg of 89Sr over a time period −7.5 d < t < 7.5 d, i.e., ∆tpulse = 15 d.

Plot the spatial distribution of the 89Sr at times t1 = 50 d and t2 = 200 d. Compare to the results you

obtained at the same time in problem 2.

(5) About how long (measured in hours) did it take you to complete this homework?
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