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Consider the transport of conservative bromide tracer through a column of porous medium.

The transport can be described with the following partial differential equation.

∂C(x, t)
∂t

= D
∂2C(x, t)

∂x2
− v

∂C(x, t)
∂x

Suppose that the column is initially devoid of any bromide mass, but that beginning at time

t = 0, the bromide concentration at the front end of the column (x = 0) is held constant. The

column has length L, and the back end of the column (x = L) is purged so that no bromide

accumulates at that end. Then we can write the following initial and boundary conditions.

C(x, t = 0) = 0

C(x = 0, t ≥ 0) = C0

C(x = L, t) = 0

There is no analytical solution to the partial differential equation (PDE) with these initial

and boundary conditions, so we will seek a numerical solution, as we did in the preceding

homework assignment.

(1) In this problem, you will use a Crank-Nicolson method, and you will examine the effect

of dispersion on numerical solutions.

(a) Re-do part (a) of problem (2) from the previous homework assignment. This time

use a Crank-Nicolson scheme. Use a time step ∆t = 0.05 d. How do the profiles

look compared to those in problems (2a) and (3a) from the previous homework

assignment? Is there an obvious difference between the three methods?

(b) Decrease the dispersion coefficient to D = 0.33 cm2/d. Re-run your program. Plot the

results for t = 1 d and t = 5 d. Compare to the profiles from problem (1b) from the

previous homework assignment. What happens to the numerical solution? Why? To

facilitate your explanation, you might want to calculate the relevant Peclet numbers.
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(2) We have looked at ways to use “finite differences” to approximate the spatial and time

derivatives in the PDE. Typically we use “central-in-space” approximations for the spa-

tial derivatives, because these approximations are second-order accurate. However, we

could use an “upgradient” approximation, which is only first-order accurate, as follows.

∂C(x, t)
∂x

≈ C(x, t)− C(x− ∆x, t)
∆x

(a) Modify the Crank-Nicolson finite-difference code that you developed for problem

(1). Use the upgradient approximation, as shown above, instead of the central-

in-space derivative, for the advective term. Continue to use the central-in-space

approximation for the dispersive term. This will probably require about a page of

pencil-and-paper derivations before you are ready to modify your code. Hint: follow

the same procedure that we developed in class, but just use this approximation for

the spatial derivative instead. Turn in your new code. Put comments in your code

as you think necessary or appropriate for me to follow it. Another hint: save your

new code under a new file name, i.e., you do not want to erase or over-write your

old code.

(b) Use your new “upgradient” code to plot the bromide concentration profiles at t = 1

day and t = 5 days. Use the following physical parameters: porosity n = 0.30, specific

discharge q = 1.5 cm/d, dispersion coefficient D = 0.33 cm2/d, and input concentration

C0 = 100 mg/L. Use the following numerical parameters: spatial discretization ∆x = 1

cm, time step ∆t = 0.05 d. Note that these are the same parameters you used for

problem (1b) of this assignment.

(c) Compare your profiles from part (2b) to those you obtained in problem (1b). How

do the profiles differ? What has been the effect of using the ugradient approximation

instead of the central-in-space approximation?

(3) In this problem, your task is to figure out why the upgradient scheme from problem (2)

has the effect that you saw. Proceed in the following manner. Re-run your program

from problem (2), using different input values of D, until the profiles match those you

generated in problem (1b). (Or, if you prefer, re-run your central-in-space code until the

profiles match those from problem (2) – either way is fine.) Then, compare the values

of D that result in matching profiles. The values of D differ by an amount that we will

call Z. What value of Z do you find for the conditions of this problem? What does Z

represent? Or, in other words, what does Z tell you about the upgradient approximation

to the advective term?
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(4) In this problem, your task is to come up with a general formula for Z, i.e., a formula that

expresses Z in terms of known quantities. To do this, you will have to use the Taylor

series for your approximations to the advective term. Develop one Taylor series for the

central-in-space approximation, and develop another Taylor series for the upgradient ap-

proximation. Insert the Taylor series into the PDE, and compare the two; the difference

between the two will enable you to determine the formula for Z. Does the value of Z

that you found in problem (2) agree with the formula that you derived?

(5) About how long (measured in hours) did it take you to complete this homework?
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