Suppose we have data for Q_{in} and $\mathrm{C}_{\text {in }}$ at certain time intervals, like every hour.
Suppose we know the volume in the tank, V , at some time t .
We also know the concentration in the tank, C , at some time t .
We want to know V and C at time $\mathrm{t}+\mathrm{dt}$.
How do we make these estimates?

V is pretty easy.
Say $\mathrm{Q}_{\text {in }}{ }^{\text {avg }}=0.5^{*}\left[\mathrm{Q}_{\text {in }}(\mathrm{t})+\mathrm{Q}_{\text {in }}(\mathrm{t}+\mathrm{dt})\right]$...the average flow rate into the tank during the interval Then $\mathrm{V}(\mathrm{t}+\mathrm{dt})=\mathrm{V}(\mathrm{t})+\left(\mathrm{Q}_{\text {in }}{ }^{\text {avg }}-\mathrm{Q}_{\text {out }}\right) * \mathrm{dt}$
That one, hopefully, is pretty easy to see.

C is much trickier.
In class we derived a differential equation for $\mathrm{C}(\mathrm{t})$, based on a mass balance.
$\mathrm{V}^{*}(\mathrm{dC} / \mathrm{dt})=\mathrm{Q}_{\text {in }}\left[\mathrm{C}_{\mathrm{in}}(\mathrm{t})-\mathrm{C}(\mathrm{t})\right]$
But, how do we solve that differential equation to get $\mathrm{C}(\mathrm{t}+\mathrm{dt})$?
Here are the steps.
(a) We already said $\mathrm{Q}_{\text {in }}{ }^{\text {avg }}=0.5 *\left[\mathrm{Q}_{\text {in }}(\mathrm{t})+\mathrm{Q}_{\text {in }}(\mathrm{t}+\mathrm{dt})\right]$
(b) Likewise, say that $\mathrm{V}^{\text {avg }}=0.5^{*}[\mathrm{~V}(\mathrm{t})+\mathrm{V}(\mathrm{t}+\mathrm{dt})]$ we know $\mathrm{V}(\mathrm{t}+\mathrm{dt})$ because we found it above!
(c) Likewise, say that $\mathrm{C}_{\mathrm{in}}{ }^{\text {avg }}=0.5^{*}\left[\mathrm{C}_{\mathrm{in}}(\mathrm{t})+\mathrm{C}_{\mathrm{in}}(\mathrm{t}+\mathrm{dt})\right]$
(d) Then apply the following equation. This equation is not obvious. I would be happy to show you where this came from, but we'll have to do it during office hours.

$$
C(t+\Delta t)=\frac{2 V^{\text {avg }}-Q_{i n}^{a v g} \Delta t}{2 V^{\text {avg }}+Q_{i n}^{a v g} \Delta t} C(t)+\frac{2 Q_{i n}^{a v g} \Delta t}{2 V^{\text {avg }}+Q_{i n}^{a v g} \Delta t} C_{i n}^{a v g}
$$

If you apply that equation to the homework problem, assuming that the tank is 90% full at midnight, you can get $\mathrm{V}(\mathrm{t})$ and $\mathrm{C}(\mathrm{t})$ for the entire 24-hour period.

