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ENV 6002: Physical & Chemical Principles of Environmental Engineering 

Fall 2021 University of South Florida 
Homework #9 Civil & Environmental Engineering 
Due Tues., Nov. 16 J.A. Cunningham 
 
Assignment for 2021: Complete problem 1.  Then choose any 2 of the remaining problems. 
 
1. (70 pts) modified from a problem that I acquired from Paul Roberts, Stanford University 

 ADVICE: Set up an Excel spreadsheet or a Matlab program for this problem, rather than doing it 
all by hand.  This is not required, but I think it will make your life easier in the long run. 

 A hydraulic study of the flow characteristics of a reactor was conducted by injecting a pulse of 
NaCl tracer at the reactor inlet and measuring the concentration of Cl– in the effluent.  The 
reactor volume is 400 m3, the volumetric flow rate of water through the reactor is 10 m3/min, and 
40 kg of Cl– are injected in the tracer pulse.  The Cl– concentration in the influent water is 
negligible other than the pulse injection.  The concentration of Cl– in the reactor effluent is 
measured, and the following results are obtained. 

 
 time Cl– conc. time Cl– conc. 
 (min) (g/m3) (min) (g/m3)  
 -------- -------- -------- --------  
 0 0 60 45 
 10 2 70 25 
 20 50 80 10 
 30 95 90 3 
 40 95 100 0 
 50 70 110 0 
 

a. Estimate/calculate the theoretical average hydraulic residence time, 𝑡𝑡̅, in the reactor.  Hint: 
it’s really easy.  If you are making it difficult, you are doing it incorrectly. 

b. Calculate the zeroth moment, µ0, of the effluent concentration distribution.  Use it to estimate 
the total mass of chloride that exits the reactor.  Compare the recovered mass to the injected 
mass – are they close?  Hint: use the trapezoidal rule or Simpson’s rule to perform the 
integration.  (Rectangle rule doesn’t work that well – use trapezoidal or Simpson’s.) 

Once you know µ0, you can transform the concentration data Cout into E data, using E = C/µ0.  
This is useful because when we use E, we can calculate some important properties about the 
reactor. 

c. Estimate/calculate tm, the average residence time of the tracer.  How does it compare to the 
theoretical value of 𝑡𝑡̅ from part a?  Hint: you can use either the Cout data or the E data to 
estimate tm -- I gave you two different formulae in class for tm, one using Cout and the other 
using E -- you should get the same answer either way.  Use trapezoidal rule or Simpson’s rule 
– I think Simpson’s rule is a little better for this part. 
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1. continued 
d. Using equation 9-71 or 9-72 from your text, estimate/calculate σ2, the variance of the 

residence time distribution.  This is also called the “normalized central second moment”.  
Simpson’s rule is probably better than trapezoidal rule for this part. 

e. Draw a graph of the residence time distribution (exit age distribution) of fluid in the reactor.  
You can either graph E vs t, or you can graph Eθ vs θ – you choose.  Recall that the definition 
of E and the definition of Eθ are slightly different – they need to be different to ensure that 
the area under the curve equals 1 in either case.  I did my graph in the fully normalized form, 
Eθ vs θ, but you can choose which way you want to do it. 

f. Make another graph of the cumulative residence time distribution (cumulative exit age 
distribution).  If your graph from part (e) is E vs t, then make this graph F vs t.  If your graph 
from part (e) is Eθ vs θ, then make this graph F vs θ.  To calculate F, you’ll need to integrate 
Cout or E.  For this part, trapezoidal rule actually works better than Simpson’s rule. 

g. On the graphs from parts (e) and (f), add in the residence time distributions you would expect 
for an ideal completely-mixed-flow reactor and for an ideal plug-flow reactor, each having 
the same average hydraulic residence time as the real reactor tested. 

h. What fraction of the fluid has a residence time of 20 minutes or less?  By what time has 20% 
of the injected tracer left the reactor? 

i. Suppose we want to model our reactor as n CMFRs in series (tanks-in-series model), with a 
total residence time equal to tm.  (Each tank in the series has a residence time tm/n.)  Using 
equation 9-117, along with your answer from part (d), estimate n, the number of tanks that 
correspond to our reactor. 

j. Make a graph of Eθ vs θ for our reactor.  Maybe you already did this in part (e) – if so, no 
problem, but make another one, because now we are going to add something to it.  Using 
equation 9-111, along with your estimate of n from part (i), add a curve that corresponds to 
Eθ for the tanks-in-series model.  Does the residence-time distribution for the tanks-in-series 
model look pretty close to the residence-time distribution for the real reactor?  If so, then we 
can use the tanks-in-series model to estimate the behavior of our real reactor!  (See part k, 
below.) 

k. Imagine that the reactor is operating at steady state, that a contaminant is entering the reactor 
with a concentration of 100 mg/L in the influent stream, that the contaminant undergoes first-
order reaction in the reactor, and that the first-order reaction rate coefficient is 0.05 min–1.  
Based on the tanks-in-series model, what effluent concentration would you expect from this 
reactor? 

l. What effluent concentration would you expect from an ideal plug-flow reactor with the same 
contaminant and the same hydraulic residence time?  from an ideal completely-mixed-flow 
reactor?  Does it appear that our real reactor behaves more like a CMFR or more like a PFR 
in terms of contaminant removal? 

 



p 3/3 

2. (15 points) This one is only for serious math nerds.  Derive equation 9-109 or 9-111 in the 
text.  If you don’t really like taking integrals, then skip this one.  I really like taking 
integrals, so I thought it was pretty fun. 

 

3. (15 points) Answer problem 9-10 in the text. 

 

4. (15 points) Answer problem 9-12 in the text.  Where the problem says “segregated flow 
model,” they mean that you should use equation 9-114.  You can do that easily enough 
because you know E(t) for an ideal CMFR.  So using equation 9-114, along with the known 
formula for E(t), you will derive a formula for Cout.  Then, as the problem says, answer 
“how does this equation compare to that derived from a masterial balance written for a 
CMFR in the usual way?” – you will notice something very interesting!  This problem is 
actually a really classic problem in reactor engineering.  (Amazingly, it doesn’t work for 
zero-order reactions, only for first-order reactions – I have been trying for years to figure out 
why it doesn’t work for zero-order, and I haven’t figured it out yet.  But you don’t have to 
do the zero-order case, only the first-order case, so don’t worry about that.) 

 

5. (15 points) Answer problem 9-17 in the text. 

 

6. (15 points) We know the residence-time distributions for an ideal CMFR is  
E(t) = (1/𝑡𝑡)̅ exp(-t/𝑡𝑡)̅, where 𝑡𝑡̅ is the theoretical residence time V/Q.  We also know the 
residence-time distribution for an ideal PFR is E(t) = δ(t–𝑡𝑡̅), where δ is the Dirac delta 
function. 

a. For the ideal CMFR, show that the zeroth temporal moment of E(t) is 1.  That is, if you 
take the area under the whole E(t) curve, it is 1.  You don’t have to show it for the ideal 
PFR, because we already know that is a property of the Dirac delta function, so it’s a 
given. 

b. For the ideal CMFR, show that the first temporal moment of E(t) is 𝑡𝑡̅.  In other words, 
the residence-time distribution agrees with the fact that the average hydraulic residence 
time is 𝑡𝑡̅.  I think you’ll probably have to integrate by parts.  For the PFR, it is once 
again a property of the Dirac function, so it’s a given and we don’t have to derive it. 

c. Find the second temporal moment (central) of E(t) for the ideal CMFR and for the ideal 
PFR.  In other words, find σ2 for the CMFR and the PFR.  This is a measure of the 
spread of the residence-time distribution. 

 


