ENV 6438: Physical \& Chemical Processes for Drinking Water Treatment Department of Civil \& Environmental Engineering
 University of South Florida

Cunningham

Spring 2020

Homework \#3
Due Wednesday, Feb. 12
Topic: Particles in water; Coagulation

1. (50 pts) adapted from a problem written by Paul Roberts, Stanford University

A city pulls water from a nearby river for its source of drinking water. After a rainfall event, there is a lot of runoff of clay and silt particles into the river, and the water gets pretty turbid. The city analyzed the particle-size distribution and obtained the following data:

particle size range $(\mu \mathrm{m})$	$\Delta \mathrm{N}$

$0.5-1$	1.8×10^{11}
$1-2$	1.6×10^{10}
$2-8$	4.3×10^{8}
$8-32$	3.35×10^{6}
$32-128$	2.6×10^{4}

The particles are flaky in shape. The shape can be approximated by a flat elliptical cylinder with thickness 1.0 nm , as in the figure shown at right. The particle sizes given in the table above correspond to the major axis of the ellipse; the minor axis is approximately half as long.
 The density of the particles is $2.2 \mathrm{~g} / \mathrm{cm}^{3}=2200 \mathrm{~kg} / \mathrm{m}^{3}$.
a. For each of the five size ranges, compute the sphericity, ψ, of the particles. The sphericity is the ratio of the surface area of a sphere to the surface area of the particle, given that the sphere has the same volume as the particle. A sphericity of 1 means that the particle is a perfect sphere. Which size class is "most spherical"? Which is least? Do you think it would be acceptable to treat these particles as spheres? Hint: each size class spans a range of particle sizes and therefore does not correspond to just one exact size; you can use the geometric mean particle size as a good representative size for each size range.
b. If you ran a test for total suspended solids (TSS) on this water, what concentration (mg/L) would you expect to measure? Which size class dominates the TSS measurement?
problem 1 continues \rightarrow

ENV 6438: Physical \& Chemical Processes for Drinking Water Treatment Department of Civil \& Environmental Engineering University of South Florida

Cunningham

Spring 2020

1. continued
c. Estimate the total surface area concentration for the particles in units of m^{2} of surface area per L of water. Which size class dominates the surface area concentration?
d. Suppose that the city wants to remove 99% of the particle mass during drinking water treatment. How much of each size class would have to be removed? Hint: large particles are more easily removed than small particles of the same density, so start by removing 100% of the largest size class, and then work your way down the size classes until you meet the goal of 99\% overall removal.
e. Estimate the dose (in units of mg / L) of alum that would be required to destabilize this particle suspension. Assume that destabilization requires 50% of the particle surface area to be covered by aluminum precipitate. Assume that the aluminum precipitate is in the form of spheres of hydroxoaluminum polymers, that these spheres have a molecular formula $\left(\mathrm{Al}_{6}(\mathrm{OH})_{15}\right)^{3+}$, and that the diameter of these spheres is 2.5 nm . [The aluminum precipitate is probably not really spherical particles, but let's just use that here to get a decent estimate.]
f. How much alkalinity (expressed as mg / L of CaCO_{3}) would be consumed by the alum dose you found in part e?
g. For the given particle size distribution, estimate the empirical parameters A and β for the particle-size-distribution model

$$
\frac{d N}{d x}=A x^{-\beta}
$$

where x is the particle size as indicated in the table above. Specify the units of A. Hint: use the data in the table to estimate $\mathrm{d} N / \mathrm{d} x$ for each value of x, then graph the relationship, and ask Excel for a trendline. Or, if you like to do things the old-fashioned way (i.e., how we used to do it before Excel could give us a trendline), linearize the equation by taking logarithms, and then perform linear regression on the log-transformed equation.
2. (30 pts) Answer any three of problems 9-1, 9-2, 9-3, and 9-4 in the text book. In problems where you need to assume a temperature of the water, use $25^{\circ} \mathrm{C}$.

ENV 6438: Physical \& Chemical Processes for Drinking Water Treatment Department of Civil \& Environmental Engineering University of South Florida

Cunningham

3. (20 pts) The city of Tampa uses ferric sulfate, $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$, as its coagulant at the David Tippin drinking water plant (the city's main treatment plant). I believe it is also the coagulant used at the Surface Water Treatment Plant operated by Tampa Bay Water.
a. (10 pts) Answer question 9-5 in the Crittenden text book.
b. (10 pts) Assume that the $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is added from a stock coagulant chemical that is 50% $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ by mass and has a specific gravity of 1.45. Calculate the molar concentration of Fe in the stock solution and the required coagulant feed rate (in $\mathrm{L} / \mathrm{min}$). Assume a flow rate of 60 million gallons per day (realistic for the Tippin plant).
