A Reinforcement Learning Algorithm for obtaining Nash Equilibrium of Multi-player Matrix Games

Vishnu Nanduri, *Student member IIE* and Tapas K. Das, *Fellow IIE*
Department of Industrial & Management Systems Engineering
University of South Florida, Tampa, FL 33620
E-mail: vnanduri@mail.usf.edu, das@eng.usf.edu
Abstract

A Reinforcement Learning Algorithm for obtaining Nash Equilibrium of Multi-player Matrix Games

With the advent of e-commerce, the contemporary marketplace has evolved significantly toward competition-based trading of goods and services. Competition in many such market scenarios can be modeled as matrix games. This paper presents a computational algorithm to obtain Nash equilibrium of \(n \)-player matrix games. The algorithm uses a stochastic approximation based reinforcement learning (RL) approach and has the potential to solve \(n \)-player matrix games with large player-action spaces. The proposed RL algorithm uses a value iteration based approach, which is well established in the MDP/SMDP literature. To emphasize the broader impact of our solution approach for matrix games, we discuss the established connection of matrix games with discounted and average reward stochastic games, which model a much larger class of problems. The solutions from the RL algorithm are extensively benchmarked with those obtained from an openly available software (GAMBIT). This comparative analysis is performed on a set of sixteen matrix games with up to four players and sixty four action choices. We also implement our algorithm on practical examples of matrix games that arise due to strategic bidding in restructured electric power markets.
1 Introduction

Globalization has played a significant role over the last decade in transforming the marketplace into one where most goods and services are transacted through multi-party competition. Consequently, the study of game theoretic concepts and the development of effective methods for solving multiplayer games have gained increasing attention in the research literature. Games occur in two primary forms: matrix games and stochastic games. An n-player matrix game is characterized by n different reward matrices (one for each player) and a set of action combinations characterizing the equilibria (Nash-equilibria, in particular). Nash [1951] defined equilibrium to be an action combination from which no single player could unilaterally deviate to increase profit. Stochastic games are comprised of finite or infinite horizon stochastic processes with finite states and state transition probability structure, in which the players seek equilibrium actions for every state so as to maximize their rewards from the overall game. Therefore, stochastic games are construed as sequence of matrix games (one for each state) connected with transition probabilities. Further classification of games arises from the nature of reward structure: zero sum games and nonzero (general) sum games. Rewards of stochastic games are classified as discounted reward, average reward, and total reward.

Though the fundamentals of game theory are fairly well established (Nash [1951]), the computational difficulties associated with finding Nash equilibria have constrained the scope of the research literature largely to the study of bimatrix games with limited action choices. Even in the absence of sufficient tools to appropriately analyze stochastic or matrix games, a majority of the marketplaces have evolved to incorporate transactions through competition. Therefore, to ensure healthy growth of the current competition based economy, it is imperative to develop computationally feasible tools to solve large scale stochastic and matrix games. In recent years, researchers have been able to characterize equivalent matrix games for both discounted reward and average reward stochastic games (Li et al. [2007], Hu and Wellman [1998], Borkar [2002], Filar and Vrieze [1997]). They also harnessed the advances in reinforcement learning based techniques to construct these equivalent matrix games (Li et al. [2007], Hu and Wellman [1998]). However, obtaining the Nash equilibrium for these equivalent matrix games has remained an open research issue, which is the focus of this paper.

As discussed in McKelvey and McLennan [1996], the appropriate method of computing Nash equilibria of a matrix game depends on 1) whether it is required to find one or all equilibrium points, 2) number of players in the game, and 3) importance of the value of the Nash equilibrium. No computationally viable method addressing all of the above is available in existing literature. Nash equilibria of n-player matrix games can be obtained by solving a nonlinear complementarity problem (NCP), which for a 2-player matrix game becomes a linear complementarity problem (LCP) (McKelvey and McLennan [1996]). Lemke and Howson Jr. [1964] developed an efficient algorithm for obtaining Nash equilibria for bimatrix games by solving the associated LCP. Their algorithm was extended for finding Nash equilibria of n-person matrix games by Rosenmüller [1971] and Wilson [1971]. However, these algorithms still have unresolved computational challenges. Mathiesen [1985] proposed a method of solving NCP for n-player matrix games through a sequence of LCP approximations. A survey by
Harker and Pang [1990] summarizes these and other developments on this topic. It may be noted that these methods are not guaranteed to obtain global convergence and often depend on the choice of the starting point. To our knowledge, the only openly available software that attempts to solve multiplayer matrix games is Gambit (McKelvey et al. [2007]). However, as observed by Lee and Baldick [2003], this software takes an unusually long computation time as the number of players and their action choices increase.

Game theoretic models have been studied extensively in examining market competition in the energy and transmission segments of restructured power markets (as in Pennsylvania-Jersey-Maryland, New York, New England, and Texas). These games are characterized by multidimensional bid vectors with continuous parameters. Upon suitable discretization of these bid vectors, many of these games can be formulated as matrix games. The degree of discretization dictates both the computational burden and the probability of identifying the Nash equilibria. Almost all of the literature studying power market games is devoted to optimization based approaches, such as mathematical programming (Hobbs [2001], Hobbs et al. [2000], Yao et al. [2003]), co-evolutionary programming (Price [1997]), and exhaustive search (Cunningham et al. [2002]). Even in a limited number of studies, where such games are formulated as matrix games, numerical examples are converted to bimatrix games and are solved using linear programming and LCP approaches (Lee and Baldick [2003], Ferrero et al. [1999], Stoft [1999]).

Mathematical programming approach to finding NE of matrix games has two primary variants: mathematical program with equilibrium constraints (MPEC, Luo et al. [1996]), and equilibrium problem with equilibrium constraints (EPEC, Su [2005]). MPEC is a generalization of bilevel programming, which in turn is a special case of hierarchical mathematical programming (with two or more levels of optimization). MPECs resemble Stackelberg (leader-follower) games, which form a special case of the Nash game. In a Nash game each player possesses the same amount of information about competing players, whereas, in Stackelberg type games, a leader can anticipate the reactions of the other players, and thus possesses more information in the game. The leader in a Stackelberg game chooses a strategy from his/her strategy set, and the followers choose a response based on the leaders actions (Luo et al. [1996]), while in a Nash game all players choose actions simultaneously. When multiple players face optimization problems in the form of MPECs, EPEC models have been used to simultaneously find the equilibria of the MPECs (Yao et al. [2003], Su [2005], Ralph and Smeers [2006], Cardell et al. [1997]).

The primary contribution of this paper is a novel stochastic approximation based reinforcement learning algorithm for obtaining NE of n-player matrix games. Extensive numerical experimentation is presented in Section 4, which demonstrates the ability of the learning algorithm to obtain NE. This section includes sixteen matrix games with up to four players and sixty four actions for each player, followed by an example of a restructured power network with competing generators. The numerical results indicate that the learning based approach presented in this paper holds significant promise in its ability to obtain NE for large n-player matrix games. To our knowledge, the algorithm is the first of its kind that harnesses the power of stochastic value approximation method that has been successfully used in solving large scale Markov and semi-Markov decision process problems with single decision makers.
A formal proof establishing the convergence of the algorithm to Nash equilibrium solutions is not fully developed yet, and is currently being investigated. However, as discussed in the numerical evaluation section, the empirical evidence clearly indicates the algorithms ability to converge to NE solutions.

In what follows, we first present a formal definition of a matrix game and its Nash equilibrium (Section 2). Thereafter, we discuss the key results from literature that show that for both discounted and average reward stochastic games there exist equivalent matrix games. We subsequently present the learning algorithm, a detailed numerical study, and concluding remarks in Sections 3, 4, and 5 respectively.

2 Matrix Games

A matrix game can be defined by a tuple $< n, A^1, \ldots, A^n, \tilde{R}^1, \ldots, \tilde{R}^n >$. The elements of the tuple are as follows.

- n denotes the number of players.
- A^k denotes the set of actions available to player k.
- $r^k : A^1 \times \ldots \times A^n \to \mathbb{R}$ is the payoff function for player k, where an element $r^k(a^1, \ldots, a^n)$ is the payoff to player k when the players choose actions $a = (a^1, \ldots, a^n)$.
- \tilde{R}^k for all k, can be written as an n-dimensional matrix as follows:

$$\tilde{R}^k = [r^k(a^1, a^2, \ldots, a^n)]_{a^1=1, \ldots, a^n=1}^{a^n=|A^n|}.$$

The players select actions from the set of available actions with the goal of maximizing their payoffs which depends on all the players’ actions. The concept of Nash equilibrium is used to describe the strategy as being the most rational behavior by the players acting to maximize their payoffs. So for a matrix game, a pure strategy Nash equilibrium is an action profile $a^* = (a^1_*, \ldots, a^n_*)$, for which $r^k(a^k_*, a^{-k}_*) \geq r^k(a^k, a^{-k}_*)$, $\forall a^k \in A^k$, and $k = 1, 2, \ldots, n$. The equilibrium values denoted by $Val[\cdot]$ for player k with payoff matrices \tilde{R}^k is obtained as $Val[\tilde{R}^k] = r^k(a^1_*, \ldots, a^n_*)$. The appealing feature of the Nash equilibrium is that any unilateral deviation from it by any player is not worthwhile. A mixed strategy Nash equilibrium for matrix games is a vector $(\pi^1_*, \ldots, \pi^n_*)$, for which we can write

$$\sum_{a^1=1}^{|A^1|} \ldots \sum_{a^n=1}^{|A^n|} \pi^k_*(a^k) \pi^{-k}_*(a^{-k}) r^k(a^k, a^{-k}) \geq \sum_{a^1=1}^{|A^1|} \ldots \sum_{a^n=1}^{|A^n|} \pi^k(a^k) \pi^{-k}(a^{-k}) r^k(a^k, a^{-k})$$

where $\pi^{-k}(a^{-k}) = \pi^1(a^1) \cdot \pi^{k-1}_*(a^{k-1}) \cdot \pi^{k+1}_*(a^{k+1}) \cdot \pi^n(a^n)$.

A matrix game may not have a pure strategy Nash equilibrium, but it always has a mixed strategy Nash equilibrium (Nash [1951]). There exist methods for solving Nash equilibrium of finite nonzero-sum matrix games (McKelvey and McLennan [1996], Wilson [1971], McKelvey et al. [2007]). Since in matrix games, there are no transition probability functions, matrix games are static. Also matrix games can be viewed as recursive stochastic games with a single
state. On the other hand, stochastic games can be viewed as extensions of matrix games from a single state to a multi-state environment. This viewpoint is utilized in this paper.

As alluded to in Section 1, a general sum stochastic game has equivalent matrix games. Therefore, once the equivalent matrix games are established, solution of a stochastic game reduces to solving the set of matrix games (one for each state). Hence, matrix games play a very critical role for solving this broad class of problems. The intent of the following section is to provide a brief overview of the main results from the recent literature concerning the existence of equivalent matrix games for both discounted reward and average reward stochastic games.

2.1 Equivalent Matrix Games for Discounted Reward Stochastic Games

A stochastic game can be defined by a tuple \(< n, S, A^1, ..., A^n, P, \tilde{R}^1, ..., \tilde{R}^n >\), which differs from matrix games by having the following additional elements:

- \(S\): a finite set of states \((s)\) of the environment, and
- \(P\): the set of transition probability matrices, where \(p(s' | s, a)\) is the transition probability of reaching state \(s'\) as a result of a joint action \(a\) by all of the \(n\) players.

In a stochastic game, the transition probabilities and the reward functions depend on the choices made by all agents. Thus, from the perspective of an agent, the game environment is nonstationary during its evolution phase. However, for irreducible stochastic games, optimal strategies constitute stationary policies and hence it is sufficient to consider only the stationary strategies (Filar and Vrieze [1997]). We define \(\pi^k(s)\) as the mixed strategy at state \(s\) for agent \(i\), which is the probability distribution over available action set, \(A^k(s)\), of player \(k\). Thus \(\pi^k(s) = \{\pi^k(s, a) : a \in A^k(s)\}\), where \(\pi^k(s, a)\) denotes the probability of player \(k\) choosing action \(a\) in state \(s\), and \(\sum_{a \in A^k(s)} \pi^k(s, a) = 1\). Then \(\pi = (\pi^1, ..., \pi^n)\) denotes a joint mixed strategy, also called a policy. A pure action \(a \in A^k(s, a)\) can be treated as a mixed strategy \(\pi^k\) for which \(\pi^k(a) = 1\). Let the cardinality of \(A^k(s)\) be denoted by \(m^k(s)\).

Under policy \(\pi\), the transition probability can be given as

\[
p(s' | s, \pi) = \sum_{a^1=1}^{m^1(s)} \cdots \sum_{a^n=1}^{m^n(s)} p(s' | s, a^1, ..., a^n) \pi^n(s, a^n) \cdots \pi^1(s, a^1).
\]

The immediate expected reward of player \(k\) induced by a mixed strategy \(\pi\) in a state \(s\) is given by

\[
r^k(s, \pi) = \sum_{a^1=1}^{m^1(s)} \cdots \sum_{a^n=1}^{m^n(s)} r^k(s, a^1, ..., a^n) \pi^n(s, a^n) \cdots \pi^1(s, a^1).
\]
Then the overall discounted value of a policy \(\pi\) to player \(k\) starting in state \(s\) can be given as

\[
V^k_\beta(s, \pi) = \sum_{t=0}^{\infty} \beta^t E_s(r^k_t) = \sum_{t=0}^{\infty} \beta^t \sum_{s' \in S} p^t(s' \mid s, \pi)r^k(s', \pi),
\]

where \(p^t(.)\) denotes an element of the \(t^{th}\) power of the transition probability matrix \(P\).

The discounted reward given in (1) can be rewritten in component notation in terms of expected immediate reward and the expected discounted value of the next state as follows

\[
V^k_\beta(s, \pi) = r^k(s, \pi) + \beta \sum_{s' \in S} p(s' \mid s, \pi) V^k_\beta(s', \pi),
\]

from which the definition of Nash equilibrium can be given as

\[
r^k(s, \pi_*) + \beta \sum_{s' \in S} p(s' \mid s, \pi)V^k_\beta(s', \pi_*) \geq r^k(s, \pi_*^{-k}, \pi^k) + \beta \sum_{s' \in S} p(s' \mid s, \pi_*^{-k}, \pi^k) V^k_\beta(s', \pi_*^{-k}, \pi^k).
\]

Directly solving for Nash equilibrium using the inequality (3) is difficult, even when the reward functions and transition probabilities are available. Filar and Vrieze [1997] combined the theories of discounted Markov decision processes and Matrix games to develop an auxiliary bi-matrix game for two player discounted stochastic games. The above technique is extended in Hu and Wellman [1998] to \(n\)-player games for constructing \(n\)-dimensional equivalent auxiliary matrices \(Q^k(.)\) for all players \(k = 1, \ldots, n\).

The elements of the \(Q^k(.)\) matrices are payoffs for all possible pure action sets \(a\), which take into account both the immediate reward and the future opportunities. For \(s \in S\), the matrix with size \(m^1(s) \times m^2(s) \times \ldots \times m^n(s)\) for the \(k^{th}\) player can be given by

\[
Q^k(s) = \left[r^k(s, a^1, \ldots, a^n) + \beta \sum_{s' \in S} p(s' \mid s, a^1, \ldots, a^n) V^k_\beta(s', \pi_*) \right]_{a^1=1,\ldots,a^n=1}^{a^1=m^1(s),\ldots,a^n=m^n(s)}
\]

where \(V^k_\beta(s', \pi_*)\) is the equilibrium value for the stochastic game starting at state \(s'\) for player \(k\). Note that this auxiliary matrix, \(Q^k(.)\) captures the information from the matrix game resulting from the pure strategies as well as the equilibrium payoff of the stochastic game. This enables the establishment of the connection between the matrix games and discounted reward stochastic games as given by the following result of Hu and Wellman [1998].

Theorem 1 The following are equivalent:

(i) \(\pi_*\) is an equilibrium point in the discounted reward stochastic game with equilibrium payoffs \((V^1_\beta(\pi_*), \ldots, V^n_\beta(\pi_*))\).

(ii) For each \(s \in S\), the strategy \(\pi_*(s)\) constitutes an equilibrium point in the static \(n\)-dimensional matrix game \((Q^1(s), \ldots, Q^n(s))\) with equilibrium payoffs \((Val[Q^1(s), \pi_*], \ldots, Val[Q^n(s), \pi_*])\). The entry of \(Q^k(s)\) corresponding to actions \(a = (a^1, \ldots, a^n)\) is given by

\[
Q^k(s, a) = r^i(s, a) + \beta \sum_{s' \in S} p(s' \mid s, a) V^i_\beta(s', \pi_*), \text{ for } i = 1, \ldots, n, \text{ where } a \in \prod_{i=1}^{n} A^i(s).
\]
We note that, the entries in this matrix game (4) have similar structure to the Bellman’s optimality equation for discounted MDP. Well known algorithms to solve Bellman’s discounted optimality equation are value iteration and policy iteration. An extension of the value iteration and redefinition of the value operator to solve stochastic games was presented in Shapley [1997]. There exist learning algorithms that attempt to learn the entries of the $Q^k(\cdot)$ matrices. The matrices are updated during each stage and are expected to converge to their optimal forms. Minmax Q-learning algorithm for discounted zero-sum games is presented in Littman [1994]. A Nash Q-learning for discounted general-sum games is presented in Hu and Wellman [2003]. Both Minmax Q-learning and Nash-Q learning algorithms are extensions of the model-free reinforcement Q-learning Kaelbling et al. [1996], Sutton and Barto [1998]. A summary of the available stochastic game algorithms can be found in Bowling and Veloso [2000].

One assumption that is inherent in the above literature is that once the equivalent matrices $Q^k(\cdot)$ are constructed, they can be solved using existing methods. However, the existing methods for obtaining NE value $V[Q^k(s), \pi_*]$ of n-player ($n > 2$) matrix games are fraught with computational and convergence related challenges (Rosenmuller [1971], Wilson [1971]). Development of a computationally viable method of finding the NE value of a matrix game $V[Q^k_t(s), (\pi_i)_s]$ is still an open research issue and is addressed in this paper.

2.2 Equivalent Matrix Games for Average Reward Stochastic Games

Let $V^k(\pi_*)$ denote the gain equilibrium value, and $h^k(\pi_*)$ denote the bias equilibrium value of an average reward stochastic game. The above equilibrium values can be defined as

$$V^k_\alpha(s, \pi^*) = \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} p_t(s' \mid s, \pi^*) r^k(s', \pi^*).$$

and

$$h^k(s, \pi^*) = \lim_{T \to \infty} E_s \sum_{t=0}^{T-1} [r^k_t - g^k(\pi^*)],$$

where $g^k(\pi^*)$ is long-run expected average-reward, which can be given by

$$g^k(\pi^*) = \lim_{T \to \infty} E(\frac{1}{T} \sum_{t=0}^{T-1} r^k_t).$$

Similar to the discounted games, for n-player average reward games, it is shown in Li et al. [2007] that n-dimensional equivalent auxiliary matrices $R^k(\cdot)$ for all players $k = 1, ..., n$ can be constructed. The elements of these matrices are payoffs for all possible pure action sets a, which take into account both the immediate reward and the future opportunities. For $s \in S$ the matrix with size $m^1(s) \times m^2(s) \times .. \times m^n(s)$ for the k^{th} player can be given by

$$R^k(s) = \left[r^k(s, a^1, ..., a^n) - V^k_\alpha(\pi^*) + \sum_{s' \in S} p(s' \mid s, a^1, ..., a^n) h^k(s', \pi^*) \right]_{a^1=m^1(s), ..., a^n=m^n(s)} \right]_{a^1=1, ..., a^n=1}. \quad (5)$$
The following theorem establishes the connection between average reward irreducible stochastic games and the average reward matrix games (Li et al. [2007]).

Theorem 2 The following are equivalent:

(i) \(\pi_* \) is an equilibrium point in the average reward irreducible stochastic game with bias equilibrium value \(h^k(\pi_*) \) and gain equilibrium value \(V^k_\alpha(\pi_*) \) for \(k = 1, 2, \ldots, n \).

(ii) For each fixed \(s \in S \), the strategy set \(\pi_*(s) \) constitutes an equilibrium point in the static \(n \)-dimensional equivalent matrix game \((R^1(s), \ldots, R^n(s)) \) with bias equilibrium value \(h^k(s, \pi_*) \) and gain equilibrium value \(Val[R^k(s), \pi_*] \) for \(k = 1, \ldots, n \).

So far, we have defined matrix games and presented a summary of the available results from Hu and Wellman [1998] and Li et al. [2007]. These results show that for both discounted and average reward stochastic games, there exist equivalent matrix games, the solutions of which provide the equilibrium strategies and values. Clearly, computationally feasible solution methodologies for matrix games play a fundamental role in solving a large class of stochastic games. In what follows, we present a new algorithm that uses a reinforcement learning approach to solve matrix games.

3 Finding NE of Matrix Games

In this section we present a new approach to obtain Nash equilibrium of \(n \)-player matrix games. Let \(R^k(a) \) denote the reward matrix of the \(k^{th} \) player of which \(r^k(a^1, \ldots, a^n) \) are the matrix elements. Define the value of an action \(a^k \) to player \(k \) as

\[
Val[R^k(a^k)] = \sum_{\{a^1, \ldots, a^n \setminus a^k\}} p(a^{-k}, a^k) r^k(a^1, \ldots, a^k, \ldots, a^n),
\]

where \(p(a^{-k}, a^k) \) denotes the probability of choice of an action combination \(a^{-k} \) by all the players while player \(k \) chose action \(a^k \). In decision making problems with a single player (MDPs and SMDPs), there exist optimal *values* for each state-action pair, which determine the optimal action in each state (Puterman [1994]). Drawing an analogy, for matrix games that have multiple players and a single state, we conjecture that there exist optimal *values* for all actions of the players that can yield pure and mixed NE strategies. However, the probabilities \(p(a^{-k}, a^k) \) needed to compute these *values* are impossible to obtain for real life problems without prior knowledge of players’ behavior. Therefore, we employ a learning approach to estimate the *values* of the actions as follows. We rewrite (6) as

\[
Val[R^k_{t+1}(a^k)] = (1 - \gamma_t) [R^k_t(a^k)] + \gamma_t [r^k(a^1, \ldots, a^k, \ldots, a^n)].
\]

The algorithm presented below utilizes the value learning scheme (7) to derive pure and mixed NE strategies for \(n \)-player matrix games.
3.1 A Value Iteration Algorithm for n-Player Matrix Games

We assume that the game has n-players and each player k has a set of A_k action choices. Hence, n different reward matrices of size $|A_1| \times |A_2| \times \cdots \times |A_n|$ are available.

The Algorithm

1. Eliminate rows and columns of the matrices associated with the dominated strategies. A dominated strategy is one that will never be adopted by a rational player irrespective of the choices of other players. A strategy $a \in A_k$ for player k is said to be dominated if $r(k, a, a^{-k}) \leq r(k, \bar{a}, a^{-k})$, where $\bar{a} \in A_k \setminus a$ and a^{-k} denotes the actions of all other players.

2. Let iteration count $t = 0$. Initialize the R-values for all player and action combinations $R(k, a)$ to an identical small positive value (say, 0.001). Also initialize the learning parameter γ_0, exploration parameter ϕ_0, and parameters γ_τ, ϕ_τ needed to obtain suitable decay rates of learning and exploration. Let Maxsteps denote the maximum iteration count.

3. If $t \leq \text{Maxsteps}$, continue learning of the R-values through the following steps.

(a) **Action Selection:**

Greedy action selection for pure strategy Nash equilibrium:
Each player k, with probability $(1 - \phi_t)$, chooses a greedy action for which $R^k(a) \geq R(k, \bar{a})$. A tie is broken arbitrarily. With probability ϕ_t, the player chooses an exploratory action from the remaining elements of A_k (excluding the greedy action), where each exploratory action is chosen with equal probability.

Probabilistic action selection for mixed strategy Nash equilibrium:
Compute the probabilities for the action choices using the ratio of R-values at iteration t as follows. For each player k, the probability of choosing the action $a \in A_k$ is given by $\frac{R(k, a)}{\sum_{b \in A_k} R(k, b)}$.

(b) **R-Value Updating:** Update the specific R-values for each player k corresponding to the chosen action a using the learning scheme given below.

$$R_{t+1}(k, a) \leftarrow (1 - \gamma_t)R_t(k, a) + \gamma_t (r(k, a)),$$

where a denotes the action combination chosen by players.

(c) Set $t \leftarrow t + 1$.

(d) Update the learning parameters γ_t and exploration parameter ϕ_t following the DCM scheme given below (Darken et al. [1992]):

$$\Theta_t = \left(\frac{\Theta_0}{1 + u} \right),$$

where $u = \left(\frac{t^2}{\Theta_\tau + t} \right)$.
where Θ_0 denotes the initial value of a learning/exploration rate, and Θ_τ is a large value (e.g., 10^6) chosen to obtain a suitable decay rate for the learning/exploration parameters. Exploration rate generally has a large starting value (e.g., 0.8) and a quicker decay, whereas learning rate has a small starting value (e.g., 0.01) and very slow decay rate. Exact choice of these values depends on the application (Das et al. [1999], Gosavi et al. [2002]).

(e) If $t < \text{MaxSteps}$, go to Step 3(a), else go to Step 4.

4. **Equilibrium Strategy Determination:** From the final set of R-values, obtain the equilibrium strategies as follows.

- **Pure strategy equilibrium:** For each player k, the pure strategy is action a for which $R(k, a) \geq \max_{b \in A_k} R(k, b)$. The pure strategies for all players combined constitute the pure strategy equilibrium.

- **Mixed strategy equilibrium:** For each player k, the mixed strategy is to select each action $a \in A_k$ with probability $\frac{R(k, a)}{\sum_{b \in A_k} R(k, b)}$.

4 Numerical Evaluation of the Learning Algorithm

In this section we first present results from an extensive comparative numerical study conducted with an objective of establishing the ability of the RL algorithm to obtain Nash equilibrium for n-player matrix games. For this purpose, sixteen matrix game examples with known Nash equilibria were solved by using both an openly available software (Gambit) and the RL algorithm. To demonstrate the practical applicability of the RL algorithm, we solved a matrix game that models strategic bidding in a restructured electric power market.

4.1 Matrix Games with Known Equilibria

Matrix games that were studied consisted of up to four players and sixty four different action choices. Ten out of these sixteen examples have pure strategy Nash equilibria, which were solved using the variant of the RL algorithm that seeks a pure strategy. The remaining six games were solved using the mixed strategy version of the RL algorithm.

Table 1 summarizes the matrix games specifying the number of players and their available action choices. Some of these problems are adopted from Gambit library of matrix games, for which the file names used in Gambit are used as identifiers. The Nash equilibrium solutions obtained by both Gambit and RL algorithm are summarized in Table 2. The following observations can be made from the results. For all ten games, the RL algorithm found a Nash equilibrium which coincided with a Gambit solution. It may be noted that Gambit obtained multiple pure strategy NE for six out of the ten games. For each of these games (except in
Table 1: Sample matrix games with pure strategy Nash equilibria.

<table>
<thead>
<tr>
<th>Game</th>
<th>Matrix Games Studied for Pure Strategy Nash Equilibrium</th>
<th>Game</th>
<th>Matrix Games Studied for Pure Strategy Nash Equilibrium</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>4</td>
<td>GAMBIT® wink3 (2 Players: 3 x 3)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5</td>
<td>GAMBIT® perfect (2 Players: 3 x 3)</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>6</td>
<td>GAMBIT® 2x2 (3 Players: 2 x 2 x 2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>GAMBIT® 8x2 (3 Players: 8 x 2 x 2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>GAMBIT® Pa (2 Players: 3 x 3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>GAMBIT® 2x2 (4 Players: 2 x 2 x 2 x 2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>GAMBIT® 8x8 (2 Players: 8 x 8)</td>
</tr>
</tbody>
</table>

Table 2: Pure Strategy Nash Equilibrium Results

<table>
<thead>
<tr>
<th>Game #</th>
<th>GAMBIT solution</th>
<th>Equilibrium Value</th>
<th>Learning Algorithm Solution</th>
<th>Convergence time in Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(2, 2)</td>
<td>(1, 1)</td>
<td>(2, 2)</td>
<td>(1, 1)</td>
</tr>
<tr>
<td>2</td>
<td>(2, 2)</td>
<td>(1, 1)</td>
<td>(2, 2)</td>
<td>(1, 1)</td>
</tr>
<tr>
<td>3</td>
<td>(3, 2)</td>
<td>(3, 4)</td>
<td>(3, 2)</td>
<td>(3, 4)</td>
</tr>
<tr>
<td>4</td>
<td>(1, 2)</td>
<td>(3, 4)</td>
<td>(1, 2)</td>
<td>(3, 4)</td>
</tr>
<tr>
<td>5</td>
<td>(1, 1)</td>
<td>(3, 1)</td>
<td>(2, 2)</td>
<td>(2, 2)</td>
</tr>
<tr>
<td>6</td>
<td>(1, 1)</td>
<td>(9, 12, 8)</td>
<td>(1, 1)</td>
<td>(9, 12, 8)</td>
</tr>
<tr>
<td>7</td>
<td>(2, 1)</td>
<td>(7, 0, 4, 6)</td>
<td>(2, 1, 7)</td>
<td>(5, 7, 4, 5, 7, 5)</td>
</tr>
<tr>
<td>8</td>
<td>(3, 2)</td>
<td>(3, 2)</td>
<td>(3, 3)</td>
<td>(3, 2)</td>
</tr>
<tr>
<td>9</td>
<td>(1, 1, 2, 1)</td>
<td>(2, 3, 2, 3, 3, 2, 4)</td>
<td>(2, 2, 1, 1)</td>
<td>(4, 5, 4, 9, 5, 7, 4, 5)</td>
</tr>
<tr>
<td>10</td>
<td>(4, 6)</td>
<td>(7, 5, 7, 9)</td>
<td>(4, 6)</td>
<td>(7, 5, 7, 9)</td>
</tr>
</tbody>
</table>

Game #7), RL algorithm chose the equilibrium with the highest player rewards. Though a formal mathematical proof will be required to support this observation, we believe that, since the RL algorithm learns the values for the actions and chooses actions based on these values, the solution tends to converge to the NE with the highest player rewards.
Table 2 also presents the convergence time of the RL algorithm which was run for 10,000 iterations for all the games on a computer with a 1.6 GHz Pentium M processor. However, an accurate assessment of the convergence time will require further optimization of the learning parameters of the algorithm, which could be problem dependent. For example, many of the games that are presented in the table converged much sooner than 10,000 iterations. Hence, the convergence times presented here are intended only to provide a general idea of the computational efforts required by the algorithm.

Table 3: Mixed Strategy Equilibrium Results

<table>
<thead>
<tr>
<th>Game 1</th>
<th>Mixed Strategy Equilibrium</th>
<th>Learning Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gambit Solution</td>
<td>0.33 0.33 0.33</td>
<td>Learning Approach</td>
</tr>
<tr>
<td></td>
<td>Value to player 1 = 2.94</td>
<td>Value to player 1 = 4.45</td>
</tr>
<tr>
<td></td>
<td>Value to player 2 = 2.94</td>
<td>Value to player 2 = 4.55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Game 2</th>
<th>Mixed Strategy Equilibrium</th>
<th>Learning Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.1 0.4 0.2</td>
<td>0.5 0.48 0.2</td>
</tr>
<tr>
<td>0.5</td>
<td>1.3 3.4 4.2</td>
<td>0.5 0.5 3.1 2.1</td>
</tr>
<tr>
<td>0.5</td>
<td>0.4 2.3 3.3</td>
<td>0.5 0.4 2.3 3.3</td>
</tr>
<tr>
<td>Value to player 1 = 3</td>
<td>Value to player 1 = 2.54</td>
<td></td>
</tr>
<tr>
<td>Value to player 2 = 2.5</td>
<td>Value to player 2 = 2.75</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Game 3</th>
<th>Mixed Strategy Equilibrium</th>
<th>Learning Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.57 0.43 0.5</td>
<td>0.5 0 0.5</td>
</tr>
<tr>
<td>0.5</td>
<td>3.1 0.0 0.1</td>
<td>0.5 0.5 0 0.5</td>
</tr>
<tr>
<td>0.5</td>
<td>1.5 1 2.2 1.5</td>
<td>0.5 1.5 1 2.2 1.5 1</td>
</tr>
<tr>
<td>0.5</td>
<td>0.1 0.0 3.1</td>
<td>0.5 0.1 0.0 3.1</td>
</tr>
<tr>
<td>Value to player 1 = 1.7</td>
<td>Value to player 1 = 1.5</td>
<td></td>
</tr>
<tr>
<td>Value to player 2 = 1</td>
<td>Value to player 2 = 1</td>
<td></td>
</tr>
</tbody>
</table>

In the Games 4 and 5 Mixed Strategy Learning Algorithm obtains a pure strategy solution

Table 3 presents the comparison of mixed strategies obtained by Gambit and the RL algorithm for six matrix games. Though Gambit found multiple mixed NE for most of these
problems, for fairness of comparison, only those NE with maximum player rewards obtained by Gambit are presented in the table. As evident from the table, though the mixed strategies obtained by the RL algorithm are different from the NE obtained by Gambit, player rewards from the RL algorithm in almost all of the games are comparable. It can also be seen from the table that even when the mixed strategy version of the RL algorithm is implemented, it yields a pure strategy (if one exists, as in Games 4 and 5). It may be noted that for Games 4 and 5, Gambit also finds the pure strategies. However, in this table we present only mixed strategy results obtained by both Gambit and the RL algorithm. In Game 6, where the two players have 64 actions each, the mixed strategies for both players have large support sets and thus could not be presented in the table. Therefore, we chose to present only the player rewards as means for comparison. In the next subsection, we present a matrix game example from a real life marketplace that is settled through multiparty competition on a periodic basis.

4.2 Strategic Bidding in Electric Power Markets: A Matrix Game Example

In restructured electric power markets, like in PJM (Pennsylvania-Jersey-Maryland), New York, New England, and Texas, power is traded in long term bilateral market, day ahead market, and spot market. The generators and retailers compete in the market by strategically bidding for price and quantity of power traded in order to maximize profits. The market is settled by an independent system operator, who matches the supply and demand and satisfies the network constraints while maximizing social welfare (total benefit minus total cost). This settlement yields price and quantity allocations at all the network nodes. The generators strategize to raise their prices above the marginal (base) costs, while the retailers’ strategies are aimed at maintaining prices close to the marginal costs. The ability of the generators to maintain prices above the marginal costs for a sustained period of time is defined as market power. A market is said to be competitive when the prices are at or near the marginal costs, which is one of the primary objectives of a restructured electricity market design. A day ahead power market can be modeled as a repeated n-player matrix game, of which the reward matrices can be constructed using the producer surplus (for generators) and consumer surplus (for retailers). Definitions of producer and consumer surplus can be found in (Berry et al. [1999]). Readers interested in more details on power market operations are referred to (Stoft [2002]).

We consider a four bus (two generators and two retailers) power network as shown in Figure 1, which was studied in (Berry et al. [1999]). The supply function bids of the generators at nodes A and B and the demand functions of the retailers at nodes C and D are as follows: $p_{S_1} = a_1 + m_1 q_1$, $p_{S_2} = a_2 + m_2 q_2$, $p_{D_1} = 100 - 0.52d_1$, $p_{D_2} = 100 - 0.65d_2$, where q_1 and q_2 are the quantities (in megawatt-hour, MWh) produced by generators S_1 and S_2 respectively, and d_1 and d_2 are the quantities demanded by the retailers D_1 and D_2 respectively. The supply function has two strategic bid parameters (intercept a in $\$/MWh and slope m) that the generators manipulate to maximize their profits. Demand side bidding by the retailers is not considered and hence the demand function parameters are maintained constant at their base values. As in (Berry et al. [1999]), the reactances are considered to be the same on all
In (Berry et al. [1999]), the effects of strategic bidding are studied by imposing transmission constraints on lines AC and BD (one at a time) resulting in network congestion. Nash equilibria for both slope-only and intercept-only bidding scenarios for each of the transmission constrained cases (AC and BD) are separately examined.

Berry et al. [1999] used an iterative algorithm to obtain NE of the above game. The algorithm involves solving the ISO’s problem for a series of bid options of a generator, while holding the bids of the other generator constant. The bid option that produces maximum profit is then fixed, and the same procedure is repeated for the other generator. This process is repeated until neither generator has an alternative bid to further improve profit. The matrix game approach developed in this paper differs from the above approach in that all generators select actions simultaneously without any knowledge of the others actions.

In order to apply the learning algorithm, as a first step, the reward matrices for the generators are constructed. To accomplish this, the feasible range of the bid parameters are suitably discretized (which dictate the size of the reward matrices), and the rewards for each combination of the generators bids are calculated. It may be noted that generator reward is a function of the nodal prices and quantities, which are obtained by solving a social welfare maximization problem. Details of the mathematical formulation can be found in (Berry et al. [1999]). The feasible ranges of slope and intercept parameters are discretized to 250 values giving matrix sizes of 250×250. In particular, the slope parameter ranged from 0.35 to 2.85 for S_1 and 0.45 to 2.95 for S_2, both in steps of 0.01. The intercept bid parameter for both generators S_1 and S_2 ranged from 10 $/\text{MWh}$ to 260 $/\text{MWh}$ with a step length of 1 unit. The solution of the social welfare problem and calculation of the generator rewards for all the above bid combinations are accomplished using GAMS software. The results from (Berry et al. [1999]) and those from the learning algorithm are presented in Table 4. It can be seen from the table that the learning algorithm obtains better or comparable profits for both generators in all cases.

We also extend the numerical experimentation by allowing generators to bid for both slope and intercept together, instead of bidding for one parameter at a time as in (Berry et al. [1999]). The bid parameters in this experiment are discretized as follows. The slope is varied

\[
\begin{align*}
S_1 & \quad \text{range} & \quad 0.35 & \quad 2.85 & \quad \text{steps} & \quad 0.01 \\
S_2 & \quad \text{range} & \quad 0.45 & \quad 2.95 & \quad \text{steps} & \quad 0.01
\end{align*}
\]

The intercept bid parameter is discretized to 250 values giving matrix sizes of 250×250. In particular, the intercept parameter ranged from 10 $/\text{MWh}$ to 260 $/\text{MWh}$ with a step length of 1 unit. The solution of the social welfare problem and calculation of the generator rewards for all the above bid combinations are accomplished using GAMS software. The results from (Berry et al. [1999]) and those from the learning algorithm are presented in Table 4. It can be seen from the table that the learning algorithm obtains better or comparable profits for both generators in all cases.
in twenty five steps of 0.1 for both generators ranging from 0.35 to 2.85 for \(S_1 \) and 0.45 to 2.95 for \(S_2 \). The intercept is varied in twenty five steps of 3 ranging from 10 \$/MWh to 85 \$/MWh. Hence, each generator has \(25 \times 25 = 625 \) action choices and the resulting reward matrices are of size \(625 \times 625 \). The RL algorithm is run for 500,000 iterations, which took 770 seconds on a computer with a 2 GHz Pentium IV processor. As shown in Table 4, in the AC-congestion case, bidding in both slopes and intercepts lead to similar profits as in the cases of one parameter at a time bidding. Whereas, in the case of BD-congestion, the profits obtained by the players through joint bidding is much higher than bidding one parameter at a time.

Table 4: Results from the Study of 4-Bus Power Network

<table>
<thead>
<tr>
<th></th>
<th>Bidding with Slopes while Intercepts held constant for both players at 10, 10</th>
<th>Bidding with Intercepts while Slopes held constant for both players at 0.35, 0.45</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Berry et al.</td>
<td>Learning Algorithm</td>
</tr>
<tr>
<td>Profit Gen A ($)</td>
<td>1343</td>
<td>1457</td>
</tr>
<tr>
<td>Profit Gen B ($)</td>
<td>3345</td>
<td>3284</td>
</tr>
<tr>
<td>NE Bids</td>
<td>(2.42, 0.72)</td>
<td>(2.26, 0.78)</td>
</tr>
</tbody>
</table>

- Line AC constrained at 30 MW
- Line BD constrained at 30 MW

<table>
<thead>
<tr>
<th></th>
<th>Bidding with both Slopes and Intercepts</th>
<th>NE obtained using Learning Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profit Gen A ($)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profit Gen B ($)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE Bids</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Gen A: (61, 0.35),
- Gen B: (37, 0.45)
- Gen A: (27, 0.69),
- Gen B: (34, 0.93)

5 Concluding Remarks

Though the internet era has provided the technological infrastructure necessary to invigorate market competition, lack of commensurate advancements in computational algorithms to solve multiplayer games has been a limiting factor in examining the market behavior. Meteoric rise in computing power via tera and peta scale computing (made possible by efficient harnessing of cluster computing) has created an opportunity to break through perceived computational barriers of state space explosion. This paper presents a new computational approach to find Nash equilibrium of multiplayer matrix games. The approach is founded on the value function learning strategy that is being successfully used in solving large scale decision making problems modeled as Markov and semi-Markov decision processes. In the wake of recent studies that
link a large class of stochastic games to matrix games (Hu and Wellman [1998], Li et al. [2007]), our solution approach stands to impact a broad range of decision making problems.

The comparative numerical results presented for a large number of matrix games help to demonstrate the validity of our conjecture (in Section 3) on value function guided NE determination. Though one might think that games generally involve a larger number of players than what is considered in the example problems, in real life, applications of matrix games tend to have a limited number of players. This oligopolistic structure of most contemporary markets naturally occurs due to extensive market segmentation. Some examples of such oligopolistic markets include retail sales, home and auto insurance, mortgage lending, service industries like airlines, hotels, and entertainments.

The electric power market problem serves as an excellent example of a real life application of matrix games. Such games, outcomes of which determine the nature of power transactions, occur at various frequencies ranging from once a year as in bilateral markets to every few minutes in the spot market Stoft [2002]. Hence, the ability to accurately obtain NE for matrix games allows for better assessment of market performance and efficient market design, which translate to stable power market operations with limited price spikes. Solutions of relatively large matrix games (of size 625×625) resulting from the sample power network problem indicate the algorithms potential to tackle real life power networks, which can be magnitudes larger in size. Though the numerical results are promising and encourage further exploration of our algorithms performance, a theoretical proof of convergence and optimality is required. We believe that such a proof can be constructed following the logic used in (Li et al. [2007]), and we are currently working on developing such a proof.

Acknowledgement: This research was supported in part by National Science Foundation grant # ECS 0400268.

References

R. McKelvey and A. McLennan. Computation of equilibria in finite games. In J. Rust

J. Rosenmuller. On the generalization of the lemke-howson algorithm to noncooperative n-

Author Biographies:

Vishnu Nanduri is a Ph.D. candidate in the Industrial & Management Systems Engineering department, at University of South Florida (USF). He received the M.S. degree in industrial engineering in 2005 from USF. His research is in the field of game theoretic modeling of restructured electricity markets and development of reinforcement learning based solution algorithms. Currently he is also involved in modeling capacity expansion issues in restructured power markets. He has been the Project Manager for a NSF funded GK-12 project at USF for the last 3 years. He is a student member of Institute of Electrical and Electronics Engineers (IEEE), Institute of Industrial Engineers (IIE), and The Institute for Operations Research and Management Sciences (INFORMS).

Tapas K. Das serves as Associate Provost at the University of South Florida with responsibility for higher education policy analysis, planning, and performance. He holds a PhD from Texas A&M University and is a Professor of Industrial and Management Systems Engineering. Professor Das is a Fellow of the Institute of Industrial Engineers (IIE). His research interest involves developing decision strategies for interdisciplinary problems including restructured electric power market design, large-scale pandemic outbreak impact mitigation, and disease diagnosis and treatment planning for cancer care. Dr. Das currently directs an NSF funded GK-12 project aimed toward infusing engineering and science in elementary curriculum.