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PREFACE

This project was originally intended to show the merits of substructure health monitoring via a review of the very few well-documented cases wherein a concerted effort to assess the long-term performance of foundations were in place.  While these efforts were underway, the Interstate I35W Bridge over the Mississippi River in Minneapolis, Minnesota, collapsed in the middle of rush hour killing 13 people and opened the eyes of engineers across the country to America’s failing infrastructure. As a result, the project was re-directed by the COTR to aid the MnDOT and the local FHWA office in providing an effective yet economical means to monitor the new sub-structure both during construction and for years to come.  As a result, that which was intended to be a review of previously performed and available technologies became a demonstration of available technologies and how they play into the role of foundation health monitoring.
Two sites served as the primary proving grounds for the study: the Clearwater, FL voided shaft test site and the Minneapolis, MN I35W bridge replacement site.  In both cases, data was obtained from deep below the ground surface from embedded instrumentation and used both to assess the health/performance of the elements and to review the capabilities of low-cost data acquisition systems. The ability to obtain data, upload remotely to a host server and make on-the-fly changes to the system configuration without a site visit was explored to its fullest.  With very few exceptions, the systems performed well with an approximate cost of $160 per channel sampled for site 1 (FL) and $170 per channel for site 2 (MN).  These prices included the loggers, cellular modems, enclosures and power supply systems but did not include the cellular service contracts which are generally annual or bi-annual agreements.  Embedded instrumentation varied and was generally more for site 2 based on the type of sensor.
Perhaps the most remarkable outcome of the study was the ability to detect relatively small loads throughout the entire substructure.  Although long-term data was not available for presentation, the limited data available after the bridge construction was completed demonstrated the extreme sensitivity to all forms of live loading (e.g. truck and thermal loading).  Further, the insight afforded by these systems provides valuable feedback to designers as confirmation and/or re-evaluation necessity.  Multiple years of extreme events are likely to occur that can now be “caught” and used to alert transportation officials of possible changes in the substructure’s health.
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