

Introduction to Programming Concepts
with MATLAB

Autar Kaw

Benjamin Rigsby
Daniel Miller
Ismet Handžić

AutarKaw.com

http://www.autarkaw.com/

“More than just teach you how to program, this course teaches you how to think more methodically
and how to solve problems more effectively. As such, its lessons are applicable well beyond the
boundaries of computer science itself. That the course does teach you how to program, though, is
perhaps its most empowering return. With this skill comes the ability to solve real-world problems
in ways and at speeds beyond the abilities of most humans.”

- David Malan, who teaches a general computer science course at
Harvard to majors and non-majors of computer science.

“Writing computer programs to solve complicated engineering problems and to control
mechanical devices is a basic skill all engineers must master”

– Harry Cheng who teaches computer programming to mechanical
engineering undergraduates at the University of California, Davis.

Copyright © 2008-2019
Autar Kaw, Benjamin Rigsby, Daniel Miller, Ismet Handžić.
Front cover design by Ismet Handžić and Benjamin Rigsby

All rights reserved. No part of this book may be transmitted in any form or by any other means,
electronic or mechanical, including photocopying, recording, or by any information storage or

retrieval system, without the written permission of the authors and the publisher.

Introduction to Programming
Concepts with MATLAB

Third Edition

………

Autar Kaw, Benjamin Rigsby, Daniel Miller, Ismet Handžić

AutarKaw.com

To Sherrie, Candace, Angelie, and Bucky
AK

To Victoria

BR

To my mother, Bonny Miller (1958 – 2015)
DM

To my family

IH

i

TABLE OF CONTENTS

ABOUT THE AUTHORS ... x
PREFACE ... xiv

MODULE 1: INITIAL SETUP AND BASIC OPERATION
Lesson 1.1 – MATLAB Introduction ... 2

What is MATLAB? ..
What is MATLAB used for in engineering and science?
How can I get MATLAB onto my computer? ..
Are there any free alternatives to MATLAB? ..

2
2
3
3

Where can I find more information and help with MATLAB online? 3
Lesson 1.2 – Hello World .. 4

Where can I find and open the MATLAB program? ..
Step 1: Create a New m-file ...
Step 2: Write the ‘Hello World’ Code ...
Step 3: Run the Program ..

4
4
5
6

Step 4: Make Your Program a Little Fancier ... 6
Lesson 1.3 – MATLAB Environment .. 8

MATLAB Environment Windows and Parts ...
Navigation Ribbon ...
Working Folder Location ...
Current Folder ...
Command Window ..
Editor Window ..
Workspace ...

8
9
9
10
10
11
11

Status Bar ... 12
Lesson 1.4 – Changing MATLAB Preferences ... 13

How can I change the window layout in MATLAB? 13
Changing Basic User Preferences .. 14

Lesson 1.5 – The m-file ... 16
What is an m-file? ..
Where can I create a new m-file? ..
How do I save my m-file? ...
How do I input variables and expressions into the m-file?
How do I run the m-file? ...
What are the clc and clear commands? ...
How can I place comments in my m-file? ..
Can I separate my code into parts within the m-file? ..
What does the color highlighting in the m-file mean?.......................................
Multiple Choice Quiz ...

16
17
17
17
18
19
19
20
20
22

ii

Exercises .. 23
Lesson 1.6 – The Command Window .. 27

What is the Command Window and how can I use it?
How can I suppress outputs in the Command Window?
Can I view help from the Command Window? ..
Can the Command Window do it all? ...
Multiple Choice Quiz ...

27
28
29
30
31

Exercises .. 32
Lesson 1.7 – Publishing an m-file ... 33

What does publishing do? ..
How can I publish in MATLAB? …………………….....................................
How can I get a PDF file of my published code? ..

33
34
34

MODULE 2: BASIC PROGRAMMING FUNDAMENTALS
Lesson 2.1 – Variables and Naming Rules .. 38

What is a mathematical variable? ...
What is a programming variable? ..
How can I give my results a variable name of their own?
What are some possible problems with naming an expression?
Are there benefits to good practices for variable naming?
Are there some guidelines for variable naming that I can follow?
Multiple Choice Quiz ...

38
38
38
40
41
42
45

Exercises .. 47
Lesson 2.2 – Characters and Strings ... 48

What is a character? ...
What is a string? ...
What makes characters/strings special? ...
Multiple Choice Quiz ..

48
49
50
52

Exercises .. 54
Lesson 2.3 – Working with Strings .. 55

How do I join two strings together? ..
How do I search and count strings? ..
How do I make a whole string lower or upper case? ...
Can I split a string into its component pieces? ..
Multiple Choice Quiz ..

55
56
57
58
61

Exercises .. 63
Lesson 2.4 – Inputs and Outputs ... 64

How can I get an input from the user? ..
How do I display notes in the Command Window? ..
Multiple Choice Quiz ...

64
64
69

Exercises .. 71
Lesson 2.5 – Data Types .. 73

What is a data type? ... 73

iii

What are the MATLAB data types? ...
Why are data types important? ...
How do I check the data type of a variable? ..
Can I convert between data types? ...
Multiple Choice Quiz ...

73
74
74
76
80

Exercises .. 81
Lesson 2.6 – Vectors and Matrices ... 82

Why is the program called MATLAB? ..
What is a matrix? ...
Do I need to know any special types of matrices? ..
What is a vector? ..
How do I define a vector or a matrix in MATLAB? ...
What are some basic functions and commands for matrix manipulation?
How can I reference strings as vectors? ..
Multiple Choice Quiz ..

82
82
83
83
84
86
89
91

Exercises .. 93
Lesson 2.7 – How to Debug Code .. 94

What is an error? ..
What is a warning? ...
How can I solve the problem with my code? ..
Can I pause my program part of the way through? ...
What if I cannot find the exact place of the error? ..
Multiple Choice Quiz ...

94
95
95
98
100
101

Exercises .. 102

MODULE 3: PLOTTING
Lesson 3.1 – Plots and Figures ... 106

How can I visualize (plot) data in MATLAB? ...
How do I plot data pairs (points) in MATLAB? ...
How do I plot a function in MATLAB? ...
What is the difference between a figure and a plot? ..
How can I enter nonlinear functions for plotting? ..
What are some possible errors with plotting? ...
How do I show multiple data sets on the same plot? ...
What are some other types of plots that MATLAB can generate?
How do I plot on more than one figure in the same m-file?
What is the close all command? ...
Multiple Choice Quiz ..

106
106
107
109
109
110
110
112
113
114
115

Exercises .. 117
Lesson 3.2 – Plot Formatting .. 119

How can my MATLAB graph look nicer? ...
What are some terms I should know for plots? ...
How can I change the color and style of lines and markers on a plot?

119
119
120

iv

How can I make the function and points on the graph look nicer?
How can I put a title and axis labels on my plot? ..
How can I add a legend to my plot? ..
How can I add a grid to my graph? ...
How can I add special characters in my axis labels and title?
How can I change axis limits and tick labels? ..
Multiple Choice Quiz ..

121
123
123
124
125
126
129

Exercises .. 130
Lesson 3.3 – Advanced Plotting ... 132

Does MATLAB have more plotting capabilities? ..
How can I create a bar graph? ..
How can I create a 3D line plot? ...
How can I create a 3D surface plot? ...
How can I create a polar plot? ..
Multiple Choice Quiz ...

132
132
134
135
138
141

Exercises .. 142

MODULE 4: MATH AND DATA ANALYSIS
Lesson 4.1 – Basic Algebra, Logarithms, and Trigonometry 144

What kind of mathematical functions and operations are available in
MATLAB? ..
How do I use logarithmic functions in MATLAB? ..
What about a logarithm that is not natural? ..
How can MATLAB evaluate trigonometric functions?
Multiple Choice Quiz ...

144
144
146
147
151

Exercises .. 152
Lesson 4.2 – Symbolic Variables .. 155

What is a symbolic variable? ...
What is a MATLAB toolbox? ..
How do I use symbolic variables? ..
How do I clear specific variables? ..
How can I convert from syms data type to other data types?
Can I replace a symbolic variable with a value? ...
How can I change the output format of syms? ..
Multiple Choice Quiz ..

155
155
155
157
157
158
159
161

Exercises .. 163
Lesson 4.3 – Solution of Linear and Nonlinear Equations .. 165

How do I solve for roots of a linear equation? ..
What is a nonlinear equation? ..
How can I use MATLAB to solve nonlinear equations?
Is there a faster way to work with polynomial equations in MATLAB?
Can I plot with symbolic variables? ...
Multiple Choice Quiz ...

165
166
167
171
172
174

v

Exercises .. 175
Lesson 4.4 – Differential Calculus ... 179

What is a derivative? ..
How do I take the derivative of a function in MATLAB?
Where are derivatives used in engineering? ...
How do I find the derivative of a discrete function in MATLAB?
Multiple Choice Quiz ...

179
180
183
184
187

Exercises .. 189
Lesson 4.5 – Integral Calculus .. 191

What is integration? ...
How does MATLAB conduct symbolic integration?
Can MATLAB do numerical integration? ..
Multiple Choice Quiz ...

191
192
194
197

Exercises .. 199
Lesson 4.6 – Linear Algebra ... 202

What is linear algebra? ...
How do I add and subtract matrices? ..
Can I use math functions like sin() on matrices? ...
How do I perform matrix multiplication? ...
What is the difference between matrix and array operations?
How do I take the inverse of a matrix? ..
Can MATLAB do advanced matrix and vector operations?
How can I solve systems of equations with MATLAB?
Multiple Choice Quiz ...

202
202
203
205
205
208
210
213
219

Exercises .. 220
Lesson 4.7 – Curve Fitting .. 222

What is curve fitting? ...
What is interpolation? ..
How can I interpolate data in MATLAB? ..
What is spline interpolation? ..
How do I conduct spline interpolation? ..
What is regression? ..
How do I do regression in MATLAB? ...
Multiple Choice Quiz ...

222
222
222
225
226
228
229
233

Exercises .. 235
Lesson 4.8 – Curve Fitting – Plotting .. 238

How can I plot the results of curve fitting? ...
What are some common mistakes when plotting curve fitting results?
Multiple Choice Quiz ...

238
242
244

Exercises .. 246
Lesson 4.9 – Ordinary Differential Equations .. 249

What is a differential equation? ..
How do I set up and solve a differential equation? ..
How do I solve a higher order ODE? ..

249
250
251

vi

What are the limitations of using the dsolve() function?
Multiple Choice Quiz ...

253
254

Exercises .. 256

MODULE 5: CONDITIONAL STATEMENTS
Lesson 5.1 – Conditions and Boolean Logic .. 260

What are conditions? ..
What is Boolean logic? ..
Can different data types be identified in MATLAB? ..
How can I round numbers in MATLAB? ...
Multiple Choice Quiz ...

260
262
264
265
268

Exercises .. 269
Lesson 5.2 – Conditional Statements: if and if-else .. 270

What is a conditional statement? ..
What is the if statement? ..
What is the if-else statement? ...
Can I use multiple conditions in a single expression?
A Note on Writing Good Conditions ..
Multiple Choice Quiz ...

270
270
273
275
278
279

Exercises .. 281
Lesson 5.3 – Conditional Statements: if-elseif .. 284

What is the if-elseif statement? ..
Independent vs. Dependent Cases ..
What is the if-elseif-else statement? ...
What is the difference between the else and elseif conditional clauses?
Multiple Choice Quiz ...

284
286
288
290
291

Exercises .. 293

MODULE 6: PROGRAM DESIGN AND COMMUNICATION
Lesson 6.1 – Flowcharts .. 298

What is a flowchart? ...
Multiple Choice Quiz ...

298
304

Exercises .. 306
Lesson 6.2 – Pseudocode ... 308

What is a pseudocode? ...
How are pseudocodes used? ...
How can I convert a pseudocode for a problem into a program?
Multiple Choice Quiz ...

308
308
310
312

Exercises .. 313
Lesson 6.3 – Writing Better Code .. 314

How can I improve my code for computational efficiency? 314

vii

How does hardcoding impact a program? ..
What are some tips for good comments and spacing?
Why does proper code indenting matter? ...
What are some tips for choosing inputs and outputs?
What are some tips for thinking ahead in when designing my program?

317
317
318
318
318

MODULE 7: FUNCTIONS
Lesson 7.1 – User-Defined Functions ... 320

What is a function? ...
What are the naming rules for functions in MATLAB?
How can I create functions in MATLAB? ..
Can I define functions in the program m-file? ..
Multiple Choice Quiz ...

320
320
321
325
331

Exercises .. 333
Lesson 7.2 – Function Design and Communication .. 338

How can I add a description for my function? ..
How can I define errors and warnings inside my function?
Multiple Choice Quiz ...

338
339
342

Exercises .. 343

MODULE 8: LOOPS
Lesson 8.1 – while Loops ... 346

What is a loop? ...
What is a while loop? ...
What comparisons can I use with a while loop? ...
Multiple Choice Quiz ...

346
347
353
357

Exercises .. 360
Lesson 8.2 – for Loops ... 363

What is a for loop? ...
How can I reference vectors inside of a loop? ...
Do I have to use the loop counter variable in the body of the loop?
When do I use a for loop vs. a while loop? ..
Multiple Choice Quiz ...

363
367
370
372
375

Exercises .. 378
Lesson 8.3 – break and continue Commands .. 381

What are the break and continue commands? ...
How does the break command work in MATLAB? ...
How does the continue command work in MATLAB?
Multiple Choice Quiz ...

381
381
383
386

Exercises .. 389

viii

Lesson 8.4 – Nested Loops .. 390
What is a nested loop? ..
How do nested loops work? ...
How do loop mechanics apply to nested loops? ...
What is a “flag”? ..
When should I use programming flags? ...
How can I use break and continue in nested loops? ..
Multiple Choice Quiz ...

390
391
392
393
394
396
399

Exercises .. 402
Lesson 8.5 – Working with Matrices and Loops .. 403

How can I reference matrices in a loop? ...
How do I store values in a matrix using a loop? ..
How can I access specific areas of a matrix? ..
What is vectorization? ..
How can I vectorize matrix operations in MATLAB?

403
406
409
415
416

What are some tips I can use for vectorization? .. 420
Multiple Choice Quiz ... 421
Exercises .. 424

Lesson 8.6 – Applied Loops .. 429
Why is this lesson important? ...
How can I sort an array? ...
How can I find the sum of a vector? ..
How can I plot different variations of a function using loops?
Multiple Choice Quiz ...

429
429
433
434
437

Exercises .. 440

MODULE 9: READING FROM AND WRITING TO FILES
Lesson 9.1 – Reading from Files ... 446

Why read data from a file? ...
How do I read numeric-only data from files? ...
What is a delimiter? ..
How can I read numeric and character data from files?
Multiple Choice Quiz ...

446
446
448
448
453

Exercises .. 454
Lesson 9.2 – Writing to Files ... 457

How can I write numeric data to files with MATLAB?
How can I write non-numeric data to files with MATLAB?
Multiple Choice Quiz ...

457
458
462

Exercises .. 463
Lesson 9.3 – Navigating Directories with MATLAB .. 465

How do I set the current working directory for MATLAB?
How can I loop through the contents of a directory? ...
How can I create a new folder (directory) with MATLAB?

465
467
470

ix

Multiple Choice Quiz ... 472
Exercises .. 473

APPENDICES
Appendix A – Matrix Algebra Primer .. 478

What is a matrix? ...
What are the special types of matrices? ..

478
479

 Vector .. 479
 Row Vector .. 479
 Column Vector ... 479
 Square Matrix .. 480
 Trace of a Matrix .. 480
 Upper Triangular Matrix .. 480
 Lower Triangular Matrix ... 481
 Diagonal Matrix ... 481
 Identity Matrix ... 482
 Zero Matrix .. 482
 Tridiagonal Matrix ... 482
 Diagonally Dominant Matrix ... 483
When are two matrices considered to be equal? .. 484
How do you add two matrices? .. 484
How do you subtract two matrices? ... 486
How do I multiply two matrices? ... 487
What is a scalar product of a constant and a matrix? ... 489
What is a linear combination of matrices? ... 490
What are some of the rules of binary matrix operations? 490
 Commutative law of addition .. 490
 Associate law of addition ... 491
 Associate law of multiplication .. 491
 Distributive law .. 491
Is [A][B]=[B][A]? .. 492
Transpose of a matrix ... 492
Symmetric matrix .. 493
Matrix algebra is used for solving a system of equations. 494
Can you divide two matrices? .. 496
Can I use the concept of the inverse of a matrix to find the solution of a set
of equations [A] [X] = [C]? .. 497
How do I find the inverse of a matrix? .. 497

Appendix B – Mini Projects ... 501
Appendix C – Plot Animation .. 517

x

ABOUT THE AUTHORS

AUTAR KAW
Autar Kaw is a Professor of Mechanical Engineering at the University
of South Florida, Tampa. He is a recipient of the 2012 U.S. Professor
of the Year Award (doctoral and research universities) from the Council
for Advancement and Support of Education and the Carnegie
Foundation for Advancement of Teaching.
Professor Kaw obtained his B.E. (Hons.) degree in Mechanical
Engineering from Birla Institute of Technology and Science, India in
1981. He received his Ph.D. degree in 1987 and M.S. degree in 1984,
both in Engineering Mechanics from Clemson University, SC. He
joined the faculty of the University of South Florida, Tampa in 1987. He has also been a
Maintenance Engineer (1982) for Ford-Escorts Tractors, India, and a Summer Faculty Fellow
(1992) and Visiting Scientist (1991) at the Wright Patterson Air Force Base.
Professor Kaw’s current main scholarly interests are in engineering education research, adaptive
learning, blended classroom, flipped learning, open courseware development, and the state and
future of higher education. His research has been funded by National Science Foundation, Air
Force Office of Scientific Research, Florida Department of Transportation, Research and
Development Laboratories, Systran Co, Wright Patterson Air Force Base, and Montgomery Tank
Lines.
He is a Fellow of the American Society of Mechanical Engineers (ASME) and a member of the
American Society of Engineering Education (ASEE). He has authored textbooks on Mechanics
of Composite Materials, and Introduction to Matrix Algebra, and co-authored a book on Numerical
Methods with Applications. He is also a contributor to the MaterialsnetBase, an online library of
material science texts, references, and handbooks.
Funded by the National Science Foundation, under Professor Kaw's leadership, he and his
colleagues from around the nation have developed, implemented, refined, and assessed online
resources for an open courseware (OCW) in Numerical Methods. This courseware annually
receives 1,000,000+ page views, 2,000,000+ views of the YouTube lectures, and 90,000+ visitors
to the "numerical methods guy" blog.
He has written more than 100 refereed papers, and his opinion editorials have appeared in the
Tampa Bay Times, Tampa Tribune, and Chronicle Vitae. His work has been covered/cited/quoted
in many media outlets including Chronicle of Higher Education, U.S. Congressional Record,
Florida Senate Resolution, ASEE Prism, and Voice of America.

xi

BENJAMIN RIGSBY
Benjamin Rigsby is a Ph.D. candidate in mechanical engineering at the
University of South Florida (USF) in Tampa, Florida. He received his
Bachelor of Science degree in 2015 and Master of Science degree in
2017: both in mechanical engineering from USF. After graduation, Ben
plans to work in the industry as an engineer in research and
development.
Ben has been the instructor twice for the Programming Concepts for
Mechanical Engineers course at USF. He has worked as a teaching
assistant since 2014 in several mechanical engineering courses while
developing course materials and assisting students.
Ben also works as a research assistant at USF in the Rehabilitation Engineering and
Electromechanical Design lab under the guidance of his advisor Professor Kyle Reed. Ben’s
research focuses on the areas of human-robot interaction, force perception, and haptics.
In his spare time, Ben enjoys 3D printing, gaming, traveling, and making educational online
content. Contact information as well as further information on his current research, teaching, and
professional information can be found at benjaminrigsby.com.

xii

DANIEL MILLER
Daniel Miller is an alumnus of the University of South Florida. He
majored in mechanical engineering and received a B.S. degree in
2009, followed by an M.S. degree in 2011. As a graduate student, he
first worked as a teaching assistant for the Programming Concepts for
Mechanical Engineers course and then instructed the class from 2010
to 2011. He received the USF Provost’s Graduate Teaching Assistant
Award in 2011. Dan also worked as a research assistant in the field of
numerical methods related to the design and analysis of body armor
systems using computational methods.
Dan is a registered Professional Engineer in Florida and a certified Project Management
Professional with the Project Management Institute. He is a co-inventor of hybrid wearable body
armor and was awarded a U.S. Patent for the system in 2013.
Dan is currently employed as a mechanical design engineer in a multinational company in Tampa
FL and is a member of the U.S. Navy Reserve.

xiii

ISMET HANDŽIĆ
Ismet Handžić completed his Bachelor of Science degree in Mechanical
Engineering at Western Kentucky University in 2009. Handžić continued
his education for a Master of Science degree in Mechanical Engineering
at the University of South Florida. After completion in 2011, he
continued to pursue his Ph.D. degree in Mechanical Engineering. The
general topics included in his doctorate dissertation involved walking
rehabilitation, rolling dynamics, passive synchronization and dynamics,
string vibration, and computer simulation of walking patterns. Handžić
concluded his graduate work with twenty peer-reviewed publications and
five utility patents. During his time in graduate school, Handžić enjoyed
being a graduate teaching assistant, actively trying to find original ways to create effective teaching
materials.
Subsequent to his studies, Handžić joined a small startup company to develop three of his patented
and licensed inventions. These inventions included the Moterum M-Tip crutch tip and the
Moterum iStride stroke rehabilitation shoe. Handžić's successive positions in the industry included
a mechanical research engineer at a crossbow weapon manufacturer, analyzing and designing
crossbow components, and a system test engineer at an aerospace company designing and
programming electromechanical automated test equipment for electrical components. His current
employment is as a system test engineer at an IoT technology start-up company, developing
automated test equipment and programming various automated tests of IoT devices.
In his leisure time, Handžić likes to spend time with his wife and kids, tinkering on small maker
projects, programming, photography, playing his guitar, or hammering on larger projects such as
the contents of this textbook.

xiv

PREFACE

This book is intended for an introductory course in programming in STEM (science,
technology, engineering, and mathematics) fields while using MATLAB as the
programming language. MATLAB is a popular computational software package used in
universities and industries alike.

This textbook differentiates itself from others in two specific ways.

1. The textbook is suitable for the many engineering departments throughout the
nation that no longer teach a 3-credit hour programming course. They weave
programming and mathematical software packages such as MATLAB in courses
such as Foundations of Engineering, Freshmen Design, Modeling of Systems,
Engineering Analysis, Numerical Methods, etc. This book is highly suitable for
such audiences. To achieve these goals and make the access far-reaching, we have
been deliberate in keeping the lessons short in length so that instructors can easily
choose the course content in a modular way.

2. The textbook is a stand-alone resource for learning programming where the lectures
complement the textbook rather than vice versa. This is because of the reason above
where in-classroom time is truncated, and therefore students need to be more self-
taught. For this reason, we have been meticulous when selecting and organizing the
textbook content to include fundamental and application programming problems
that prepare students well for other problems they will solve in academia and
industry.

The book has nine modules which have been each broken down by lessons. There are 42
lessons in all and depending on the learning outcomes of the course, an instructor can
choose to assign only necessary lessons. Modules 1-3 focus on MATLAB and
programming basics like the MATLAB program interface, programming variables,
different types of data, debugging, plotting, and applications to science and engineering
problems. In Module 4, we show the use of MATLAB for basic mathematical procedures
learned in the engineering courses including nonlinear equations, integration,
differentiation, simultaneous linear equations, interpolation, regression, and ordinary
differential equations. In Modules 5-8, the user is introduced to basic programming
concepts of conditional statements, repetition (loops), and custom functions. In Module 9,
program input/output is shown with writing to and reading from external files as well as
navigating directories with MATLAB. Important appendices include a primer on matrix
algebra, a collection of mini-projects, and a introduction to animating plots in MATLAB.
Appendix A provides a primer on matrix algebra. Appendix B contains a set of mini-
projects. Appendix C demonstrates how to make animated plots in MATLAB.

Each lesson contains screenshots of actual MATLAB programs that are used to help
illustrate the concepts presented. More than 120 complete programs are shown throughout

xv

this book to demonstrate to the reader how to use programming concepts. The book is
written in a USA-Today style question-answer format for a quick grasp of the concepts.

The purpose of this book is to provide the reader with a firm basic understanding of
MATLAB syntax and fundamental programming concepts. Each lesson contains
MATLAB programs that are used to help illustrate the concepts presented. By no means
do the authors claim to present every MATLAB command, function, application, or
programming concept in existence.

CONTACT INFORMATION
We would appreciate feedback, questions, or comments that you may have on this book.
We are especially looking for any typographical errors. We will update these immediately
with the publisher and also we will keep a complete list of corrections at
programming.autarkaw.com/errata.html.

You can contact the first author, Autar Kaw, via:

Email: AutarKaw@yahoo.com
Telephone: +1 (813) 974-5626
Twitter: @numericalguy
Mailing Address: Department of Mechanical Engineering, ENG030

University of South Florida
4202 East Fowler Avenue
Tampa, FL 33620-5350

ACKNOWLEDGMENTS
Kaw would like to thank his spouse, Sherrie, and children Candace and Angelie, who
encouraged him to first co-write this textbook with Miller, and now with two more co-
authors, Rigsby and Handžić. Miller would like to thank his spouse, Lisa.

mailto:AutarKaw@yahoo.com

xvi

WHAT IS NEW WITH THE THIRD EDITION?
• We have rethought the layout of the book by grouping sets of lessons into modules

that address a specific set of fundamental topics as well as reordered some lessons
for learning clarity.

• We have added ten new lessons and extended other lessons to more fully cover
programming fundamentals. Additionally, there are more than 50 new MATLAB
example codes.

• A companion website (MechPlus.org) has been constructed for easy reference and

review. This is not a replacement for the book, but it allows students to quickly
jump around to different lessons and see programming examples and explanations
on the go. For specifics on the textbook, like where to purchase and have access to
other resources, head to programming.autarkaw.com.

• Based on student feedback over the last seven years, we have reformatted the whole

book for readability and clarity.

• We have added end-of-lesson summaries of the new syntax, functions, and
commands covered in each lesson to make referencing and reviewing faster.

• New figures have been added to visually demonstrate fundamental concepts.

• We have updated all syntax and example codes to reflect MATLAB, that is,

R2018b.

xvii

A NOTE TO STUDENTS
What will I be able to do after completing this book?
Imagine you are given a file that contains data of position and time of the path of a rocket.
By the end of this book, you will be able to read in the data from the file(s), estimate
position, velocity, and acceleration of the rocket, and plot each of these dynamics variables
simply by clicking “run” on your program. The best part is, if you get new data or multiple
sets of data from multiple rockets, you can get all of these results again with only minimal
additional work. This is just one example of many real-world problems you will be capable
of solving after mastering the material in this book.

This textbook will give you a strong foundation in programming fundamentals through
MATLAB. Although some more advanced topics like object-oriented programming are
beyond the scope of this book, you will be able to solve the vast majority of engineering
problems you encounter in school and in the workplace using the knowledge and skills you
gain from this book.

Why should I learn programming?
It may be a common belief that the concepts learned in programming are only applicable
to computers and computer languages. However, this is not true. The various concepts of
programming, for example, a yes/no decision, are used in nearly every action we take while
interacting with the world in our daily activities. For instance, you may ask yourself
whether you should drink tea before going to sleep, or whether you should exercise before
eating a meal.

The typical sequential structure of a computer program is also used by us as we order the
events of our schedule to make sense. For instance, one would never consider putting on
their shoes before their socks. Logically, an individual will first put on their socks, then
their shoes and finally, they would secure the shoes.

David Malan who teaches a general computer science course CS50 at Harvard to majors
and non-majors of computer science (largest course at his institution and the largest
Massive Open Online Course (MOOC) on edX) sums it up the best - “More than just teach
you how to program, this course teaches you how to think more methodically and how to
solve problems more effectively. As such, its lessons are applicable well beyond the
boundaries of computer science itself. That the course does teach you how to program,
though, is perhaps its most empowering return. With this skill comes the ability to solve
real-world problems in ways and at speeds beyond the abilities of most humans.”

Furthermore, programming will teach you important debugging skills that are useful in
correcting all sorts of mechanical and electrical systems. You will learn the steps to identify
a problem, determine its cause, and finally devise a solution. You will learn to be
meticulous when comparing what you expect with what you observe.

How can I use the book most effectively?
After reading each lesson, do all of the multiple-choice questions and as many exercise
problems as you can (preferably all). Practice is essential when learning to program.

xviii

Cramming will not work, and as with many other courses, repeated bursts of practice is the
best method to grasp the material (an hour or two each day). When completing the
exercises, it is highly recommended to work alone as the approach to new problems needs
to be learned individually. This will make your debugging and testing skills much stronger,
which will, in turn, make you a better programmer.

Pay careful attention to the “Important Notes” in the text. We have been deliberate about
placing these in the lessons so that they can be helpful without being overwhelming. They
are meant to be a kind of pro-tip to tell you something that some people only realize after
making the mistake many times.

Also take advantage of the Index of terms, functions, and commands at the back of the
book. This can be a quick way to find that one function you need to review.

How does MATLAB compare to other popular languages?
MATLAB is a powerful programming language with many first-party functions and
commands to do all kinds of tasks like statistics, machine learning, controls, data analysis,
modeling, and user interfaces to name a few. It also has excellent documentation compared
to other popular languages due, in part, to the fact that MATLAB is a proprietary language.

Learning MATLAB will give you a great foundation to transfer to other languages should
you need to. Python is a popular open-source programming language that has similar
syntax compared to MATLAB. Suffice it to say, MATLAB is a good choice as a first
language both for its ubiquity in academia and for its stellar documentation (make sure you
take advantage of this!).

xix

A NOTE TO INSTRUCTORS

Scope of Textbook
We have endeavored to include all of the necessary fundamental programming syntax and
skills for a student to solve most problems they will encounter in STEM. We aimed to not
only teach MATLAB syntax in this book, but inform and inspire good programming,
documentation, debugging, and program planning and research practices. We believe that
this will prepare students well for tackling new MATLAB functionality and building on
the programming knowledge they gain from this book. A brief summary of the objectives
of each module is given below.

Module 1 introduces how to interact with the MATLAB program including opening and
saving m-files and its basic components like the Editor and Command Windows.

Module 2 introduces basic programming fundamentals including the concept of a variable,
different data types like numbers and strings, and numeric arrays as used in the context of
mathematics and MATLAB. The reader is introduced to program design with user inputs
and program outputs and is encouraged to think about the beginning and the end of a
program rather than just direct solutions to a problem.

Module 3 introduces how to visualize different types of data in MATLAB, which includes
how to plot discrete data pairs directly as well as from discrete data generated from
continuous functions. Advanced visualizations in MATLAB are covered including bar
graphs and polar and 3D plots. The essential MATLAB plot properties that accompany
these plots are demonstrated.

Module 4 introduces how to use MATLAB functions to conduct differentiation and
integration, curve fit via interpolation and regression, solve for roots of nonlinear
equations, find solutions to simultaneous linear equations, and solve ordinary differential
equations.

Module 5 introduces conditions and conditional statements including the relevant Boolean
logic.

Module 6 introduces tools for program design and communication including pseudocode
and flowcharts. Tips for program design and communication are also provided.

Module 7 introduces user-defined functions where readers are shown how to write their
own custom functions. Tips on how to consider the user of a function are also given.

Module 8 introduces loops and provides thorough coverage of the topic. Many different
cases are covered including use of matrices and loops together and the obligatory summing,
searching and sorting. Other examples include implementing recursive formulas and
approximating mathematical functions using infinite series.

xx

Module 9 introduces interacting with external files and directories. Methods for reading
from and writing to text and Excel files are given. Applications demonstrating how to
interact with data, once it has been read into MATLAB, are also provided.

Appendix A provides a primer on linear algebra which describes fundamental matrix
operations used in programming such as addition, multiplication, inverse, and many more.
Special types of matrices, such as symmetric, diagonally dominant, identity and several
more are also defined.

Appendix B contains a set of mini-projects that thoughtfully provide additional practice to
the student. Relevant modules are noted at the beginning of each mini-project for easy
reference.

Appendix C demonstrates how to animate 2D and 3D plots and data in MATLAB.

Tips on Using the Book for Instructors
For this edition, the textbook was intentionally rearranged into nine modules with a total
of 42 lessons. The textbook will appeal to schools ranging from where programming is
introduced to freshmen in a first-year engineering design course to those who have a full-
fledged 3-credit hour course dedicated to programming at a higher level. The intention is
that the instructor would choose the lessons that are appropriate in each module for their
students based on the course level and effort. Our recommendation for courses, such as
Numerical Methods with Programming or Engineering Analysis, where programming is
instead introduced as one of several topics, would be to safely skip the following lessons:
Lessons 3.3, 4.3 to 4.9, 8.6, 9.1 to 9.3.

At the end of most lessons, there is a multiple-choice question quiz and a set of exercises.
You should encourage students to finish both problem sets. The course works well by
assigning a set of mini-projects deliverable every other week, and these have been included
in the end of lesson exercises as well as in Appendix B.

Students Program Submissions
We have included instructions on publishing m-files in Lesson 1.7. We have found it very
helpful for students to include a published version of their program. This is for three main
reasons: 1) it reduces the number of m-files that need to be run while grading, 2) the outputs
are immediately shown after the appropriate code, which is helpful to both the grader and
the student, and 3) it encourages students to review the output of each submitted problem.

This file is only a preview with selected lessons from specific parts of this book.

Please click “Introduction to Programming Concepts with MATLAB Third
Edition” or visit lulu.com and search “Introduction to Programming Concepts with

MATLAB Third Edition” to purchase a complete printed version of this book.

http://www.lulu.com/shop/autar-kaw-and-benjamin-rigsby-and-ismet-handzic-and-daniel-miller/introduction-to-programming-concepts-with-matlab-third-edition/paperback/product-24333322.html
http://www.lulu.com/shop/autar-kaw-and-benjamin-rigsby-and-ismet-handzic-and-daniel-miller/introduction-to-programming-concepts-with-matlab-third-edition/paperback/product-24333322.html
https://lulu.com/

After reading this lesson, you should be able to:

• define a mathematical variable,

• define a programming variable,

• determine legal and illegal variable names,

• know the benefits of good practices for variable naming,

• have guidelines for naming variables.

What is a mathematical variable?

A mathematical variable is a number that we do not know yet and may have to solve for. For

example, in the simple algebraic equation 2 + x = 3, the mathematical variable is x. A

mathematical variable can also essentially be a placeholder for substituting a variety/range of

numbers. For example, we can substitute any range of numbers into x in the function f (x) = x + 5

to find the value of a function, f (x). In a general sense, a variable varies its value. The value of a

variable may be arbitrary, not specified, or even unknown.

What is a programming variable?

In computer programming, such as MATLAB, a programming variable connects the name of a

variable and a specific storage location in the computer memory. For example, the variable x
references/points to its allocated storage, which contains some information about the variable; e.g.,

the value you assigned to it. Figure 1 shows a simple graphical illustration of this concept.

Although a variable in computer programming can be used as a mathematical variable, it can also

be used for many more applications such as substitution, information storage, iteration, value

comparison, and much more. Do not worry if you are not sure how to do any of these in MATLAB

yet; subsequent lessons will explain how to use variables for all of these.

How can I give my results a variable name of their own?

You have seen variables used in previous lessons, but you did not know the specifics about the

concept or how to name them in MATLAB. To make sense of the information that you are

receiving and inputting into MATLAB, you can assign names to the input, intermediate, and output

Lesson 2.1
Variables and Naming Rules

38

Module 2 ► Lesson 2.1: Variables and Naming Rules

variables. MATLAB allows you to name variables simply by typing the desired name followed by

an equal to sign and then the operation. For instance, if you are using MATLAB to find the area

of a square, you may type, areaSq, then press the “equal to” key followed by the operation of

length times width. This will return the value of the area. You can also recall or use this expression

in a later operation simply by typing in the variable name wherever it is needed. This is shown in

Example 1.

Figure 1: A simple visual representation of how variables are saved and called.

Important Note: When naming variables, you cannot start the variable name with a number

or use a space in the name. For example, 1cat and cat 1 are illegal variable names.

Also, cos is an illegal variable name because it is used as a MATLAB function to calculate

the cosine of an angle.

We will learn the MATLAB functions and commands later (throughout the rest of the book).

MATLAB is case sensitive, and hence some programmers only use lower case script for variable

names.

Show examples of storing values in variables in MATLAB.

Solution

Example 1

clc

clear

areaSq = 3*3

cubeSA = areaSq*6

MATLAB Code example1.m

39

Module 2 ► Lesson 2.1: Variables and Naming Rules

Notice that in Example 1, the surface area of a cube, cubeSA, was found by using the predefined

name areaSq, instead of physically typing the required dimensions to find the surface area. This

is an example of recalling a previously named expression to make the current calculation easier

and more readable.

What are some possible problems with naming an expression?

You have to be cautious when naming your expressions. Follow these rules for naming.

1. Do not begin a variable name with a number.

2. Do not put a space anywhere in the variable name.

3. Do not name a variable as a predefined MATLAB command or function name.

For example,

1. 1cat is an illegal variable name, as it starts with a number.

2. cat 1 is an illegal variable name as it has a space between characters.

3. cos is an illegal variable name as it is a predefined MATLAB function that calculates the

cosine of an angle.

MATLAB reads inputs from the top to the bottom and from the left to the right of the page, similar

to the way you might read a book. If you are using the same variable name multiple times,

MATLAB will always use the last assigned value or expression to that variable name in its

calculations. Example 2 below shows an example of replacing expressions.

Examples of replacing an expression using the same name.

Solution

Note in the solution given below that although both SA and a are assigned values twice, the

numeric values associated with those names are different. The second value of a replaces the first

value and MATLAB uses this new value to calculate the next expression for SA. Both variables

have been reassigned new numeric values or expressions.

Command Window Output Example 1

areaSq =

 9

cubeSA =

 54

>>

Example 2

40

Module 2 ► Lesson 2.1: Variables and Naming Rules

Are there benefits to good practices for variable naming?

Given that you stay within naming rules, you are free to use any variable name you wish. However,

just because you can choose any variable name does not necessarily mean you should. Good

variable names are essential to writing efficient and understandable code. Choosing your variable

names wisely can have the following benefits:

1. Readability and clarity - It is easier to follow and understand programming code when

proper variable naming techniques are followed.

2. Debugging - For more lengthy programming scripts, debugging (or troubleshooting) of

code becomes more efficient and manageable.

3. Collaboration - If you are working with someone on a piece of code, or if someone needs

to read and understand your code, it is important to name your variables in a clear

way. That someone could also be you trying to figure out or reuse your code five years

from now.

clc

clear

a = 12*346

SA = a*6

a = 23*2

SA = 276

MATLAB Code example2.m

Command Window Output Example 2

a =

4152

SA =

24912

a =

46

SA =

 276

>>

41

https://en.wikipedia.org/wiki/Debugging

Module 2 ► Lesson 2.1: Variables and Naming Rules

Are there some guidelines for variable naming that I can follow?

This section contains a more explicit set of guidelines for naming your variables in MATLAB.

These are strongly recommended; however, MATLAB will not give any errors if these are not

followed. Failing to follow good naming conventions, though, can make looking at a simple

program seem intimidating and frustrating. Also, note that different computer programming

languages may have different naming conventions.

1. A variable covering a large scope (used across a wide range of the program) should have

more specific and meaningful names.

o Good: voltageDrop, pullForce, outputTemperature

o Bad: vd, forP, To

2. A variable covering a small scope (used across a short range of the program) should have

short, disposable names. This guideline generally applies to loop counters or dummy

variables.

o Good: i, j, elem

o Bad: looponeiteration, temporaryVariable10

3. Use CamelCase with leading lower case letters. Note the use of underscores between words

(e.g., box_height = 5) is also common; however, CamelCase will be used throughout

this textbook.

o Good: pressureSensorOutput, boxHeight, width

o Bad: pressuresensoroutput, Boxheight, WiDtH

4. Avoid negating boolean (value of true or false) variable names (no double negatives). The

concept of boolean variables will be covered in Module 5: Conditional Statements.

o Good: isGood, isMax, error

o Bad: isNotGood, isNotMax, noError

5. Do not make the variable name very long. Also, the maximum length of variable names is

limited to 63 characters. You will have to use your own judgement beyond this constraint.

In general, it must be long enough to be descriptive, yet short enough to be memorable and

useful.

o Good: avgPartStress, isTankLightOn

o Bad: averageStressInPartThatIsConnectedToTheOtherPart,
isTheFirstLightOnTopOfTheTankFlashingGreen

The following example shows a short MATLAB script with badly selected variable names. For

this example do not worry about the function of this specific MATLAB m-file script. We have

included examples and explanations for each guideline to elucidate each point more clearly and

hopefully impress them on your memory.

42

https://en.wikipedia.org/wiki/Naming_convention_(programming)
https://en.wikipedia.org/wiki/Camel_case

Module 2 ► Lesson 2.1: Variables and Naming Rules

In the code below, we rewrite our first MATLAB script example to put our guidelines into practice.

Again, for this example do not worry about the function or meaning of this specific MATLAB m-

file program. Note that the added white space and alignment further enhance readability.

clc

clear

% GUIDELINE 1

%Explanation: Looking at these calculations, it becomes hard to keep

% track of what each variable means since the names are

% not descriptive.

a = 2;

z = 5/a;

r = 8;

q = z*r;

% GUIDELINE 2

%Explanation: Although you do not know what for loops are (covered in

% Module 8: Loops), this is one of the most common

% examples for a "short scope". The variable name

% "iterationvar7" makes the code messy due to its

% unnecessary length.

for iterationvar7 = 1:5

iterationResult = iterationvar7*a + iterationvar7;

end

% GUIDELINE 3

%Explanation: This makes the program harder to read because there is

% no discernible marker between words.

pressuresensoroutput = 5.5;

% GUIDELINE 4

%Explanation: It is unclear exactly what is true. Is it good or not?

% Is it maximum or not?

isNotGood = true;

isNotMax = false;

% GUIDELINE 5

%Explanation: Having very long variable names also makes the code

% difficult to read even if other guidelines, like

% CamelCase, are followed. Additionally, variable names

% that are this long are rarely necessary for description

% and can usually be shortened.

voltageReadingFromSecondSensor = 10;

MAXimumnumberofreadings = 20; %This violates both guidelines

% 3 and 5 and compounds the

% problem.

MATLAB Code badFormatting.m

43

Module 2 ► Lesson 2.1: Variables and Naming Rules

Lesson Summary of New Syntax and Programming Tools

Task Syntax Example Usage

Store a value in a programming

variable
validName

validName = 6

validName2 = 'some text'

clc

clear

%Note: We feel that the good variable names in this example should be

% obviously better and do not require further explanations beyond

% what we have already given.

% GUIDELINE 1: A variable covering a large scope (used across a wide range

% of the program), should have more specific and meaningful names.
scale = 2;

% GUIDELINE 2: A variable covering a small scope (used across a short range

% of the program) should have short, disposable names.

for reading = 1:5

 readingResult = reading*scale + reading;
end

% GUIDELINE 3: Use CamelCase with leading lower case letters.
pressureSensorOutput = 5.5;

% GUIDELINE 4: Avoid negating boolean (value of true or false) variable names

% (no double negatives).

isSensorGood = true;
isVoltMax = false;

% GUIDELINE 5: Do not make the variable name very long.
voltageReadingSensor2 = 10;

%Note, this could be further abbreviated to the following depending

% on your preference
voltReadSensor2 = 10;

MATLAB Code goodFormatting.m

44

https://en.wikipedia.org/wiki/Camel_case

MULTIPLE CHOICE QUIZ
Lesson 2.1
Variables and Naming Rules

1. A correct name for a variable is

a) 1arearec

b) area rec

c) area_rec

d) cos

2. What is the mistake in the following code (m-file is saved with the name exercise_2.m)?

a) The m-file name is invalid.

b) One of the variables is called (referenced) before it is defined (assigned a value).

c) One of the variable names is invalid.

d) None of the above

3. An incorrect name for a variable is

a) cat1

b) cat_1

c) cat_cos

d) 1cat

4. The following variable follows the rules of camelCase.

a) AreaSquare

b) areaSquare

c) areasquare

d) Areasquare

clc

clear

five = 5

first variable = 6

45

Module 2 ► Lesson 2.1: Variables and Naming Rules

5. The following program is given to you. What is the value of the variable c?

a) 30

b) 35

c) 180

d) 245

clc

clear

a = 5

b = 6

c = a*b

c = a*b^2

b = 7

46

EXERCISES
Lesson 2.1
Variables and Naming Rules

1. Enumerate the benefits of good naming practices of variables.

2. Enumerate guidelines for variable naming. Give examples of each enumeration.

3. Enumerate illegal variable names in MATLAB. Give an example of each.

4. Write a program with proper names and good practices that calculates the inertial force

in a mass with an acceleration. The value of the mass and acceleration are inputs (you

choose these values) and the inertial force is the output.

5. Write a program with proper names and good practices that calculates the current

through a resistor. The value of the resistance and voltage are known inputs (you choose

these values) and the current through the resistor is the output. Remember, I =
V

R
.

47

This file is only a preview with selected lessons from specific parts of this book.

Please click “Introduction to Programming Concepts with MATLAB Third
Edition” or visit lulu.com and search “Introduction to Programming Concepts with

MATLAB Third Edition” to purchase a complete printed version of this book.

http://www.lulu.com/shop/autar-kaw-and-benjamin-rigsby-and-ismet-handzic-and-daniel-miller/introduction-to-programming-concepts-with-matlab-third-edition/paperback/product-24333322.html
http://www.lulu.com/shop/autar-kaw-and-benjamin-rigsby-and-ismet-handzic-and-daniel-miller/introduction-to-programming-concepts-with-matlab-third-edition/paperback/product-24333322.html
https://lulu.com/

After reading this lesson, you should be able to:

• add axis labels to MATLAB plots,

• add a legend to MATLAB plots,

• add a title to MATLAB plots,

• add special characters to text in MATLAB plots,

• improve the overall look of MATLAB plots.

How can my MATLAB graph look nicer?

As you can tell from Lesson 3.1, developing graphs can prove to be important for interpreting

data. The ability to make those graphs easier to read and aesthetically pleasing is equally

important. In this lesson, you will learn several techniques to make a MATLAB plot more

readable and easier to follow. This section will cover the functions and commands on how to

make a legend, title, axis labels, and place a grid onto a plot. Also covered are the use of special

fonts and characters and how to change the axis markings.

What are some terms I should know for plots?

Figure 1 shows the MATLAB naming convention for plotting. Most of the nomenclature is

common sense and similar to other software, but it is important to know to understand how to

change the different properties.

In this lesson, we will cover the two most commonly used groups of properties that define how

plotted graphics look in MATLAB. Those are as follows:

• Line Properties define chart line appearance and behavior: for example, the line style

and thickness.

• Axis Properties define axes appearance and behavior: for example, axis limits, title,

and legend.

The properties are not mandatory as you could see from the last lesson. In other words, you

could make a plot without MATLAB requiring you to have a title, line width, axis labels, etc.

Lesson 3.2
Plot Formatting

119

https://www.mathworks.com/help/matlab/ref/matlab.graphics.chart.primitive.line-properties.html
https://www.mathworks.com/help/matlab/ref/matlab.graphics.axis.axes-properties.html

Module 3 ► Lesson 3.2: Plots Formatting

Figure 1: A MATLAB plot with common plot properties annotated.

How can I change the color and style of lines and markers on a plot?

MATLAB provides many different options to change how your plots look. You can see some

of the common options in Tables 1, 2, and 3 below. Example 1 uses some of these options to

customize how a figure appears.

Table 1: Various marker plotting styles.

Desired Style Syntax Example Usage

Circle 'o' plot(x,y,'o')

Square 's' plot(x,y,'s')

Asterisk '*' plot(x,y,'*')

Cross '+' plot(x,y,'+')

Small point '.' plot(x,y,'.')

Diamond 'd' plot(x,y,'d')

Five-pointed star 'p' plot(x,y,'p')

Table 2 shows different line styles used to represent the function in the generated plot. To

change the color of a line or data point, use the parameters given in Table 3. Note that these

color and line style options can be used in the same parameter input to the plot() function.

For example, we can instruct MATLAB to make the plot a dotted red line with

plot(x,y,'r:').

120

Module 3 ► Lesson 3.2: Plots Formatting

Table 2: Various line plotting styles.

Desired Line Style Syntax Example Usage

solid line (default) '-' plot(x,y,'-')

dashed line '--' plot(x,y,'--')

dotted line ':' plot(x,y,':')

dash-dot line '-.' plot(x,y,'-.')

Table 3: Various color options for data points and lines.

Desired Color Syntax Example Usage

blue (default) 'b' plot(x,y,'b')

red 'r' plot(x,y,'r')

black 'k' plot(x,y,'k')

yellow 'y' plot(x,y,'y')

magenta 'm' plot(x,y,'m')

green 'g' plot(x,y,'g')

cyan 'c' plot(x,y,'c')

How can I make the function and points on the graph look nicer?

There are many ways to display the desired function(s) and/or data points on a graph. To name

a few, modifications include the change of the following - color, size, shape, line type, and

outline of both the points and function. Typing doc plot in the Command Window will

yield tables of information and codes that can be used to modify your graph.

Line Parameter: Line width of a curve (function)
 'LineWidth'

Parameter Value:

 Any positive integer – the larger the number the thicker the line width

Example Usage:

 plot(x,y,'LineWidth',2) (read more about code placement below)

Line Parameter: Size of a data point symbol
 'MarkerSize'

Parameter Value:

 Any positive integer – the larger the number the larger the marker size

Example Usage:

 plot(x,y,'MarkerSize',6) (read more about code placement below)

121

Module 3 ► Lesson 3.2: Plots Formatting

Both the LineWidth and MarkerSize parameters must be used in conjunction with the

plot() function as they are parameters of this function; therefore, they must go inside the

plot() function. To illustrate this, Example 1 shows both the m-file and generated figure

using these parameters.

Plot the function y = 2.1x + 4.4 and the following data set on the same plot. Data pairs to plot

are: (0, 4.12), (2, 8.6), (4, 11.5), (5, 15.3), (7, 18.0), (8.5, 21.25). Plot the function within the

domain of 0 to 10 with an interval between the points of 0.1. Use blue points (markers) for the

data set with a specified marker size of 6 and a red dotted line for the function with a line width

of 2. Include a legend, title, and axis labels on the plot. Use bold font for the title and italicize

the axis labels.

Solution

Example 1

clc

clear

close all

%----------------------------- PURPOSE -----------------------------
%To put multiple data sets on the same plot with professional formatting

%----------------------------- INPUTS ------------------------------
x = [0 2 4 5 7 8.5]; %Defining x points
y = [4.12 8.6 11.5 15.3 18.0 21.25]; %Defining y points

xFunc = 0:0.1:10; %Generating the domain/independent variable

 % values for the function
yFunc = 2.1*xFunc + 4.4; %Generating the range/dependent variable

 % values for the function

%------------------------ SOLUTION/OUTPUTS -------------------------
plot(x,y,'bo','MarkerSize',6) %Plotting x and y points for data

 % set vectors
hold on %Telling MATLAB to place new plots
 % on the same figure
plot(xFunc,yFunc,'r:','LineWidth',2) %Plotting x and y points for

 % function vectors
hold off

MATLAB Code example1.m

122

Module 3 ► Lesson 3.2: Plots Formatting

Figure 2: The figure output by the code in Example 1.

How can I put a title and axis labels on my plot?

Whenever you are making a plot, you should always use a title and axis labels. Even if it is the

world’s simplest plot, these things are important. MATLAB contains several preprogrammed

functions that allow the user to add a figure title and axis labels to a graph.

Example 2 shows an m-file with the corresponding figure using the title(), xlabel(),

and ylabel() functions.

How can I add a legend to my plot?

The function to add a legend to a plot is legend(). In the m-file, the legend() function

must be placed after the last plotting call. The order in which the descriptions should appear in

the legend is the same as the order in which the functions/points are plotted. When making a

legend, double-check that the descriptions match with what MATLAB is plotting. MATLAB

will automatically place the line style of the function/point with the description provided by

the user for each object in the legend.

Example 2 shows an example m-file of how to use a legend in a MATLAB-generated figure.

Notice the use of the 'location' parameter to manually set the location of the legend on

the plot. The parameter 'NW' (northwest), which must directly follow it, specifies where we

want the legend to by on our plot. The locations are given as cardinal directions: north, south,

east, west, etc.

Note in the m-file in Example 2, the placement of the LineWidth and MarkerSize

parameters inside the plot() function. Also, note the placement of the title(),

xlabel(), ylabel(), and legend() functions, which are after the plot() function in

the m-file.

123

Module 3 ► Lesson 3.2: Plots Formatting

How can I add a grid to my graph?

Using a grid in a figure is a helpful tool to make a graph more readable. However, using a grid

is not always useful. In some cases, a grid can be counter-productive because the grid lines

can crowd a plot. Placing a grid is very similar to using a title or axis label, just type grid on.

Just like hold off, you can also use grid off.

Plot the function y = 2.1x + 4.4 and the following data set on the same plot. Data pairs to plot

are: (0, 4.12), (2, 8.6), (4, 11.5), (5, 15.3), (7, 18.0), (8.5, 21.25). Plot the function in the domain

of 0 to 10 with an interval between the points of 0.1. Use blue points (markers) for the data set

with a specified marker size of 6 and a red dotted line for the function with a line width of 2.

Include a legend, title, and axis labels on the plot. Make the title in bold font and axis labels in

italics.

Solution

Note: This is an extension of the solution given in Example 1.

Example 2

clc

clear

close all

%----------------------------- PURPOSE -----------------------------
%To put multiple data sets on the same plot with professional formatting

%----------------------------- INPUTS ------------------------------
x = [0 2 4 5 7 8.5]; %Defining x points
y = [4.12 8.6 11.5 15.3 18.0 21.25]; %Defining y points

xFunc = 0:0.1:10; %Generating the domain/independent variable

 % values for the function
yFunc = 2.1*xFunc + 4.4; %Generating the range/dependent variable

 % values for the function

%------------------------ SOLUTION/OUTPUTS -------------------------
plot(x,y,'bo','MarkerSize',6) %Plotting x and y points for data

 % set vectors
hold on %Telling MATLAB to place new plots
 % on the same figure

grid on %Putting grid on the plot
plot(xFunc,yFunc,'r:','LineWidth',2) %Plotting x and y points for

 % function vectors

hold off

MATLAB Code example2.m

124

Module 3 ► Lesson 3.2: Plots Formatting

Figure 3: The figure output by the code in Example 2.

Similar to the title or axis label functions, the grid command needs to be placed after the

plot() function in m-file. If hold on is used, the grid command should be directly after

it as shown in Example 2.

How can I add special characters in my axis labels and title?

It may be necessary to add superscripts and subscripts to the item description(s) to the plot

title, legend and/or labels. The syntax for superscripts and subscripts are placed where needed

in the title(), xlabel(), ylabel(), and legend() functions. What is to be placed

in the desired superscript or subscript must be inside braces {}, and the script character is

placed before the braces. The character _ is used for subscripts and the character ^ is used

for superscripts. Similarly, one may use similar script statements as shown below for the axis

labels, legends, etc. For example, to display, y1= x3 in the title of a figure, one would type:


plot(x,y)

title('y_{1}= x^{3}')

The use of Greek letters or bold, italic and regular font may also be useful when making a

graph. These can be added using a backslash followed by the desired font variation. To name

%Adding plot formatting
legend('Data Points','Function: y = 2.1*x + 4.4',...

 'location','NW')
title('\bfy = 2.1*x + 4.4') %Using bold font
xlabel('\itx Data Points') %Using italics
ylabel('\ity Data Points') %Using italics

MATLAB Code (continued) example2.m

125

Module 3 ► Lesson 3.2: Plots Formatting

a few, add bold font by using \bf, italic font by using \it, and regular font by using \rm

followed by the desired text. To display Greek letters, one can use \greek_letter (see

Table 4 and Example 3).

Table 4: Some of the special characters to be used with figures. The symbols can be used

with any of the functions given as examples and more.

Symbol Syntax Example Usage

α \alpha title('\alpha')

θ \theta xlabel('\theta')

π \pi ylabel('\pi')

σ \sigma legend('\sigma')

τ \tau xlabel('\tau')

± \pm ylabel('\pm')

÷ \div legend('\div')

For example, to place, c = 2*π*r in the title of a figure (notice the bold font), one would

type title('\bfc = 2*\pi*r'). For a more complete list of special characters that

can be used with your figures, conduct a MATLAB help search (keyword: Text Properties).

Example 2 shows the use of a few special font styles, including bold font and subscripts in a

plot.

How can I change axis limits and tick labels?

MATLAB makes it easy to adjust the limits of your axes to fit your data. The xlim() function

adjusts the displayed domain of the horizontal axis, while the ylim() function adjusts the

displayed range of the vertical axis.

For some data, such as the sinusoidal wave shown in Example 3, it can be useful to change the

tick increments. xticks() and yticks() redefine the tick increment. That is, how far apart

the ticks are on the axis. The corresponding tick labels can be changed with the

xticklabels() and yticklabels() functions. These will allow you to change the tick

label to any custom text compatible with MATLAB.

Plot the function f (t) = 0.3sin(t) for time values of 0 to 2π in steps of 0.2. Set the x-axis ticks

and tick labels to be from 0 to 2π in steps of π/2. Be sure to use the symbol (π) rather than just

writing “pi”.

Example 3

126

https://www.mathworks.com/help/matlab/ref/xlim.html
https://www.mathworks.com/help/matlab/ref/ylim.html
https://www.mathworks.com/help/matlab/creating_plots/change-tick-marks-and-tick-labels-of-graph-1.html
https://www.mathworks.com/help/matlab/ref/yticks.html
https://www.mathworks.com/help/matlab/ref/xticklabels.html
https://www.mathworks.com/help/matlab/ref/yticklabels.html

Module 3 ► Lesson 3.2: Plots Formatting

Solution

Figure 4: Plot with custom axis limits and axis labels on the horizontal axis (output for

Example 3).

clc

clear

close all

%----------------------------- PURPOSE -----------------------------
%To demonstrate changing axis ticks and axis limits

%----------------------------- INPUTS ------------------------------
time = 0:0.2:2*pi; %Generating the domain/independent variable

 % values for the function
voltage = 0.3*sin(time); %Generating the range/dependent variable

 % values for the function

%------------------------ SOLUTION/OUTPUTS -------------------------
figure %Creating a blank figure
plot(time, voltage) %Plotting the function across the specified domain

xlim([0 2*pi]) %Setting axis limits
xticks([0, pi/2, pi, 3*pi/2, 2*pi]) %Setting the x tick

 % values
xticklabels({'0','\pi/2','\pi','3\pi/2','2\pi'}) %Setting x tick labels

%Note: the value \pi will result in the Greek symbol pi

MATLAB Code example3.m

127

Module 3 ► Lesson 3.2: Plots Formatting

Lesson Summary of New Syntax and Programming Tools

Task Syntax Example Usage

Add a title to plot title() title('Your title')

Add x-axis label to plot xlabel() xlabel('Your x label')

Add y-axis label to plot ylabel() ylabel('Your y label')

Place a legend on the plot legend() legend('plot1','plot2')

Place a grid on the plot grid grid on

Set custom line width for a

data set
LineWidth plot(x,y,'LineWidth',5)

Set a custom marker size for

a data set
MarkerSize plot(x,y,'MarkerSize',5)

Set custom x limit for plot xlim() xlim([lowerX,upperX])

Set custom y limit for plot ylim() ylim([lowerY,upperY])

Set custom x ticks for plot xticks() xticks([minTick,maxTick])

Set custom y ticks for plot yticks() yticks([minTick,maxTick])

Set custom x tick labels for

plot
xticklabels() xticklabels({'x1','x2'})

Set custom y tick labels for

plot
yticklabels() yticklabels({'y1','y2'})

128

https://www.mathworks.com/help/matlab/ref/xlim.html
https://www.mathworks.com/help/matlab/ref/xlim.html
https://www.mathworks.com/help/matlab/ref/xlim.html
https://www.mathworks.com/help/matlab/ref/xlim.html
https://www.mathworks.com/help/matlab/creating_plots/change-tick-marks-and-tick-labels-of-graph-1.html
https://www.mathworks.com/help/matlab/creating_plots/change-tick-marks-and-tick-labels-of-graph-1.html
https://www.mathworks.com/help/matlab/creating_plots/change-tick-marks-and-tick-labels-of-graph-1.html
https://www.mathworks.com/help/matlab/creating_plots/change-tick-marks-and-tick-labels-of-graph-1.html
https://www.mathworks.com/help/matlab/ref/xticklabels.html
https://www.mathworks.com/help/matlab/ref/xticklabels.html
https://www.mathworks.com/help/matlab/ref/xticklabels.html
https://www.mathworks.com/help/matlab/ref/xticklabels.html

MULTIPLE CHOICE QUIZ
Lesson 3.2
Plot Formatting

1. The function to add a title to a plot is

a) ptitle()

b) t()

c) title()

d) label()

2. The MarkerSize parameter

a) adjusts the overall size of the figure font.

b) adjusts the size of plotted points.

c) changes the aspect ratio of the graph size.

d) changes the thickness of plotted lines.

3. To add a subscript, use the character(s)

a) n{}

b) n()

c) _{}

d) _()

4. Which of the following will show the plot title in italics?

a) title('\it This is a plot title.')

b) title('it{This is a plot title.}')

c) title('it(This is a plot title.)')

d) title('This is a plot title.\it')

5. Two sets of data points and a function, coded in the order, data_set_1,

data_set_2, and function_1, are plotted. The correct code sequence to

create the appropriate legend is

a) legend('data set 1','data set 2','function 1')

b) legend('function 1','data set 2’,'data set 1')

c) legend(data set 1, data set 2, function 1)

d) Code sequence does not matter.

129

EXERCISES
Lesson 3.2
Plot Formatting

1. A rocket is horizontally strapped to the top of a sled and ignited. The position of this

contraption is given as a function of time t (sec) by

s(t)=
3

50
t3 +

7

30
t2 - 5t (ft).

Plot the position of the sled in MATLAB from 0 to 60 seconds. Add a title (bold font)

and axis labels (italic font) to the plot. Remember to follow the guidelines given in

Lesson 3.1 for raising a vector to a power when plotting.

2. Plot the lift and drag forces exerted on an airfoil as a function of velocity. Use velocity

(v) values from 0 to 45 m/s on a log-linear plot (log-scale on the y-axis). The working

fluid density (ρ) is 1.423 kg/m3, the exposed airfoil area (A) is 129 m2, and the

coefficients of drag (CD) and lift (CL) are 0.178 and 0.896, respectively. Recall that the

equations for drag and lift forces are

FD =
1

2
CD A ρ V2,

𝐹𝐿 =
1

2
𝐶𝐿 𝐴 𝜌 𝑉2.

Your plot should display an appropriate legend, title, axis labels, and units. The line

width of the two lines should be adequately sized. Remember to follow the guidelines

given in Lesson 3.1 for raising a vector to a power when plotting.

3. The required specific input work (kJ/kg) for an insulated refrigerant compressor is

found to be,

𝑤𝑖𝑛 = ℎ𝑜𝑢𝑡 − ℎ𝑖𝑛.

where ℎ𝑜𝑢𝑡 and ℎ𝑖𝑛 have units of kJ/kg and correspond to the enthalpies at the exit and

inlet of the compressor, respectively. The inlet enthalpy is given as a constant value of

278.76 kJ/kg. On the other hand, exit enthalpy will change as a function of exit pressure

and temperature. The following data is collected:

Exit pressure (bar) =  2.38.24.20.28.14.10.1

ℎ𝑜𝑢𝑡 (
kJ

kg
) =  21.34260.33249.31350.30445.29596.28676.278

130

Module 3 ► Lesson 3.2: Plot Formatting

Plot the input work as a function of the exit pressure, and show the data as points (use

circles) on a standard linear plot. Add a figure title and axis labels, use increased marker

size, and show a grid.

4. Torque, T, is given by T = F∙r where F is the force and r is the radius (moment arm).

Create two plots on two separate figures. In one figure, plot the torque vs. radius. Use

a constant value of F = 5 N and radius values of 0 to 10 m with a step size of 0.2. In

the second figure, plot the force vs. radius.

Let the torque be a constant value of 5 Nm and the same radius values as the first plot.

You can rearrange the torque equation to solve for force: F =
T

r
. Include a title, axis

labels, and a grid on both figures. Remember to follow the guidelines given in Lesson

3.1 for a vector in the denominator when plotting.

5. Given the data set below for stress and strain for a uniaxial text on a unidirectional

composite material, create a 2D line plot of stress vs. strain. Use a solid, green line with

an appropriate line width. Also include a grid, axis labels, axis limits, and units to improve

the appearance and effectiveness of your plot.

Table A: Stress vs. strain for a composite material.

Stress (MPa) Strain (%)

0 0

306 0.183

612 0.36

917 0.5324

1223 0.702

1529 0.867

1835 1.0244

2140 1.1774

2446 1.329

2752 1.479

2767 1.5

2896 1.56

131

This file is only a preview with selected lessons from specific parts of this book.

Please click “Introduction to Programming Concepts with MATLAB Third
Edition” or visit lulu.com and search “Introduction to Programming Concepts with

MATLAB Third Edition” to purchase a complete printed version of this book.

http://www.lulu.com/shop/autar-kaw-and-benjamin-rigsby-and-ismet-handzic-and-daniel-miller/introduction-to-programming-concepts-with-matlab-third-edition/paperback/product-24333322.html
http://www.lulu.com/shop/autar-kaw-and-benjamin-rigsby-and-ismet-handzic-and-daniel-miller/introduction-to-programming-concepts-with-matlab-third-edition/paperback/product-24333322.html
https://lulu.com/

After reading this lesson, you should be able to:

• conduct polynomial interpolation using MATLAB,

• conduct spline interpolation using MATLAB,

• regress data to a polynomial using MATLAB.

What is curve fitting?

Data may be given only at discrete data points. Curve fitting implies techniques to fit a curve

to the discrete data and hence be able to find estimates at points other than the given ones. In

this lesson, we will limit our discussion to two very common categories of curve fitting:

interpolation and regression. One important thing to keep in mind when applying these

methods to real-world problems is that they are estimates, and are therefore not guaranteed to

be correct. With that said, curve fitting can be a powerful tool for analysis and prediction.

What is interpolation?

Many times, a function, ()xfy = is given only at discrete data points such as,

() () () ()nnnn yxyxyxyx ,,,,......,,,, 111100 −− . How does one find the value of y at a value of x that is

not one of the given ones? Well, a continuous function ()xf may be used to represent the

()1+n data values with ()xf passing through the ()1+n points. Then one can find the value

of y at any other value of x . This is called interpolation. Of course, if x falls outside the

range of x values for which the data is given, it is no longer called interpolation but is called

extrapolation.

How can I interpolate data in MATLAB?

When programming in MATLAB, the programmer has several functions to help make the

difficult task of interpolation an easy one. The two types of interpolation techniques that will

be discussed in this lesson are the polynomial and spline interpolation. The MATLAB

functions for these models are polyfit() and interp1().

Lesson 4.7
Curve Fitting

222

Module 4 ► Lesson 4.7: Curve Fitting

Figure 1: Interpolation of discrete data.

Once the user has input the two vectors of data (x and y, for instance), the polyfit()

function can be used to interpolate the data to a polynomial function. The polyfit()

function stores the coefficients of the polynomial in vector form, where they can later be used

to generate the polynomial interpolation model. The polyval() function uses polynomial

coefficients (the output of the polyfit() function) to find the interpolated value of y at a

chosen value or vector of x.

For interpolation, the order of the polynomial must be exactly one less than the total number

of data pairs. So for given data (x1, y
1
),…,(xn+1, y

n+1
), the polynomial obtained would be of

the form y = a1x
n + a2x

n−1 + … + an.

The polyfit() function is used to output the coefficients of the polynomial that passes

through the data pairs. The output is stored as a vector [a1, a2,…, an]. With these coefficients,

the user can symbolically develop the interpolation function and if needed, conduct integration,

differentiation, and plotting. Note that the first element corresponds to the coefficient of the

highest power (xn), while the last element corresponds to the constant of the polynomial model.

The polyval() function takes the output of the polyfit() function and uses it to evaluate

the value of the polynomial interpolant at a given value (or a vector) of x. That is, polyval()

substitutes values for x into the polynomial model. Then polyval() returns the

corresponding values of y (the predictions) from the polynomial (see Example 1).

Using a polynomial model, interpolate the (x, y) data pairs in Table A to a polynomial. Find

the value of the interpolant at x = 4.5 and output it to the Command Window.

Example 1

223

Module 4 ► Lesson 4.7: Curve Fitting

Table A: Data pairs for Example 1.

x 1.0 4.0 8.0

y 2.2 5.0 7.0

Solution

clc
clear

%----------------------------- PURPOSE -----------------------------
fprintf('PURPOSE\n')
%To interpolate data to fit a polynomial
fprintf('To interpolate data to fit a polynomial.\n\n')

%----------------------------- INPUTS ------------------------------
fprintf('INPUTS\n')
%Step 1: Inputting raw/known/measured x and y data points
xData = [1 4 8];
yData = [2.2 5 7];
fprintf('The x vector is:\n')
disp(xData)
fprintf('The y vector is:\n')
disp(yData)

%----------------------------- SOLUTION ----------------------------
%Step 2: Choose order of polynomial model
% Order of the polynomial model, which is # of data points - 1
order = length(xData) - 1;

%Step 3: Finding polynomial model coefficients
% Outputs coefficients for polynomial model
coef = polyfit(xData,yData,order);

%Step 4: Defining the query value(s)
xQuery = 6.3;

%Step 5: Predicting a value of y from the polynomial model
yPredict = polyval(coef,xQuery);

%Step 6 (optional): Manually define the interpolation polynomial model

% as a symbolic function
syms x
func = coef(1)*x^2 + coef(2)*x + coef(3);
func = vpa(func,3); %Adjusting precision of the output

MATLAB Code example1.m

224

Module 4 ► Lesson 4.7: Curve Fitting

We “hardcoded” the polynomial expression in Example 1 for learning efficiency. This way,

you can see how a symbolic function can be manually defined from its coefficients (the output

of polyfit()). See Example 3 for a better method to do this without hardcoding:

poly2sym().

What is spline interpolation?

Spline interpolation uses multiple “spline” (math) functions to fit the given data points (Figure

2). Taken as a whole, these splines form a piecewise continuous function: meaning the final

model is made up of pieces or splines. Splines can be based on different models, but are

commonly linear (f(x) = a1x+ a2) or cubic (f(x) = a1x
3 + a2x

2 + a3x+ a4) polynomial

functions.

%----------------------------- OUTPUTS -----------------------------
fprintf('OUTPUTS\n')
fprintf('The coefficients of the polynomial model are:\n')
disp(coef)
fprintf('Using these coefficients, we can form the\n')
fprintf('polynomial interpolant y(x) = %s.\n\n',char(func))
fprintf('Using polynomial interpolation (order = %.0f):\n',order)
fprintf('When x = %g, the estimate of y is %g.\n',xQuery,yPredict)

MATLAB Code (continued) example1.m

Command Window Output Example 1

PURPOSE

To interpolate data to fit a polynomial.

INPUTS

The x vector is:

 1 4 8

The y vector is:

 2.2000 5.0000 7.0000

OUTPUTS

The coefficients of the polynomial model are:

 -0.0619 1.2429 1.0190

Using these coefficients, we can form the

polynomial interpolant y(x) = 1.24*x - 0.0619*x^2 + 1.02.

Using polynomial interpolation (order = 2):

When x = 6.3, the estimate of y is 6.39205.

225

Module 4 ► Lesson 4.7: Curve Fitting

How do I conduct spline interpolation?

When compared to polynomial interpolation, using splines to interpolate the data can prove to

be very beneficial in many circumstances. These splines are typically linear or cubic in form

and can be implemented in MATLAB using the function interp1().

In some cases, especially with higher order polynomials, a polynomial interpolant can be a bad

idea as it may give oscillatory behavior (Figure 4) for otherwise well-behaved smooth

functions. When provided a large number of data points, spline interpolation is generally better

suited.

Figure 2: Spline interpolation of discrete data.

Often times when interpolating a data set, a linear spline model is sufficient. In such a case,

each data point is connected to the next with a straight line (Figure 2). This technique is

commonly used in interpolating data from thermodynamic steam tables. If this is not sufficient,

a cubic spline is often used, which connects the data points with cubic functions (nonlinear

lines as shown in Figure 2). The MATLAB function, interp1(), can be used to interpolate

a data set using a specified model (including a linear or cubic-spline model). An example of

the usage of this function is: interp1(xData, yData, xQuery, 'method').

The output of the interp1() function is a vector of the same size as the input vector of the

x value(s). We call these input values “x query” values because they are the values of the

independent variable at which we want to make predictions. For example, when x = 3, what is

the value of y? Here, “x = 3” is the query value. Table 1 shows the common interpolation

methods that can be used as the input for the interp1() function, and Example 2 shows the

function in action.

Table 1: Common interpolation models to be used with the interp1() function.

Interpolation Method Interpolation Model Generated

'linear'
Interpolates via straight lines between each consecutive point

(default model).

226

Module 4 ► Lesson 4.7: Curve Fitting

'spline'

Connects each point with a cubic-spline interpolant. The first

and second derivatives of the adjoining splines will be

continuous.

Interpolate the (x,y) data pairs from Table B using linear and cubic spline interpolation. Output

the predictions using fprintf() at x = 6.3.

Table B: Data pairs to be used for Example 2.

x 2.0 5.1 7.7 9.2 10.3

y 1.4 3.3 5.7 10.4 12.5

Solution

Example 2

clc
clear

%----------------------------- PURPOSE -----------------------------
fprintf('PURPOSE\n')
%To interpolate data by fitting linear and cubic splines
fprintf('To interpolate data by fitting linear and cubic splines.\n\n')

%----------------------------- INPUTS ------------------------------
fprintf('INPUTS\n')
%Step 1: Inputting raw/known/measured x and y data points
xData = [2.0 5.1 7.7 9.2 10.3];
yData = [1.4 3.3 5.7 10.4 12.5];
fprintf('The x vector is:\n')
disp(xData)
fprintf('The y vector is:\n')
disp(yData)

%----------------------------- SOLUTION ----------------------------
%Step 2: Defining the query value(s)
xQuery = 6.3;

%Step 3: Performing spline interpolation

%Predicting y value using linear splines

yLinPredict = interp1(xData,yData,xQuery,'linear');

%Predicting y value using cubic splines

yCubPredict = interp1(xData,yData,xQuery,'spline');

%----------------------------- OUTPUTS -----------------------------
fprintf('OUTPUTS\n')
fprintf('Using linear splines:\n')
fprintf('When x = %g, the estimate of y is %g.\n\n',xQuery,yLinPredict)
fprintf('Using cubic splines:\n')
fprintf('When x = %g, the estimate of y is %g.\n\n',xQuery,yCubPredict)

MATLAB Code example2.m

227

Module 4 ► Lesson 4.7: Curve Fitting

The Command Window output shows the predicted y values when x = 6.5. These values are

fairly different from each other (3.593 for linear splines vs. 4.408 for cubic splines). In the next

lesson (Lesson 4.8), you will be able to see more clearly why this is so when we plot the linear

and cubic spline functions.

What is regression?

Finding a function that best fits the given data pairs is called regression. When conducting

interpolation, all data pairs used must be on the developed curve. On the other hand, a

regression curve is not constrained by this requirement. Using MATLAB to develop a

regression curve is useful, especially for experimental data, or for developing simplified

models.

Let us suppose someone gives you n data pairs: (x1, y
1
), (x2, y

2
),…,(xn, y

n
), and you want to

develop a relationship between the two variables. A simple example is that of measuring stress

vs. strain data for a steel specimen under loads lower than the yield point. We expect that the

relationship between stress and strain is a straight line. However, because of material

imperfections and inaccuracies in data collection, we are not going to get all the data points on

a straight line. So, we do the next best thing – draw a straight line that minimizes the sum of

the square of the difference between the observed and predicted values (Figure 3). How that is

done is a subject for a course in statistics or numerical methods.

In this part of the lesson, we will just concentrate on how to use MATLAB to regress data to

polynomials. Although there is a mathematical/statistical difference between polynomial

interpolation and regression, there is no explicit difference in MATLAB syntax between an

interpolation and regression polynomial. Therefore, you should choose the curve fitting

method that makes the most sense or gives the best results for your problem.

Command Window Output Example 2

PURPOSE

To interpolate data by fitting linear and cubic splines.

INPUTS

The x vector is:

 2.0000 5.1000 7.7000 9.2000 10.3000

The y vector is:

 1.4000 3.3000 5.7000 10.4000 12.5000

OUTPUTS

Using linear splines:

When x = 6.3, the estimate of y is 4.40769.

Using cubic splines:

When x = 6.3, the estimate of y is 3.59263.

228

Module 4 ► Lesson 4.7: Curve Fitting

One of the challenges when fitting some models to a data set is the tendency to overfit the data.

We will not go into great detail in this lesson, but we want to alert you to this important and

common problem. When performing polynomial regression, you should try to choose an order

for the polynomial that does not overfit the data.

MATLAB will often display a warning that your polynomial is “badly conditioned” when you

are overfitting. Another sign of overfitting is when you have large deviations from your

expected curve (see Figure 4). For example, if you had position and time data from an

accelerating car, you would not expect to see something like Figure 4 where there is a large

deviation from the expected path. Therefore, thinking critically about your results is essential!

Figure 3: Regression of n data points to best fit a given order polynomial.

Figure 4: An example of overfitting on position and time data from an accelerating car (code

not shown).

How do I do regression in MATLAB?

Similar to interpolation, the first step of making a regression model is to determine the type of

function that best fits the data pairs. This lesson will focus on the polynomial regression model,

although many other regression models may be used. These other models include exponential,

power, and saturation growth models.

To do polynomial regression, you need the following two inputs:

229

Module 4 ► Lesson 4.7: Curve Fitting

1. Data pairs (x, y)

2. Order of the polynomial of regression, m

For regression, the order of the polynomial chosen must be less than (total number of data pairs

minus one). So for given data pairs (x1, y
1
),…,(xn, y

n
), the polynomial obtained would be of

the form y = a1x
m + a2x

m−1 + … + am, 1 ≤ m ≤ n− 2. Note that for m = n− 1 the

regression polynomial would be an interpolating polynomial.

The polyfit() function is used to output the coefficients of the regression polynomial. The

output is stored as a vector [a1, a2,…, am]. With these coefficients, the user can symbolically

develop the regression function and if needed, conduct integration, differentiation, and

plotting. Note that the first element corresponds to the coefficient of the highest power (xm),

while the last element corresponds to the constant of the polynomial model.

The function polyval() can be used again for the same purpose as shown in Example 1. In

Example 3, it will take the coefficients of a polynomial and x query value(s) as inputs and

return the predicted value for y, which it obtains from the regression polynomial.

Using MATLAB, regress the given (x, y) data pairs from Table C to a linear and quadratic

regression model, and predict the value of y when x is (−300, − 100, 20, 125) using both

models. Output the predictions and the regression models using fprintf() or disp().

 Table C: Data pairs to be used for Example 1.

x 340 280 200 120 40 40 80

y 2.45 3.33 4.30 5.09 5.72 6.24 6.47

Solution

Example 3

clc
clear

%----------------------------- PURPOSE -----------------------------
fprintf('PURPOSE\n')
%To regress data to best fit a polynomial model
fprintf('To regress data to best fit a polynomial model.\n\n')

%----------------------------- INPUTS ------------------------------
fprintf('INPUTS\n')
%Step 1: Inputting raw/known/measured x and y data points
xData = [-340 -280 -200 -120 -40 40 80];
yData = [2.45 3.33 4.30 5.09 5.72 6.24 6.47];
fprintf('The x vector is:\n')
disp(xData)
fprintf('The y vector is:\n')
disp(yData)

MATLAB Code example3.m

230

Module 4 ► Lesson 4.7: Curve Fitting

%----------------------------- SOLUTION ----------------------------
%Step 2: Choose order of polynomial model(s)
linOrder = 1; %Defining "1" as the order of the linear polynomial
quadOrder = 2; %Defining "2" as the order of the quadratic polynomial

%Step 3: Finding polynomial model coefficients
linCoef = polyfit(xData,yData,linOrder);
quadCoef = polyfit(xData,yData,quadOrder);

%Step 4: Defining the query value(s)
xQuery = [-300 -100 20 60]; %Want to predict y at all these x values

%Step 5: Predicting a value of y from the polynomial model
yLinPredict = polyval(linCoef,xQuery);
yQuadPredict = polyval(quadCoef,xQuery);

%Step 6: Define the regression polynomial as a symbolic function
syms x %Defining the symbolic variable "x"
%Defining the regression models as a symbolic functions
linFunc = poly2sym(linCoef,x);
quadFunc = poly2sym(quadCoef,x);

%----------------------------- OUTPUTS -----------------------------
fprintf('OUTPUTS\n')
fprintf('The linear regression polynomial is:\n')
fprintf(' y(x) = %s.\n',char(vpa(linFunc,3)))
fprintf('The quadratic regression polynomial is:\n')
fprintf(' y(x) = %s.\n\n',char(vpa(quadFunc,3)))

fprintf('Using linear polynomial regression, the y estimates\n')

fprintf(' (corresponding to xQuery) are:\n')
disp(yLinPredict)
fprintf('Using quadratic polynomial regression, the y estimates\n')

fprintf(' (corresponding to xQuery) are:\n')

disp(yQuadPredict)

MATLAB Code (continued) example3.m

Command Window Output Example 3

PURPOSE

To regress data to best fit a polynomial model.

INPUTS

The x vector is:

 -340 -280 -200 -120 -40 40 80

The y vector is:

 2.4500 3.3300 4.3000 5.0900 5.7200 6.2400 6.4700

231

Module 4 ► Lesson 4.7: Curve Fitting

In Example 3, since we are inputting a vector of values to polyval() (using the variable

xQuery), it will return a vector of predictions to us, which can be seen in the Command

Window output. Remembering the inputs and outputs of these curve fitting functions is

essential to proper implementation.

Lesson Summary of New Syntax and Programming Tools

Task Syntax Example Usage

Polynomial interpolation polyfit() polyfit(x,y,order)

Polynomial regression polyfit() polyfit(x,y,order)

Spline interpolation interp1() interp1(x,y,xQuery,'method')

Convert polynomial

coefficients to symbolic

function form

poly2sym() poly2sym(coef,x)

Command Window Output (continued) Example 3

OUTPUTS

The linear regression polynomial is:

 y(x) = 0.00939*x + 5.95.

The quadratic regression polynomial is:

 y(x) = 0.00628*x - 1.22e-5*x^2 + 6.02.

Estimate the value of y(x) at x values of:

 -300 -100 20 60

Using linear polynomial regression, the y estimates

 (corresponding to xQuery) are:

 3.1370 5.0146 6.1411 6.5167

Using quadratic polynomial regression, the y estimates

 (corresponding to xQuery) are:

 3.0386 5.2716 6.1423 6.3544

232

MULTIPLE CHOICE QUIZ
Lesson 4.7
Curve Fitting

1. The MATLAB function used to find the coefficients of a polynomial interpolation

or regression model for given data pairs is

a) polyfit()

b) polyval()

c) interp1()

d) interceof()

2. The result of the curve fitting procedure completed in the following program is

a) polynomial interpolation

b) spline interpolation

c) polynomial regression

d) None of the above

3. The output of the last line is

a) 2.5

b) 5.0

c) 7.0

d) 10.0

clc

clear

time = [0 2 3];

vel = [0 4 6];

time1 = 2.5;

vel1 = interp1(time,vel,time1,'linear');

vel1

clc

clear

xData = 1:1:5;

yData = [1 4 9 16 25];

coef = polyfit(xData,yData,4);

syms x

model = poly2sym(coef,x)

233

Module 4 ► Lesson 4.7: Curve Fitting

4. Complete the code to output the regression model as a symbolic function.

a) coef = polyfit(xd,yd,1);
y = coef(2)*x + coef(1)

b) coef = polyfit(yd,xd,1);
y = coef(2)*x + coef(1)

c) coef = polyfit(xd,yd,1);
y = coef(1)*x + coef(2)

d) coef = polyfit(yd,xd,1);
y = coef(1)*x + coef(2)

5. The function that uses previously found coefficients of a polynomial interpolant as

an input to calculate the value of the function at a given point is

a) polyfit()

b) polyval()

c) interp1()

d) intereval()

clc

clear

xd = [0 3 5];

yd = [0 4 8];

syms x

234

EXERCISES
Lesson 4.7
Curve Fitting

1. Given are ()yx , data pairs in Table A.

Table A: Data pairs for Exercise 1.

x 1.4 2.3 5.0 7.5

y 3.2 1.7 6.1 3.8

Complete the following.

a. Interpolate the data using a polynomial interpolant. Find the value of y when

x = 4.75.

b. Interpolate the data using linear spline interpolation. Find the value of y when

x = 4.75.

c. Interpolate the data using cubic-spline interpolation. Find the value of y when

x = 4.75.

2. The upward velocity of a rocket is given as a function of time in Table B.

Table B: Upward rocket velocity at a given time.

t (s) 0 10 15 20 22.5 30

v(t) (m/s) 0 227.04 362.78 517.35 602.97 901.67

Using MATLAB, complete the following.

a. Using a polynomial interpolant, find velocity as a function of time.

b. Find the velocity at t = 16 s.

3. A curve needs to be fit through the seven points given in Table C to fabricate the

cam. The geometry of a cam is given in Figure A.

Each point on the cam shown in Figure A is measured from the center of the input

shaft. Table C shows the x and y measurement (inches) of each point on the

camshaft.

235

Module 4 ► Lesson 4.7: Curve Fitting

Figure A: Schematic of cam profile

Table C: Geometry of the cam corresponding to Figure A.

Point x ()in. y ()in.

1 2.20 0.00

2 1.28 0.88

3 0.66 1.14

4 0.00 1.20

5 –0.60 1.04

6 –1.04 0.60

7 –1.20 0.00

Using MATLAB, find a smooth curve that passes through all seven data points of

the cam. Output this model to the Command Window.

4. Using MATLAB, regress the following (x, y) data pairs (Table D) to a linear

polynomial and predict the value of y when x .10,20,55 −=

Table D: Data pairs (x, y) for Exercise 1.

x y

325 2.6

265 3.8

185 4.8

105 5.0

25 5.72

– 55 6.4

– 70 7.0

Use the fprintf() and/or the disp() functions to output the regression model

and the predictions to the Command Window.

236

Module 4 ► Lesson 4.7: Curve Fitting

5. To simplify a model for a diode, it is approximated by a forward bias model

consisting of DC voltage, Vd, and resistor, Rd. Below is the collected data of current

vs. voltage for a small signal (Table E).

Table E: Current versus voltage for a small signal.

Regress the data in Table E to a linear model of the voltage as a function of current.

Approximate the voltage when 0.35 amps of current is applied to the diode and

output this result using fprintf().

6. To find contraction of a steel cylinder, one needs to regress the thermal expansion

coefficient data to temperature. The data is given below in Table F.

Table F: The thermal expansion coefficient at given temperatures

Temperature, T)F( Coefficient of thermal expansion,)Fin/in/(

80 61047.6 −

40 61024.6 −

– 40 61072.5 −

– 120 61009.5 −

– 200 61030.4 −

– 280 61033.3 −

– 340 61045.2 −

Find the coefficient of thermal expansion when the temperature is −150˚F using

a. linear polynomial regression,

b. quadratic polynomial regression, and

c. cubic spline interpolation.

V (volts) I (amps)

0.6 0.01

0.7 0.05

0.8 0.20

0.9 0.70

1.0 2.00

1.1 4.00

237

This file is only a preview with selected lessons from specific parts of this book.

Please click “Introduction to Programming Concepts with MATLAB Third
Edition” or visit lulu.com and search “Introduction to Programming Concepts with

MATLAB Third Edition” to purchase a complete printed version of this book.

http://www.lulu.com/shop/autar-kaw-and-benjamin-rigsby-and-ismet-handzic-and-daniel-miller/introduction-to-programming-concepts-with-matlab-third-edition/paperback/product-24333322.html
http://www.lulu.com/shop/autar-kaw-and-benjamin-rigsby-and-ismet-handzic-and-daniel-miller/introduction-to-programming-concepts-with-matlab-third-edition/paperback/product-24333322.html
https://lulu.com/

After reading this lesson, you should be able to:

• identify different relational operators,

• construct logical expressions,

• perform data type identification with MATLAB functions,

• round up, round down, and round numbers to integers.

What are conditions?

Conditions are simply logical expressions: they are not unique to programming. You are likely

familiar with relational operators like <, ≤, >, etc. (although the syntax may be slightly different

in MATLAB). This is the basic syntax we use to create conditions in MATLAB. These conditions

are either true or false. Either 4 < 5 (four is less than five) or it is not. Note the last two operators

seen in Table 1 can also be used with non-numeric values like text. That is, you cannot ask if one

word is quantitatively greater than another, but you can ask if they are the same word or not. Note

the conditional operator for comparing two values to see if they are equal (==) is not the same as

setting a variable equal to a value (=).

Table 1: Relational operators in MATLAB and what they mean.

Logical Query Relational Operator

Is A greater than B? A > B

Is A greater than or equal to B? A >= B

Is A less than B? A < B

Is A less than or equal to B? A <= B

Is A equal to (the same as) B? A == B

Is A not (the same as) B? A ~= B

Lesson 5.1
Conditions and Boolean Logic

260

https://www.mathworks.com/help/matlab/matlab_prog/array-comparison-with-relational-operators.html
https://www.mathworks.com/help/matlab/matlab_prog/array-comparison-with-relational-operators.html

Module 5 ► Lesson 5.1: Conditions and Boolean Logic

Important Note: Beware of “==” and “=”. MATLAB treats them differently, and it will

not always warn you of your mistake.

In Example 1, you can see some examples of these relational operators. They return logical values

(true or false), which we will discuss in more detail later in this lesson.

Given two variables a and b, conditionally check whether

a) a is less than b,

b) a is equal to b, or

c) a is not equal to b.

You may assume that a and b each store a value that is a real number.

Solution

In the last part of the solution, we convert the native output of a logical comparison into a more

readable format using the MATLAB function string(). Observing the program outputs shown

Example 1

clc

clear

%----------------------------- PURPOSE -----------------------------

fprintf('PURPOSE\n')

%To demonstrate logical comparisons (conditions) in MATLAB

fprintf('To demonstrate logical comparisons (conditions) in MATLAB.\n\n')

%----------------------------- INPUTS ------------------------------

fprintf('INPUTS\n')

%Initializing some random variables to compare
a = -2;
b = 5;

fprintf('The variables to compare are %g and %g.\n\n',a,b)

%------------------------ SOLUTION/OUTPUTS -------------------------
fprintf('OUTPUTS\n')
%Writing some conditions to evaluate

a < b %Condition 1: check if ‘a’ is less than ‘b’ (We expect TRUE)

a == b; %Condition 2: check if ‘a’ is equal to ‘b’ (We expect FALSE)

a ~= b; %Condition 3: check if ‘a’ is NOT equal to ‘b’ (We expect TRUE)

%Displaying results to a more readable format

cond1 = string(a < b)

cond2 = string(a == b)

cond3 = string(a ~= b)

MATLAB Code example1.m

261

Module 5 ► Lesson 5.1: Conditions and Boolean Logic

in Command Window reveals that a logical comparison like a < b has a messy output, which

includes the tag “logical”. To convert this output to something more readable we use

string().

What is Boolean logic?

Boolean values of 1 and 0, or true and false, respectively, represent a new data type in

MATLAB called the logical data type. These values are binary (meaning they only have the

two possibilities) and will act as such in all cases.

Conditional clauses (expressions that evaluate as true or false like 4 < 5 or 0 == 1) can be

stacked together with conditional-linking operators. That is, we can combine these conditional

statements. We will cover the two most common condition-linking operators: AND and OR. Just

like we use the conjunctions “and” and “or” in speech/language to join independent clauses, we

must use them to join two or more conditions together in conditional expressions. Note that in

Example 2 the conditional-linking operator is AND (represented by “&&”) and OR (represented by

“||”).

• AND (&&): Both condA && condB must be true for the overall condition to be true.

Command Window Output Example 1

PURPOSE

To demonstrate logical comparisons (conditions) in MATLAB.

INPUTS

The variables to compare are -2 and 5.

OUTPUTS

ans =

 logical

 1

cond1 =

 "true"

cond2 =

 "false"

cond3 =

 "true"

262

https://www.mathworks.com/help/matlab/ref/true.html
https://www.mathworks.com/help/matlab/ref/false.html
https://www.mathworks.com/help/matlab/ref/and.html
https://www.mathworks.com/help/matlab/ref/or.html
https://www.mathworks.com/help/matlab/ref/and.html
https://www.mathworks.com/help/matlab/ref/or.html
https://www.mathworks.com/help/matlab/ref/and.html
https://www.mathworks.com/help/matlab/ref/and.html

Module 5 ► Lesson 5.1: Conditions and Boolean Logic

• OR (||): Either condA || condB can be true for the overall condition to be true.

When using the && comparison, all logic tests joined by the & must be true for the body of an if-

statement to execute. For example, 3>2 && 7>8 would not execute the body of an if-statement.

However, when the || comparison is used, only one of the joined tests must be true to execute the

body. For instance, 3>2 || 7>8 would execute the body of the if-statement. Finally, (3>2 &&

7>8) || 1<=2 would evaluate as true since 1<=2 is true! This is an example of linking Boolean

operators together, which is perfectly valid. As a side note, you can use logical() to convert

numeric values to the logical data type in MATLAB. This might be especially useful when

converting a matrix with numerical values to logical values.

Given the variables, a = 6 and b = 3.4, conditionally check whether a is greater than 1 and

less than 5 and whether b is greater than 10 or equal to 3.4.

Solution

Example 2

clc
clear

%----------------------------- PURPOSE -----------------------------
fprintf('PURPOSE\n')
%To use Boolean logic
fprintf('To use Boolean logic.\n\n')

%----------------------------- INPUTS ------------------------------
fprintf('INPUTS\n')
%Defining variables to compare

a = 6;
b = 3.4;
fprintf('The variables to compare are %g and %g.\n\n',a,b)

%------------------------ SOLUTION/OUTPUTS -------------------------
fprintf('OUTPUTS\n')
a > 1 && a < 5 %True if 'a' is greater than 1 AND less than 5 (We expect FALSE)

b > 10 || b == 3.4 %True if 'b' is greater than 10 OR equal to 3.4 (We expect TRUE)

MATLAB Code example2.m

Command Window Output Example 2

PURPOSE

To use Boolean logic.

INPUTS

The variables to compare are 6 and 3.4.

263

https://www.mathworks.com/help/matlab/ref/or.html
https://www.mathworks.com/help/matlab/ref/or.html
https://www.mathworks.com/help/matlab/ref/logical.html?searchHighlight=logical&s_tid=doc_srchtitle

Module 5 ► Lesson 5.1: Conditions and Boolean Logic

Can different data types be identified in MATLAB?

As you have likely experienced by now, data types must be handled with care. As a result, it can

be useful to conditionally check the data type of a variable. MATLAB has handy functions for just

such a purpose that return a Boolean value, which has a logical data type, of course. (We covered

these previously in Lesson 2.5 (Data Types), and include them again here for clarity.)

These are called the data type identification functions, and some examples include testing whether

a number is real or imaginary with isreal() or whether the value of a variable is a character data

type with ischar().

Check whether a variable is a char data type or not. Output the class (data type) of the variable

to the Command Window.

Solution

Command Window Output (continued) Example 2

OUTPUTS

ans =

 logical

 0

ans =

 logical

 1

Example 3

clc
clear

%----------------------------- PURPOSE -----------------------------
fprintf('PURPOSE\n')
%To check whether a variable is a char data type or not
fprintf('To check whether a variable is a char data type or not.\n\n')

MATLAB Code example3.m

264

https://www.mathworks.com/help/matlab/data-type-identification.html
https://www.mathworks.com/help/matlab/ref/isreal.html
https://www.mathworks.com/help/matlab/ref/ischar.html

Module 5 ► Lesson 5.1: Conditions and Boolean Logic

How can I round numbers in MATLAB?

Rounding functions can be very useful in writing effective conditions as we will demonstrate in

the following lessons. First, though, we need to know the different rounding functions and how

they work. Below is a list of the three most common rounding functions in MATLAB and what

they do. You can see each of these functions implemented in MATLAB in Example 4.

• round(): returns the nearest integer (“normal” rounding)

o Example: round(1.5) = 2

o Example: round(1.1) = 1

• ceil(): returns the smallest integer that is greater than or equal to the number

o Example: ceil(1.1) = 2

o Example: ceil(1.7) = 2

• floor(): returns the greatest integer that is less than or equal to the number

o Example: floor(1.3) = 1

o Example: floor(1.9) = 1

%----------------------------- INPUTS ------------------------------
fprintf('INPUTS\n')
%Defining variables to test.
var1 = 'This is a string.';
var2 = 4;
fprintf('The variables to compare are “%s” and “%g”.\n\n',var1,var2)

%------------------------ SOLUTION/OUTPUTS -------------------------
fprintf('OUTPUTS\n')
fprintf('The class of this variable is %s.\n',class(var1))
fprintf('Therefore, ischar(var1) = %s.\n\n',string(ischar(var1)))

fprintf('The class of this variable is %s.\n',class(var2))
fprintf('Therefore, ischar(var2) = %s.\n',string(ischar(var2)))

MATLAB Code (continued) example3.m

Command Window Output Example 3

PURPOSE

To check whether a variable is a char data type or not.

INPUTS

The variables to compare are “This is a string.” and “4”.

OUTPUTS

The class of this variable is char.

Therefore, ischar(var1) = true.

The class of this variable is double.

Therefore, ischar(var2) = false.

265

http://www.mathworks.com/help/matlab/ref/round.html?s_tid=srchtitle
http://www.mathworks.com/help/matlab/ref/ceil.html?s_tid=srchtitle
http://www.mathworks.com/help/matlab/ref/floor.html?s_tid=srchtitle

Module 5 ► Lesson 5.1: Conditions and Boolean Logic

Show an example of how the MATLAB functions round(), ceil(), and floor() each round

numbers.

Solution

Lesson Summary of New Syntax and Programming Tools

Task Syntax Example Usage

Boolean AND operator && a && b

Example 4

clc
clear

%----------------------------- PURPOSE -----------------------------
fprintf('PURPOSE\n')
%To demonstrate how rounding functions work in MATLAB
fprintf('To demonstrate how rounding functions work in MATLAB.\n\n')

%----------------------------- INPUTS ------------------------------
fprintf('INPUTS\n')
%Defining variables to round
a = 8.5;
b = 8.1;
c = 8.9;
fprintf('The numbers to round are %g, %g, and %g\n\n',a,b,c)

%------------------------ SOLUTION/OUTPUTS -------------------------
fprintf('OUTPUTS\n')
fprintf('round(%g) = %g\n',a,round(a))
fprintf('ceil(%g) = %g\n',b,ceil(b))
fprintf('floor(%g) = %g\n',c,floor(c))

MATLAB Code example4.m

Command Window Output Example 4

PURPOSE

To demonstrate how rounding functions work in MATLAB.

INPUTS

The numbers to round are 8.5, 8.1, and 8.9

OUTPUTS

round(8.5) = 9

ceil(8.1) = 9

floor(8.9) = 8

266

Module 5 ► Lesson 5.1: Conditions and Boolean Logic

Boolean OR operator || a || b

Round a number to the nearest integer round() round(a)

Round a number up to the nearest integer ceil() ceil(a)

Round a number down to the nearest integer floor() floor(a)

Check if a variable is a char data type or not ischar() ischar(a)

Check if a variable is a real number or not isreal() isreal(a)

Determine if A is greater than B > A > B

Determine if A is greater than or equal to B >= A >= B

Determine if A is less than B? < A < B

Determine if A is less than or equal to B <= A <= B

Determine if A is equal to (the same as) B == A == B

Determine if A is not (the same as) B ~= A ~= B

267

MULTIPLE CHOICE QUIZ
Lesson 5.1
Conditions and Boolean Logic

1. The ~= operator stands for

a) approximately equal to

b) equal to

c) greater than or equal to

d) not equal to

2. sin(pi)==0 gives false as output because

a) sin(pi)=1

b) sin(pi)=-1

c) sin(pi) is not defined

d) sin(pi) gives a value other than zero in MATLAB

3. The operator || stands for

a) and

b) or

c) not

d) not equal to

4. The operator && stands for

a) and

b) or

c) not

d) not equal to

5. What is the Command Window output of the following program?

a) a = 60.6

b) a = 44

c) a = 60

d) a = 66

clc

clear

a = ceil(10.1)*round(4.1)*floor(1.5)

268

EXERCISES
Lesson 5.1
Conditions and Boolean Logic

1. Write a condition that evaluates as true when the given variable length is

greater than 1.5. Test your condition using length = 1 and then using length

= 3.

2. Write a condition that evaluates as false whenever the given variable age is less

than 21. Test your condition using age = 6 and then using age = 30.

3. Write a condition that evaluates as false when base is equal to 5. Test your

condition using a) base = 0.2 and b) base = 5.

4. Write a set of conditions that evaluates as true when the rounded value of the

given variable num is greater than 16 and less than or equal to 21. Test your

condition using a) num = -8 and b) num = 17.

5. Write a set of conditions that evaluates as true when the given variable flag1 is

equal to 2 or 3. Test your condition using a) flag1 = 2 and b) flag1 = 0.

6. An instructor wants to round up students’ grades to the next integer. Write a

program that takes students’ grades as an input and returns the integer grades as an

output. Hint: you will need to use a vector as the input/output.

269

This file is only a preview with selected lessons from specific parts of this book.

Please click “Introduction to Programming Concepts with MATLAB Third
Edition” or visit lulu.com and search “Introduction to Programming Concepts with

MATLAB Third Edition” to purchase a complete printed version of this book.

http://www.lulu.com/shop/autar-kaw-and-benjamin-rigsby-and-ismet-handzic-and-daniel-miller/introduction-to-programming-concepts-with-matlab-third-edition/paperback/product-24333322.html
http://www.lulu.com/shop/autar-kaw-and-benjamin-rigsby-and-ismet-handzic-and-daniel-miller/introduction-to-programming-concepts-with-matlab-third-edition/paperback/product-24333322.html
https://lulu.com/

After reading this lesson, you should be able to:

• differentiate between a definite and an indefinite loop,

• write programs using while (indefinite) loops with one condition,

• write programs using while loops with multiple conditions.

In all the previous lessons, we have considered two basic control structures: sequence and

conditional. In this lesson, we introduce you to the control structure of repetition (or “loops”).

What is a loop?

In programming, a loop is a syntax used to describe the action of repeating a block of code (task)

more than once. This block of code (task) is commonly referred to as the body of the loop. In

Figure 1, we can see two equivalent representations of code. On the left side, the same block of

code is repeated multiple times explicitly, while a loop is used on the right side.

Figure 1: The fundamental structure of loops is to run the same block of code many times.

There are two types of loops: the for loop and the while loop. The for loop will conduct a task

a definite number of times because its repetition is controlled by a counter, whereas the while

loop will perform a process an indefinite (not to be confused with an infinite) number of times

because its repetition is controlled by a logical expression. We will cover while loops in this

lesson and for loops in Lesson 8.2.

Lesson 8.1
while Loops

346

Module 8 ► Lesson 8.1: while Loops

What is a while loop?

The while loop conducts an indefinite number of repetitions (loops), where the number of

repetitions is controlled by a conditional expression. The while loop will continue to conduct

repetitions until the conditional expression becomes false. Once the conditional expression is false,

MATLAB exits the while loop and continues to execute the m-file from the lines below the loop

end statement. The four main components of a while loop are

1. the statement (while),

2. conditional expression,

3. the body of the loop,

4. end statement.

The conditional expression(s) used in the while loop are the same type of comparisons (for

example, >, <=, ~=) and logical operators (for example, ||, &&) used in if statements.

When programming with while loops, one must be careful to avoid an infinite loop. Remember,

the loop will continue to run until the conditional expression is false. If you find yourself in an

infinite loop (where the conditional expression never becomes false) in MATLAB, simply click

inside the Command Window and hit Ctrl+c to end the execution of the program. However, if

you have pressed “run” multiple times, you will need to repeat the stop command (Ctrl+c)

multiple times.

Important Note: Be careful of infinite loops! An infinite loop is when you write a condition

that is always true and never becomes false. For example, while 1 > 0.

Output the square of all the integers from 3 to 7 in the Command Window. If one wants to write

out the square of the integers from 3 to 7, one can write a MATLAB code for it as follows:

i = 3;

fprintf('Square of %g is %g',i,i^2)

i = 4;

fprintf('Square of %g is %g',i,i^2)

i = 5;

fprintf('Square of %g is %g',i,i^2)

i = 6;

fprintf('Square of %g is %g',i,i^2)

i = 7;

fprintf('Square of %g is %g',i,i^2)

As one can see in the above code, the only thing changing in each line is the value of i (also

compare with Figure 1). Now take the case where one has to find the squares of numbers from 3

to 100, you will have a lot of code to write. This is a good example of showing the need for a loop.

Example 1

347

Module 8 ► Lesson 8.1: while Loops

Solution

Now, we will solve the problem using a while loop. Notice that a pseudocode is first made to

help identify what variables are changing and what expressions to display. When programming

with loops, you may be tempted to jump in with both feet, but you need to clearly identify which

variable(s) are changing, and which segments of program are repetitive.

Pseudocode for Example 1:

1. Start program, clear window/variables.

2. Set up a loop to find the square of numbers

Starting number = 3

Final number = 7

Increment by 1

Square each number.

3. Display output

4. End loop when final number is reached

5. End program

Remember, all loops must be terminated with an end statement.

clc
clear

%----------------------------- PURPOSE -----------------------------
fprintf('PURPOSE\n')
%To find the square of integers from 3 to 7
fprintf('To find the square of integers from 3 to 7.\n\n')

%----------------------------- INPUTS ------------------------------
fprintf('INPUTS\n')
startNum = 3;
increment = 1;
endNum = 7;
fprintf(['Use the numbers between %g and %g when counting using ', ...
 'an increment of %g\n\n'],startNum,endNum,increment)

%------------------------ SOLUTION/OUTPUTS -------------------------
fprintf('OUTPUTS\n')
i = startNum;
while i <= endNum
 num = i^2; %Square each successive integer
 %Output within the loop because we want to show what is happening in
 % each loop.
 fprintf('The number is %g. The square is %g.\n',i,num)
 i = i + increment; %Increment the value of i
end

MATLAB Code example1.m

348

Module 8 ► Lesson 8.1: while Loops

In Example 1, the value of i is changing. The while loop starts with the value of i being 3, and

then increments the value of i by 1 until the loop completes with the value of i being 7. There

are multiple correct solutions for the while-end loop in Example 1 – one could change the condition

of the while statement and the placement of the incrementing line (i = i + increment). For

example, another correct solution could include the while loop condition as i <

endNum. Consider what else would need to be changed to get the same output as shown in the

Command Window Output. Doing exercises like this will be helpful when solving more complex

problems with loops because it will deepen your understanding of the fundamentals.

Using a while loop, write a program that counts to four. The counting should be displayed in the

Command Window.

Solution

Command Window Output Example 1

PURPOSE

To find the square of integers from 3 to 7.

INPUTS

Use the numbers between 3 and 7 when counting using an increment of 1

OUTPUTS

The number is 3. The square is 9.

The number is 4. The square is 16.

The number is 5. The square is 25.

The number is 6. The square is 36.

The number is 7. The square is 49.

Example 2

clc

clear

%----------------------------- PURPOSE -----------------------------

fprintf('PURPOSE\n')

%To write a while loop that counts to four.

fprintf('To write a while loop that counts to four.\n\n')

%------------------------- SOLUTION/OUTPUTS ------------------------

fprintf('OUTPUTS\n')

i = 0; %Initializing the loop variable (iterator)

%Beginning Loop: Defining while loop with a condition

while i < 4

 i = i + 1; %Loop Body: Adding to iterator
 fprintf('Loop iteration #%g.\n',i); %Prints the current loop iterator

%Ending Loop: Defining the end of the while loop

end

MATLAB Code example2.m

349

Module 8 ► Lesson 8.1: while Loops

The iterator, i, is what counts for us in the solution. We can name the iterator any valid variable

name (other examples for this case are num or count).

It is essential to understand that the condition for the while loop can be anything that fits your

problem and does not make the while loop infinite. Although the examples we have seen so far

have while loops that solely rely on a counter variable for their conditions, there are other

common examples that have distinctly different conditions. Some informal examples of this are:

1. Let us say you have a case where an engineer wants to gather sensor data. We might want

to write a program using a while loop that stops based on user input.

stop = false;

while stop == false

 %Code to get sensor reading

end

2. In Example 3, we want to calculate values of a function over a specific range: so we use a

counter (the independent variable, x) in the condition. However, we might, instead, want

to stop the loop when y(x) becomes negative or reaches a specific value. In these instances,

we would write our condition with those in mind rather than the counter (iterated variable).

Given y(x) = x2 – 49, display the value of y only when y is positive for x = –10, –9 … 9, 10.

Solution

Pseudocode for this example:

1. Clear Command Window and all workspace variables.

2. Initialize the starting value of x

 starting point is -10

3. Conduct loop repetitions while true.

 number, x less than or equal to 10

4. Loop body:

Conduct, y = x2 – 49

Command Window Output Example 2

PURPOSE

To write a while loop that counts to four.

OUTPUTS

Loop iteration #1.

Loop iteration #2.

Loop iteration #3.

Loop iteration #4.

Example 3

350

Module 8 ► Lesson 8.1: while Loops

Place logic test: is y > 0?

If true, display y

Increase count by one

5. End loop

The Command Window for Example 3 shows that although the while loop is continuing to run

for all integer values of x from –10 to 10 as we required; a conditional statement inside of the loop

ensures that only positive values of y are displayed in the Command Window.

Write a while loop to find the value of x which is updated recursively by

clc

clear

%----------------------------- PURPOSE -----------------------------

fprintf('PURPOSE\n')

%To conditionally display the result of a mathematical function
fprintf('To conditionally display the result of a mathematical\n')

fprintf('function.\n\n')

%------------------------- SOLUTION/OUTPUTS ------------------------

fprintf('OUTPUTS\n')

x = -10; %Starting point of x
while x <= 10
 y = x^2 - 49;
 if y > 0
 fprintf('y(%g) = %g\n',x,y)
 end
 x = x + 1; %Adding 1 to the count
end

MATLAB Code example3.m

Command Window Output Example 3

PURPOSE

To conditionally display the result of a mathematical

function.

OUTPUTS

y(-10) = 51

y(-9) = 32

y(-8) = 15

y(8) = 15

y(9) = 32

y(10) = 51

Example 4

351

Module 8 ► Lesson 8.1: while Loops









+

x
x

9

2

1
.

Use a starting value of x = 64 and do the recursion 10 times. Display the last updated value of x as

the only output.

Solution

Pseudocode for this example:

1. Clear Command Window and all workspace variables.

2. Initialize loop count, starting at 1.

3. Continue loop while true:

 While count is less than or equal to 10

4. Body of loop:
 x = (1/2)*(x+(9/x))

5. Display last updated value of x

6. End loop

The program increases the loop counter, i, by one for each repetition. Once the loop counter, i,

is greater than 10, the while loop conditional expression is false and the loop terminates.

Observing precisely how loops work from one iteration to the next is essential to being successful

in this module.

clc

clear

%----------------------------- PURPOSE -----------------------------

fprintf('PURPOSE\n')

%To implement a recursive mathematical formula

fprintf('To implement a recursive mathematical formula.\n\n')

%----------------------------- INPUTS ------------------------------
fprintf('INPUTS\n')
x = 64; %Starting value of x
numReps = 10; %Number of loops to conduct
fprintf('The starting value of x is %g.\n',x)
fprintf('x will be updated %g times.\n\n',numReps)

%----------------------------- SOLUTION ----------------------------

i = 1; %Starting point for loop counter
while i <= numReps
 x = 0.5*(x+(9/x)); %Finding the updated value of x
 i = i + 1; %Going to the next step
end

%----------------------------- OUTPUTS -----------------------------

fprintf('OUTPUTS\n')

fprintf('The updated value of x is %g.\n',x)

MATLAB Code example4.m

352

Module 8 ► Lesson 8.1: while Loops

To give you a background of the above example from a practical point of view, the recursive

formula is a way to find the square root of 9. In fact, you can find the square root of any positive

real number R by using the recursive formula









+=+

i

ii
x

R
xx

2

1
1

What comparisons can I use with a while loop?

The comparisons used with the while loop are the same as those used for conditional statements

(if statements). These are shown in Table 1. Just like in conditional statements, you may make

more than one comparison in the while loop. You can join each comparison by using the &&

(AND) and || (OR) operators.

Table 1: Operators to be used for while loop comparison.

Meaning Code

Greater than >

Greater than or equal to >=

Less than <

Less than or equal to <=

Equal to ==

Not equal to ~=

Boolean Operators

AND &&

OR ||

The while loop is an indefinite loop, and hence we need to be careful as to not let it become an

infinite loop! For instance, in Example 5, if the series does not converge, you will have yourself

an infinite loop. To prevent this from happening, we add a condition to the while loop that limits

Command Window Output Example 4

PURPOSE

To implement a recursive mathematical formula.

INPUTS

The starting value of x is 64.

x will be updated 10 times.

OUTPUTS

The updated value of x is 3.

>>

353

Module 8 ► Lesson 8.1: while Loops

the maximum number of terms added to the series, maxTerms. As soon as the number of terms

used, term, becomes greater than the maximum number of terms allowed, maxTerms, the loop

condition will not be met, and thus the loop will end.

The value of the exponential function, ex, can be found by the following series

....
!

...
!3!2

1
32

++++++=
n

xxx
xe

n
x

Write a program that uses a while loop to find the value of ex. Define value of x and stop the loop

once the absolute relative approximate error is less than 0.1%. The definition of the absolute

relative approximate error is

Absolute Relative Approximate Error =
|Previous Approximation - Present Approximation|

|Present Approximation|
× 100 %

Test your program for x = 0.75. Display the final approximation for ex, the number of terms used,

and the last absolute relative approximate error calculated.

Solution

First, one must establish what the inputs are:

1. the number to be evaluated, x,

2. the desired absolute relative error (also called pre-specified tolerance), tolerance.

Now, we define the outputs as:

1. value of ex, exp1, and,

2. absolute relative approximate error, ARAE,

3. number of terms used, term.

The series expression for xe can be rewritten as

....
!

...
!3!2!1!0

3210

++++++=
n

xxxxx
e

n
x

and hence in the compact mathematical form as

ex = ∑
xi

i!

∞

i=0

Example 5

354

Module 8 ► Lesson 8.1: while Loops

clc
clear

%----------------------------- PURPOSE -----------------------------
fprintf('PURPOSE\n')
%To approximate a value of the exponential function
fprintf('To approximate a value of the exponential function.\n\n')

%----------------------------- INPUTS ------------------------------
fprintf('INPUTS\n')
x = 0.75;
tolerance = 0.1;
fprintf('Evaluate the exponential function at %g.\n',x)
fprintf('The desired relative error tolerance is %g%%.\n\n',tolerance)

%----------------------------- SOLUTION ----------------------------

term = 1; %Defining term counter for the series
exp1 = 0; %Starting value of the series
prevExp = 0; %Defining variable to store previous approximation
ARAE = tolerance + 1; %Initializing value for ARAE to be greater than

 % tolerance
maxTerms = 10; %Defining the max number of terms that will be used

while ARAE > tolerance && term <= maxTerms
 prevExp = exp1; %Storing the previous value before it is updated
 % on the next line
 exp1 = exp1 + (x^(term-1))/factorial(term-1); %Updating approximation
 ARAE = abs((prevExp-exp1)/exp1)*100; %Calculating error
 term = term + 1; %Iterating term counter
end

%----------------------------- OUTPUTS ----------------------------

fprintf('OUTPUTS\n')
fprintf('The approximate value is exp(%g) = %.4f using\n',x,exp1)
fprintf(' %g terms of the series.\n',term)
fprintf('The abs. rel. approximate error at the end is %.4f%%.\n',ARAE)

MATLAB Code example5.m

Command Window Output Example 5

PURPOSE

To approximate a value of the exponential function.

INPUTS

Evaluate the exponential function at 0.75.

The desired relative error tolerance is 0.1%.

OUTPUTS

The approximate value is exp(0.75) = 2.1167 using

 7 terms of the series.

The abs. rel. approximate error at the end is 0.0934%.

>>

355

Module 8 ► Lesson 8.1: while Loops

Example 5 shows how a while loop can be implemented to find the value of a series within a

pre-specified tolerance. Because we need to keep adding terms until the pre-specified tolerance is

met, the number of terms to be used is not pre-determined, which is why we use an indefinite loop.

It should be noted that as one decreases the pre-specified tolerance, more terms may need to be

added to achieve the same level of accuracy. Note that we initialize the absolute relative

approximate error, ARAE, as a number bigger than the pre-specified tolerance, tolerance, by

adding 1 to it. This is done to get the while loop to start the first time around.

Lesson Summary of New Syntax and Programming Tools

Task Syntax Example Usage

Iterate over a block of code

indefinitely
while

a=0; while a<5; a=a+1;

disp(a); end

356

MULTIPLE CHOICE QUIZ
Lesson 8.1
while Loops

1. The while loop is

a) a definite loop.

b) not a loop.

c) an indefinite loop.

d) an infinite loop.

2. The Command Window output of the following program is

a) abc = 1

b) abc = 2

c) abc = 3

d) abc = 4

3. The Command Window output of the following program is

a) abc = 1

b) abc = 3

c) abc = 4

d) abc = 5

clc

clear

i = 0;

while i <= 3

 abc = 1;

 i = i + 1;

end

abc

clc

clear

i = 0;

while i <= 3

 i = i + 1;

 abc = i;

end

abc

357

Module 8 ► Lesson 8.1: while Loops

4. The maximum number of logical comparisons that can be made in the conditional

expression in the definition of each while loop is

a) 0

b) 1

c) 2

d) as many as needed.

5. The Command Window output of the following program is

a) j = 0

b) j = 5

c) j = 12

d) j = 15

6. The Command Window output of the following program is

a) j = 0

b) j = 5

c) j = 12

d) j = 15

clc

clear

i = 0;

while i <= 4

 j = i*3;

 i = i + 1;

end

j

clc

clear

i = 0;

while i < =4

 i = i + 1;

 j = i*3;

end

j

358

Module 8 ► Lesson 8.1: while Loops

7. The Command Window output of the following program is

a) abc = 1

b) abc = 5

c) abc = 10

d) abc = 15

clc

clear

a = 2;

i = 2;

while i <= 4

 i = i + 1;

 abc = a*i;

end

abc

359

EXERCISES
Lesson 8.1
while Loops

1. Write a program using while loop that adds the number 7 to each value of j, as

j takes on integer values of 1,2,…,11,12. Output all 12 values to the Command

Window.

2. Write a program using while loop that adds the number 7 to each value of j, as

j takes on integer values of 12,11,…,2,1. Output all 12 values to the Command

Window.

3. Using a while loop, write a program that adds together all integers from –20 to

20.

4. Using a while loop, write a program that outputs cos(x) values until cos(x)

changes to a negative number. Take values of x from 0 to 2π in increments of 0.1.

5. Using a while loop, write a program that adds together the elements of any sized

vector. Test and run your program using the vector vec = [2 5 8 -4 7 0

-9].

6. Write a MATLAB program that conducts the following summation

()1...432sum1 +++++= n
 where,

 n is the number of terms used.

Use the while loop to perform the summation of the first 16 terms.

7. Using your knowledge of the while loop and conditional statements, write a

MATLAB program that determines the value of the following infinite series

()
4

1

2

1

4

1

2

1 432 xxxxxf +++=

There are two program inputs, which are,

1. the value of x, and

2. the number of terms to use.

360

Module 8 ► Lesson 8.1: while Loops

There is one program output, which is

1. the numeric value of the series.

Your program must work for any set of inputs. You may assume that the value for

the number of terms to use will always be entered as a positive whole number.

Test your program for the following set of inputs:

 number of terms = 32

 value of x = 0.46

8. The function, cos(x) can be calculated by using the following infinite Maclaurin

series

....
!6!4!2

1)cos(
642

+−+−=
xxx

x

The absolute percentage relative approximate error, || a is defined as

0.100
ionApproximatPresent

ionApproximat PreviousionApproximatPresent
|| 

−
=a

.

Complete the following.

a. Write the pseudocode for a function that finds the approximate value of cos(x).

The function inputs are the argument, x, a pre-specified error tolerance, tol,

and a maximum number of terms to use nmax. There are two ways that the loop

could end: either it meets the pre-specified tolerance or it uses the maximum

number of terms allowed.

b. Write a MATLAB function, myCos, using while loops for calculating cos(x).

The stopping criterion is if a pre-specified tolerance is met or if a specified

number of terms are used.

The function inputs are

1. the value at which cos(x) needs to be calculated, x,

2. pre-specified tolerance, tol,

3. the maximum number of terms allowed, nmax.

The function outputs are

1. the value of cos(x) when either the maximum number of terms are

used or the pre-specified tolerance is met, cosVal,

2. last absolute relative approximate error calculated,

absApproxError,

3. the number of terms used, terms, and

361

Module 8 ► Lesson 8.1: while Loops

4. how the function terminated, howEnded. Assign the integer 1 to

howEnded if the pre-specified tolerance is met, and 2 if the

maximum number of terms are used.

c. Test your function in part (b) with four different, well-thought-out input

variable sets. All four tests are to be made in the same test m-file.

9. Provided with the following geometric series:

nrararaaS ++++= ...2

write a MATLAB program using the while loop to determine the value of S given

the inputs a, r, and n.

The program inputs are:

1. the constant, a. (a 0)

2. the value, r (r 0), and

3. term constant, n as n+1 is the number of terms, n 1 .

The program output is:

1. The numeric value of S.

Test and run your program for the following combination of a = 3, r = 2.1,

and n = 8.

362

	Untitled

