TABLE OF CONTENTS

INTRODUCTION, APPROXIMATION \& ERRORS

Chapter 01.01 Introduction to numerical methods 1
Multiple-choice test 7
Problem set 9
Chapter 01.02 Measuring errors 11
True error 11
Relative true error 12
Approximate error 13
Relative approximate error 14
Significant digits 16
Multiple-choice test 18
Problem set 20
Chapter 01.03 Sources of error 22
What is round off error? 22
What problems can be created by round off errors? 22
What is truncation error? 23
Can you give me other examples of truncation error? 24
Multiple-choice test 28
Problem set 30
Chapter 01.04 Binary representation of numbers 34
Multiple-choice test 41
Problem set 43
Chapter 01.05 Floating point representation 4
Multiple-choice test 52
Problem set 54
Chapter 01.06-Propagation of errors 55
Multiplechoice test 58
Chapter 01.07 Taylor theorem revisited 60
Multiple-choice test 68DIFFERENTIATION
Physical problemsChapter 02.00A Physical problem - general engineering 70Chapter 02.00B Physical problem - chemical engineering 72Ghapter 02.00D Physical problem-computer engineering 74Ghapter 02.00E Physical problem electrical engineering 78Chapter 02.00F Physical problem-industrial engineering ozChapter 02.00G Physical problem - mechanical engineering 86
Chapter 02.01 Primer on differential calculus (View it on the web)
Go to http://numericalmethods.eng.usf.edu
$>$ Keyword
> Primer on differential calculus
Multiple-choice test 90
Problem set 92
Chapter 02.02 Differentiation of continuous functions 94
Forward difference approximation of the first derivative 94
Backward difference approximation of the first derivative 97
Forward difference approximation from the Taylor series 98
Finite difference approximation of higher derivatives 101
Multiple-choice test 106
Problem set 108
Chapter 02.03 Differentiation of discrete functions 110
Forward difference approximation of the first derivative 110
Direct fit polynomials 112
Lagrange polynomial 114
Multiple-choice test 116
Problem set 11970
NONLINEAR EQUATIONS121
Physical problems
Chapter 03.00A Physical problem - general engineering 121
Chapter 03.00B Physical problem - chemical engineering 125
Ghaper 03.006 Physical problem civillengineering 128

Chapter 0.3.00D Physical problem - computer engineering 134

Ghapter 03.00F Physieal problem-indestrial engineering 140
Chapter 03.00G Physical problem - mechanical engineering 146

Chapter 03.01 Solution of quadratic equations 150

Multiple-choice test 153
Problem set 155
Chapter 03.03 Bisection method of solving a nonlinear equation 157
Bisection method 157
Algorithm for the bisection method 160
Advantages of bisection method 163
Drawbacks of bisection method 163
Multiple-choice test 166
Problem set 168
Chapter 03.04 Newton-Raphson method of solving a nonlinear equation 170
Introduction 170
Derivation 170
Algorithm 171
Drawbacks of the Newton-Raphson method 174
What is an inflection point? 175
Derivation of Newton Raphson method from Taylor series 178
Multiple-choice test 179
Problem set 181
Ghapter 03.05 Secant methodofsolving nonlinear equations 183
What is the secan method and why would I want to use it instead of the
Newton-Raphson method? 183
Multiple-hoice test 188
Problemsen 190

SIMULTANEOUS LINEAR EQUATIONS

 192
Physical problems

Chapter 04.00A Physical problem - general engineering 192
Chapter 04.00B Physical problem - chemical engineering 195
Chapter 04.00C Physical problem - civil engineering 197
Ghaper 04.000 Physical problem-computengimering 202
Ghapter 04.00E Physical problem-electricalengineering 207

Ghate 04.005 Physi problem-industrialenginering 213

Chapter 04.00G Physical problem - mechanical engineering 216

Chapter 4.1 Introduction to matrix algebra 222

What is a matrix? 222
What are the special types of matrices? 223
Square matrix 224
Upper triangular matrix 224
Lower triangular matrix 224
Diagonal matrix 225
Identity matrix 225
Zero matrix 225
Tridiagonal matrices 226
When are two matrices considered to be equal? 226
How do you add two matrices? 227
How do you subtract two matrices? 228
How do I multiply two matrices? 229
What is a scalar product of a constant and a matrix? 231
what is a linear combination of matrices? 232
What are some of the rules of binary matrix operations? 232
Transpose of a matrix 235
Symmetric matrix 235
Matrix algebra is used for solving system of equations. Can you illustrate this concept? 236
Can you divide two matrices? 238
Can I use the concept of the inverse of a matrix to find the solution of a set of equations [A] [X] = [C]? 239
How do I find the inverse of a matrix? 239
If the inverse of a square matrix [A] exists, is it unique? 242
Multiple-choice test 243
Problem set 246
Chapter 04.06 Gaussian elimination 250
How are a set of equations solved numerically? 250
Forward elimination of unknowns 251
Back substitution 252
Are there any pitfalls of Naïve Gauss elimination method? 253
Round-off error 257
What are the techniques for improving Naïve Gauss elimination method? 259
How does Gaussian elimination with partial pivoting differ from Naïve Gauss elimination? 259

Can we use Naïve Gauss elimination methods to find the determinant of a square matrix? 262
What if I cannot find the determinant of the matrix using Naive Gauss elimination method, for example, if I get division by zero problems during Naïve Gauss elimination method? 263
Multiple-choice test 265
Problem set 268
Chapter 04.07 LU decomposition 270
I hear about LU decomposition used as a method to solve a set of simultaneous linear equations? What is it and why do we need to learn different methods of solving a set of simultaneous linear equations? 270
How do I decompose a non-singular matrix [A], that is, how do I find $[\mathrm{A}]=[\mathrm{L}][\mathrm{U}]$? 272
How do I find the inverse of a square matrix using LU decomposition? 276
Multiple-choice test 280
Problem set 284

Chapter 04.08-Gatss-Seidel method 286

Why do we need anothe method to solve a se of simultaneous linear equations? 286
The above system of equations does not seem toconverge. Why? 290
Multiple hoice test 296
pyblemser 300

Physical problems

Chapter 05.00A Physical problem - general engineering 301
Chapter 05.00B Physical problem - chemical engineering 303
Chapter 05.00C Physical problem - civil engineering 307
Chapter 05.00D Physical problem - computer engineering 310
Ghapter 05.00E Physical problem-electrical engineering 313
Chapter 05.00F Physical problem-industrial engineering 316
Chapter 05.00G Physical problem - mechanical engineering 318

Chapter 05.01 Background of interpolation

Multiple-choice test 322
Chapter 05.02 Direct method of interpolation 324

What is interpolation? 324
Direct method 325
Multiple-choice test 332
Problem set 334

Chapter 05.03 Newton's divideddifferenee interpolation-336

What is interpolation? 336
Newton's divided difference polynomial method 336
Limear interpelation 337
Quadratic interpolation 339
General form of Newton's divided difference polymomial 342
Multiplethoine test 347
Problem-set 349

Chapter 05.05 Spline method of interpolation 351
What is interpolation? 351
Linear spline interpolation 354
Quadratic splines 356
Multiple-choice test 361
Problem set 364
Chapter 05.06 Extrapolation is a bad idea 366
Chapter 05.07 Higher order interpolation is a bad idea 370
Chapter 05.08 Why do we need splines? 373
Chapter 05.10 Shortest path of a robot 376

REGRESSION 381

Physical problems
Chapter 06.00A Physical problem - general engineering 381
Ghapter 06.00B Physical problem-chemicalengimeering 385
Chapter 06.00C Physical problem - civil engineering 388
Ghap 06.000 Physical promempenginering 391
Ghapter 0600E Physical problem-electriealengineerimg 394
Chapter 06.00F Physical problem - industrial engineering 398
Chapter 06.00G Physical problem - mechanical engineering 400
Chapter 06.01 Statistics background of regression analysis 405
xviii

Review of statistical terminologies 405
Elementary statistics 405
A brief history of regression 409

Chapter 06.02 Introduction of regression analysis 411

What is regression analysis? 411
Comparison of regression and correlation 412
Uses of regression analysis 412
Abuses of regression analysis 412
Extrapolation 412
Least squares methods 415
Why minimize the sum of the square of the residuals? 415
Multiple-choice test 417
Problem set 419

Chapter 06.03 Linear regression 420

Why minimize the sum of the square of the residuals? 420
Multiple-choice test 433
Problem set 435

Chapter 06.04 Nonlinear models for regression 437

Nonlinear models using least squares 437
Exponential model 437
Growth model 441
Polynomial models 443
Linearization of data 447
Exponential model 447
Logarithmic functions 450
Power functions 453
Multiple-choice test 458
Problem set 460

Chapter 06.05 Adequacy of models for regression 464

Quality of fitted model 464
Caution in the use of $r^{2} 468$
What else should I check for the adequacy of the model in example 1 ?
468
Adequacy of coefficient of regression 470
Problem set 471

Physical problems

Chapter 07.00A Physical problem - general engineering 474
Gha 07.00 B Physi problem chemiealenginering 477
Ghaper 07.006 Physical problem- civil engineering 480
Ghat 07.000 Physi plem 406
Ghapter 07.00 Physical prolem electrical engineering 497
Chapter 07.00F Physical problem - industrial engineering 502
Chapter 07.00G Physical problem - mechanical engineering 506
Chapter 07.01 Primer on integration (View it on the web)
Go to http://numericalmethods.eng.usf.edu

> >Keyword
> Primer on integral calculus
Multiple-choice test 510
Problem set 512
Chapter 07.02 Trapezoidal rule of integration 515
What is integration? 515
What is the trapezoidal rule? 515
Derivation of the trapezoidal rule 516
Multiple-segment trapezoidal rule 522
Error in multiple-segment trapezoidal rule 528
Multiple-choice test 531
Problem set 533
Chapter 07.03 Simpson's $1 / 3$ rule of integration 536
Whatis integration? 536
Simpson's $1 / 3$ rule 536
Multiplesegmen Simps's 1/3 wle 543
Error in muliplesegment Simpson's $1 / 3$ rule 546
Multiplechoice test 548
Problemset 550

Chapter 07.05 Gauss quadrature 552

What is integration? 552
Gauss quadrature rule 553
Derivation of two-point Gaussian quadrature rule 554
Higher point Gaussian quadrature formulas 556
Arguments and weighing factors for n-point Gauss quadrature rules 557
Multiple-choice test 566
Problem set 569
Chapter 07.06 Integrating discrete functions 571
What is integration? 571
Integrating discrete functions 572
Trapezoidal rule for discrete functions with unequal segments 576
Problem set 579

Chapter 07.07 Integrating improper functions 582
What is integration? 582
What is an improper integral? 583
Problem set 593

ORDINARY DIFFERENTIAL EQUATIONS

Physical problems

Chapter 08.00A Physical problem - general engineering 594
Chapter 08.00B Physical problem-chemicalengineering 598
Chapter 08.00C Physical problem - civil engineering 600
Chapte 08.00D Physical problem compuer engineering $60 z$
Chapter 08.00E Physical problem electrical engineering 606
Chapter 08.00F Physical problem-industrial engineering 611
Chapter 08.00G Physical problem - mechanical engineering 617
Chapter 08.01 Primer for ordinary differential equations (View it on web)
Go to http://numericalmethods.eng.usf.edu
$>$ Keyword
> Primer on ordinary differential equations
Multiple-choice test 623
Problem set 625
Chapter 08.02 Euler's method for ordinary differential equations 627
What is Euler's method? 627
Derivation of Euler's method 628
Multiple-choice test 636
Problem set 639
Chapter 08.03 Runge-Kutta 2nd order method 643
What is the Runge-Kutta 2nd order method? 644
Heun's method 646
Midpoint method 646

Ralston's method 647
How do these three methods compare with results obtained if we found $f^{\prime}(x, y)$ directly? 650
How do we get the 2nd order Runge-Kutta method equations? 650
Multiple-choice test 654
Problem set 657
Chapter 08.04 Runge-Kutta 4th order method 661
What is the Runge-Kutta 4th order method? 661
How does one write a first order differential equation in the above form?
661
Multiple-choice test 668
Problem set 672
Chapter 08.05 On Solving higher order equations 676
Problem set 685
Chapter 08.07 Finite difference method 687
What is the finite difference method? 687
Multiple-choice test 695
Problem set 700

