Application of Polymer Matrix Composites

A strong, ultra light leg prosthesis of graphite/epoxy help athletes compete at the highest levels.

Space Shuttle

Every body skiing USA

- SMC: sheet molded compound
- FRC:

 Fiberglass
 Reinforced
 composite .

Lear Fan

Fighter Jets

Corvette Leaf Springs

Snow Skis

I-beam

Pressure vessels

Thermosets

soften on heating	
	0%
have short cure cycles	
	0%
decompose on heating	
	0%
have high strains to failure	
	0%

The most common fibers used in advanced polymer composites are

0%
0%
0%
0%

A lamina is defined as

one layer of composite material	
	0%
two layers of composite material	
	0%
multiple layers bonded together	
	0%
an isotronic layer	
an isotropic layer	
	0%

The D in D-glass fibers stands for

Diehard	
	0%
Dielectric	
	0%
Diuretic	
	0%
Delicate	
	0%

For low cost, out of the polymers given below, the best polymer to use is

ероху	
	0%
phenolic	
	0%
polyester	
	0%
silicone	
	0%

The area of the fiber-matrix interface for a fixed volume of fibers in a composite is inversely proportional to the d^p , where d is the diameter of the fiber, and p is

Advanced composites are

naturally found.	
	0%
traditionally used in aerospace industries.	
traditionally used in aerospace industries.	00/
	0%
low performance composites.	
	0%

Composites are easy to repair.

TRUE	
	0%
FALSE	
	0%

What fiber factors contribute to the mechanical performance of a composite?

Length	
	0%
Oruientation	
	0%
Shape	
	0%
All of the above	
	0%

The most common fibers used in advanced composites are

One of the major drawbacks of composites is

high cost of fabrication.	
	0%
nobody needs them.	
	0%
they are extremely heavy.	
	0%

SMC stands for

Structural Metal Composite.	
	0%
Strong Metal Composite.	
	0%
Sheet Molding Compound.	
	0%

Reducing one pound of mass in a commercial aircraft can save up to how many gallons per year?

The most common fiber shape is

Rectangular	
	0%
Triangular	
	0%
Circular	
	0%

Units of fracture toughness are

MPa-m	
	0%
MPa^0.5-m	
	0%
MPa-m^0.5	
	0%

A typical range of carbon content in carbon fiber is

Graphite fibers have one of the following carbon content

Current service temperature limits for polymers reach .

750F	
	0%
1750F	
	0%
450F	
	0%
350F	
	0%

Isotropic means

a material with different properties in all directions.	
	0%
a matarial with the come properties in all directions	
a material with the same properties in all directions.	
	0%
a material with identical properties at different locations	
	0%
a material with different properties at different locations	
	0%

Composite materials are

isotropic but not homogeneous.	
	0%
homogeneous but not isotropic	
	0%
both homogeneous and isotropic.	
	0%
neither homogeneous or isotropic.	
	0%

Anisotropic means

a material with different properties in all directions.	
	0%
a material with the same properties in all directions.	
	0%
a material with identical properties at different locations	
a material with identical properties at different locations	0%
	0 70
a material with different properties at different locations	
	0%

Inter-ply hybrid composites consist of

two or more different composite systems.

0%

two or more different fibers used in the same ply.

0%

Aramid fibers are made up of

Carbon, Hydrogen, Oxygen and Graphite.

O%

Carbon, Hydrogen, Oxygen and Nitrogen.

O%

Carbon, Hydrogen, Oxygen.

Carbon, Hydrogen, Nitrogen.

0%

A typical example of thermoplastics include

polyesters.	
	0%
polyethylene.	
	0%
phenolics.	
	0%

Polymer matrix composites are manufactured in the automotive industry where short production runs are necessary by

filament winding.	
	0%
autoclave forming.	
	0%
resin transfer molding.	
	0%

Which of the following composites have replaced metals in golf club shafts

Graphite-Epoxy.	
	0%
Carbon-Carbon	
	0%
Glass-Epoxy.	
	0%

Which of the following is the main drawback for phenolic resin systems

0%
0%
0%
0%

Bullet proof vests use

Kevlar	
	0%
graphite	
	0%
boron	
	0%
glass	
	0%

The reduction of mass performance indicator for buckling of a rod under a compressive load is

Young's modulus / density.

0%

(Young's modulus ^ (1/2)) / density.

0%

(Young's modulus ^ (1/3)) / density.

0%

The reduction of mass performance indicator for a rod under an axial load

Young's modulus / density.

0%

(Young's modulus ^ (1/2)) / density.

0%

(Young's modulus ^ (1/3)) / density.

0%

Which polymer is least desirable for smoke emission?

phenolic	
	0%
silicone	
	0%
polyester	
	0%
polymide	
	0%

Which polymer has the most strength

phenolic	
	0%
ероху	
	0%
polyester	
potyester	0%
polymide	
F = -3	0%

Which polymer has the highest service temperature?

phenolic	
	0%
ероху	
	0%
nalymida	
polymide	0%
polyester	
	0%