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FIGURE 3.3
Representative volume element of a 
unidirectional lamina.
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A uniform longitudinal strain applied to the representative volume element to 
calculate the longitudinal Young’s modulus for a unidirectional lamina.
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FIGURE 3.5
Fraction of load of composite carried by fibers as a function of 
fiber volume fraction for constant fiber to matrix moduli ratio.
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Find the longitudinal elastic modulus of a unidirectional Glass/Epoxy lamina with a 70% fiber 
volume fraction.  Use the properties of glass and epoxy from Tables 3.1 and 3.2, respectively.  
Also, find the ratio of the load the fibers take to that of the composite. 
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Longitudinal Young’s modulus as a function of fiber volume fraction and 
comparison with experimental data points for a typical glass/polyester lamina 
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A longitudinal strain applied to a representative volume element to calculate 
Poisson’s ratio of unidirectional lamina.

V  + V  = mmff12 ννν
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Find the major and minor Poisson's ratio of a Glass/Epoxy lamina with a 70% fiber 
volume fraction.  Use the properties of glass and epoxy from Tables 3.1 and 3.2, 
respectively.
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FIGURE 3.7
A transverse stress applied to a representative volume 
element used to calculate transverse Young’s modulus of a 
unidirectional lamina.
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Find the transverse Young's modulus of a Glass/Epoxy lamina with a fiber 
volume fraction of 70%.  Use the properties of glass and epoxy from Tables 
3.1 and 3.2, respectively.
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FIGURE 3.8
Transverse Young’s modulus as a function of fiber volume fraction 
for constant fiber to matrix moduli ratio.



FIGURE 3.10 Theoretical values of transverse Young’s modulus as a function 
of fiber volume fraction for a boron/epoxy unidirectional lamina (Ef = 414 GPa, vf = 
0.2, Em = 4.14 GPa, vm = 0.35) and comparison with experimental values. Figure 
(b) zooms figure (a) for fiber volume fraction between 0.45 and 0.75. (Experimental 
data from Hashin, Z., NASA tech. rep. contract no. NAS1-8818, November 1970.)
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An in-plane shear stress applied to a 
representative volume element for finding in-plane 
shear modulus of a unidirectional lamina. G
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Find the in-plane shear modulus of a Glass/Epoxy lamina with a 70% fiber volume fraction.  
Use properties of glass and epoxy from Tables 3.1 and 3.2, respectively.
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FIGURE 3.13 Theoretical values of in-plane shear modulus as a function of fiber 
volume fraction and comparison with experimental values for a unidirectional 
glass/epoxy lamina (Gf = 30.19 GPa, Gm = 1.83 GPa). Figure (b) zooms figure (a) for 
fiber volume fraction between 0.45 and 0.75. (Experimental data from Hashin, Z., 
NASA tech. rep. contract no. NAS1-8818, November 1970.)
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V E + V E = E mmff1

V  + V  = mmff12 ννν

Same as MOM equations for E1 and ν12 but NOT for E2 and G12 
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The term ξ  is called the reinforcing factor and depends on the 
following
• Fiber Geometry
• Packing Geometry
• Loading Conditions

Example: For a fiber geometry of circular fibers in a packing 
geometry of a square array, ξ = 2
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For a rectangular fiber cross-section of length 
a and width b in a hexagonal array, 
𝜉𝜉 = 2(a/b), 
where a is in the direction of loading.

The term ξ  is depends on
• Fiber Geometry
• Packing Geometry
• Loading Conditions
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Find the transverse Young's modulus for a Glass/Epoxy lamina with a 70% fiber volume 
fraction.  Use the properties for glass and epoxy from Tables 3.1 and 3.2, respectively.  Use 
Halpin-Tsai equations for a circular fiber in a square array packing geometry. 
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Theoretical values of transverse Young’s modulus as a function of fiber volume 
fraction and comparison with experimental values for boron/epoxy unidirectional 
lamina (Ef = 414 GPa, νf = 0.2, Em = 4.14 GPa, νm = 0.35). Figure (b) zooms figure 
(a) for fiber volume fraction between 0.45 and 0.75. (Experimental data from Hashin, 
Z., NASA tech. rep. contract no. NAS1-8818, November 1970.)
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The term ξ  is called the reinforcing factor and depends on the following
• Fiber Geometry
• Packing Geometry
• Loading Conditions

Example: For a fiber geometry of circular fibers in a packing geometry of a square array, 
ξ = 1
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For a rectangular fiber cross-section of 
length a and width b in a hexagonal array,
𝜉𝜉 = 3ln(𝑎𝑎
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), 

where 𝑎𝑎 is in the direction of loading

The term ξ  is depends on
• Fiber Geometry
• Packing Geometry
• Loading Conditions
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Using Halpin-Tsai equations, find the shear modulus of a Glass/Epoxy composite 
with a 70% fiber volume fraction.  Use the properties of glass and epoxy from Tables 
3.1 and 3.2, respectively.  Assume the fibers are circular and are packed in a square 
array.  
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Theoretical values of in-plane shear modulus as a function of fiber volume fraction 
compared with experimental values for unidirectional glass/epoxy lamina (Gf = 30.19 
GPa, Gm = 1.83 GPa).  Figure (b) zooms figure (a) for fiber volume fraction between 0.45 
and 0.75. (Experimental data  from Hashin, Z., NASA tech. rep. contract No. NAS1-8818, 
November 1970.)
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