EML 4230 Introduction to Composite Materials

Chapter 5 Design and Analysis of a Laminate Ply by Ply Failure

Dr. Autar Kaw
Department of Mechanical Engineering
University of South Florida, Tampa, FL 33620

Courtesy of the Textbook

Mechanics of Composite Materials by Kaw

Ply by Ply Failure of a Laminate

If a ply fails, has the whole laminate failed? Maybe. When the first ply fails, you may get catastrophic failure or you may be able to still apply for more load.

Problem Statement

The only load applied is a tensile normal load in the x-direction, that is, the direction parallel to the fibers in the o° ply. Find the ply-by-ply failure load for a [o/9o/o] Graphite/Epoxy laminate. Assume the thickness of each ply is 5 mm and use properties of unidirectional Graphite/Epoxy lamina from Table 2.1.

Solution

Assume we apply $N_x=1 N/m$

Mid-plane strains (midplane curvature are zero)

$$\begin{bmatrix} \varepsilon_x^0 \\ \varepsilon_y^0 \\ \gamma_{xy}^0 \end{bmatrix} = \begin{bmatrix} 5.353 \times 10^{-10} \\ -2.297 \times 10^{-11} \\ 0 \end{bmatrix}$$

Local Stresses

Ply#	Position	σ_{l}	σ_2	$ au_{12}$
1 (00)	Т	0.726101	1.313×10^{0}	0.0
$1 (0^0)$	Top Middle	9.726×10^{1} 9.726×10^{1}		
	Bottom	9.726×10^{1}	1.313×10^{0}	
2 (90°)	Тор	-2.626×10^{0}		
	Middle Bottom	-2.626×10^{0} -2.626×10^{0}		
$3(0^0)$	Тор	9.726×10^{1}		
	Middle Bottom	9.726×10^{1} 9.726×10^{1}	1.313×10^{0} 1.313×10^{0}	

Strength Ratios

Ply#	Position	Maximum Strain	Tsai-Wu
$1 (0^0)$	Top	$1.548 \times 10^7 \text{ (1T)}$	1.339×10^7
	Middle	$1.548 \times 10^7 \text{ (1T)}$	1.339×10^7
	Bottom	$1.548 \times 10^7 \text{ (1T)}$	1.339×10^7
$2(90^{0})$	Top	$7.254 \times 10^6 (2T)$	7.277×10^6
	Middle	$7.254 \times 10^6 \text{ (2T)}$	7.277×10^6
	Bottom	$7.254 \times 10^6 \text{ (2T)}$	7.277×10^6
$3(0^0)$	Top	$1.548 \times 10^7 \text{ (1T)}$	1.339×10^7
	Middle	$1.548 \times 10^7 (1T)$	1.339×10^7
	Bottom	$1.548 \times 10^7 (1T)$	1.339×10^7

What is the N_x that can be applied?

$$N_x = (1 \text{ N/m})x(7.277x10^6) = 7.277x10^6 \text{ N/m}$$

$$N_x/h = 7.277 \times 10^6/0.015 = 485.1 MPa$$

$$\varepsilon_{x}^{0} = (5.353 \times 10^{-10}) \times (7.277 \times 10^{6}) = 0.003895$$

Will the laminate take more load?

Degrade Ply#2

Q for the undamaged plies

$$[Q] = \begin{bmatrix} 181.8 & 2.897 & 0 \\ 2.897 & 10.35 & 0 \end{bmatrix} GPa$$

$$0 & 0 & 7.17$$

Q for the damaged plies $\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}$ $[O] = \begin{bmatrix}
0 & 0 & 0
\end{bmatrix}$ GPa

Solution

Assume we apply $N_x=1 N/m$

Mid-plane strains (midplane curvatures are zero)

$$\begin{bmatrix} \varepsilon_x^0 \\ \varepsilon_y^0 \\ \gamma_{xy}^0 \end{bmatrix} = \begin{bmatrix} 5.525 \times 10^{-10} \\ -1.547 \times 10^{-10} \\ 0 \end{bmatrix}$$

Local Stresses

Ply#	Position	σ_{l}	σ_2	$ au_{12}$
<i>J</i>		1	- L	12
$1 (0^0)$	Тор	1.0000×10^{2}	0.0	0.0
	Middle	1.0000×10^2	0.0	0.0
	Bottom	1.0000×10^2	0.0	0.0
$2(90^{0})$	Тор			
	Middle			
	Bottom			
$3(0^0)$	Тор	1.0000×10^2	0.0	0.0
	Middle	1.0000×10^2	0.0	0.0
	Bottom	1.0000×10^2	0.0	0.0

Strength Ratios

Ply#	Position	Max Strain	Tsai-Wu
1 (0°)	Тор	$1.5000 \times 10^{7} (1T)$	1.5000×10^{7}
	Middle Bottom	$1.5000 \times 10^{7} (1T)$ $1.5000 \times 10^{7} (1T)$	1.5000×10^{7} 1.5000×10^{7}
2 (90°)	Тор		
	Middle Bottom		
3 (0°)	Top Middle Bottom	$1.5000 \times 10^{7} (1T)$ $1.5000 \times 10^{7} (1T)$ $1.5000 \times 10^{7} (1T)$	1.5000×10^{7} 1.5000×10^{7} 1.5000×10^{7}

What is the N_{x} that can be applied?

$$N_x = (1 \text{ N/m})x(1.5x10^7) = 1.5x10^7 \text{ N/m}$$

$$N_x/h = 1.5 \times 10^7/0.015 = 1000 MPa$$

$$\varepsilon_{x}^{0} = (5.525 \times 10^{-10}) \times (1.5 \times 10^{7}) = 0.008288$$

Stress-Strain Plot

FIGURE 5.1 Stress-strain curve showing ply-by-ply failure of a laminated composite

Normal Strain, ϵ_x

END