### EML 4230 Introduction to Composite Materials

### Chapter 5 Design and Analysis of a Laminate The Drive Shaft Problem

Dr. Autar Kaw Department of Mechanical Engineering University of South Florida, Tampa, FL 33620

Courtesy of the Textbook <u>Mechanics of Composite Materials by Kaw</u>



## **Problem Statement**



A drive shaft for a Chevy Pickup truck is made of steel. Check whether replacing it with a drive shaft made of composite materials will save weight?

# **Design of a Composite Drive Shaft**



Used with permission. Courtesy of ACPT, Inc.



Used with permission. Courtesy of Nissan.

### The Nissan 350Z uses a composite driveshaft for added power.



# Why composite materials?

- Light weight reduces energy consumption; increases amount of power transmitted to the wheels. About 17-22% of engine power is lost to rotating the mass of the drive train.
- <u>Fatigue resistant</u> durable life.
- <u>Non-corrosive</u> reduced maintenance cost and increased life.
- Single piece reduces manufacturing cost.

## Why composite materials?

Prevent injuries – the composite drive shaft "broom" on failure



Used with permission. Courtesy of ACPT, Inc.

# **Problem Description**

#### **Design Constraints**

- 1. Maximum horsepower= 175 HP @4200 rpm
- 2. Maximum torque
- 3. Factor of safety
- 3. Outside radius
- 4. Length

- = 3
- = 1.75 in

= 265 lb-ft @2800 rpm

= 43.5 in

## **Torque in Drive Shaft**

#### In first gear

- the speed is 2800 rpm (46.67 rev/s)
- assume ground speed of 23 mph (405 in/sec)

Diameter of tire = 27 in Revolutions of tire = $405/[\pi(27)] = 4.78$  rev/s Differential ratio = 3.42 Drive shaft speed =  $4.78 \times 3.42 = 16.35$  rev/s Torque in drive shaft =  $(265\times46.7)/16.35 = 755$  lb-ft

## **Maximum Frequency of Shaft**

- Maximum Speed = 100 mph (1760 in/sec)
- Diameter of tire = 27 in Revolutions of tire =1760/[ $\pi$ (27)] = 20.74 rev/s Differential ratio = 3.42 Drive shaft speed = 20.74x3.42 = 71Hz

## **Design Parameters**

#### Torque Resistance.

Should carry load without failure

- Not rotate close to natural frequency.
  - Need high natural frequency otherwise whirling may take place
- Buckling Resistance.
  - May buckle before failing

### **Steel Shaft – Torque Resistance**

$$\frac{\tau_{\max}}{FS} = \frac{Tc}{J}$$

Shear Strength,  $\tau_{max} = 25$  Ksi Torque, T = 755 lb-ft Factor of Safety, FS = 3Outer Radius, c = 1.75 in Polar moment of area,  $J = \frac{1}{2} * (1.75^4 - c_{in}^4)$   $c_{in} = 1.69$  in t = 1.75-1.69 = 0.06 in = 1/16 in

### **Steel Shaft - Natural Frequency**

$$f_n = \frac{\pi}{2} \sqrt{\frac{gEI}{WL^4}}$$

Acceleration due to gravity, g= 32.2 ft/s<sup>2</sup> Young's modulus, E = 30 Msi Weight per unit length, W = 0.19011 lbf/in Length, L = 43.5 in Second Moment of Area, I =  $\frac{\pi}{4} \left( 1.75^4 - \left( 1.75 - \frac{1}{16} \right)^4 \right) = 0.9973 \text{ in }^4.$ 

 $f_n = 204 \text{ Hz}$ 

Meets minimum of 71.1Hz

### **Steel Shaft - Torsional Buckling**

$$T = 0.272 * 2\pi r_m^2 t E \left(\frac{t}{r_m}\right)^{3/2}$$

Mean radius,  $r_m = 1.6875$  in Thickness, t = 1/16 in Young's modulus, E = 30 Msi Critical Buckling Load, T = 5519 lb-ft

### Meets minimum of 755 lb-ft

# Designing with a composite

## Load calculations for PROMAL

$$N_{xy} = \frac{T}{2\pi r_m^2} \text{ (Why)}$$
$$T = 755 \text{ lb-ft}$$
$$r = 1.75 \text{ in}$$
$$N_{xy} = 470.8 \text{ lb / in}$$

Neglecting centrifugal force contribution

### **Composite Shaft-Torque Resistance**

Inputs to PROMAL: Glass/Epoxy from Table 2.1 Lamina Thickness = 0.0049213 in Stacking Sequence: (45/-45/45/-45/45)<sub>s</sub> Load N<sub>xy</sub> = 470.8 lb / in

Outputs of PROMAL: Smallest Strength Ratio = 1.52 (not safe)

Thickness of Laminate: h = 0.0049213\*10 = 0.04921 in

### **Composite Shaft - Natural Frequency**

$$f_n = \frac{\pi}{2} \sqrt{\frac{gE_xI}{WL^4}}$$

g = 32.2 ft/s<sup>2</sup> E<sub>x</sub> = 1.814 Msi I = 0.7942 in<sup>4</sup> W = 0.03438 lbf/in L = 43.5 in

Hence

f<sub>n</sub> = 105.6 Hz (meets minimum 71.1 Hz)

### **Composite Shaft - Torsional Buckling**

$$T = 0.272 * 2\pi r_m^2 t \left( E_x E_y^3 \right)^{\frac{1}{4}} \left( \frac{t}{r_m} \right)^{\frac{3}{2}}$$
  

$$r_m = 1.75 - 0.04921/2 = 1.72539 \text{ in}$$
  

$$t = 0.04921 \text{ in}$$
  

$$E_x = 1.814 \text{ Msi}$$
  

$$E_y = 1.814 \text{ Msi}$$

T = 183 lb-ft (does not meet 755 lb-ft torque)

### **Comparison of Mass**

|                | Steel     | Glass/Epoxy<br>(not acceptable |
|----------------|-----------|--------------------------------|
|                |           | aesign)                        |
| Specific Grav  | 7.850     | 1.785                          |
| Inside radius  | 1.6875"   | 1.7008"                        |
| Outside radius | 1.75"     | 1.75"                          |
| Length         | 43.5"     | 43.5"                          |
| Mass           | 8.322 lbm | 1.496 lbm                      |
|                |           | <u> </u>                       |

