%% Function name % tsaihill %% Revised: % 23 January 2014 %% Author % Srikanth Gunti, Trey Moore, & Autar Kaw % Section: All % Semester: Fall 2012 %% Purpose % Given elastic modulii and ultimate strengths of a unidirectional % lamina, angle of the ply in degrees, and the global strains acting % on the lamina, output the strength ratio of the lamina based on % Tsai-Hill failure theory %% Usage % funciton [SR] = tsaihill(strain_glo,angle,moduli,strength) % Input variables % moduli=vector with four elastic moduli of unidirectional lamina % [moduli]=[E1 E2 nu12 G12] % angle=angle of ply in degrees % E1=longitudinal elastic modulus % E2=transverse elastic modulus % nu12=major Poisson's ratio % G12=in-plane shear modulus % strain_glo=vector of global strain applied to unidirectional lamina % [strain_glo]=[epsx;epsy;epsxy] % epsx=longitudinal global strain % epsy=transverse global strain % epsxy=in-plane global strain % strength=vector of the five ultimate strain strengths of the % unidirectional lamina % [strength]=[s1tu s1cu s2tu s2cu s12u] % s1tu=ultimite longitudinal tensile strength % s1cu=ultimite longitudinal compressive strength % s2tu=ultimite transverse tensile strength % s2cu=ultimite transverse compressive strength % s12u=ultimite in-plane shear strength % Output variable % SR=Strength Ratio % Keyword % Tsai-Hill failure theory % strength ratio % angle ply %% License Agreement % http://www.eng.usf.edu/~kaw/OCW/composites/license/limiteduse.pdf %% Code function [SR] = tsaihill(strain_glo,angle,moduli,strength) % Compliance matrix values S11=1/moduli(1); S12=-1*moduli(3)/moduli(1); S22=1/moduli(2); S66=1/moduli(4); % Sine of the angle of the lamina s=sind(angle); % Cosine of the angle of the lamina c=cosd(angle); % Transformed compliance matrix values S11bar=S11*(c^4)+(2*S12+S66)*(s^2)*(c^2)+S22*(s^4); S12bar=S12*((s^4)+(c^4))+(S11+S22-S66)*(s^2)*(c^2); S22bar=S11*(s^4)+(2*S12+S66)*(s^2)*(c^2)+S22*(c^4); S16bar=(2*S11-2*S12-S66)*s*(c^3)-(2*S22-2*S12-S66)*(s^3)*c; S26bar=(2*S11-2*S12-S66)*(s^3)*c-(2*S22-2*S12-S66)*s*(c^3); S66bar=2*(2*S11+2*S22-4*S12-S66)*(s^2)*(c^2)+S66*((s^4)+(c^4)); % Transformed compliance matrix Sbar=[S11bar S12bar S16bar; S12bar S22bar S26bar; S16bar S26bar S66bar]; % Transformed reduced stiffness matrix Qbar=inv(Sbar); % Global Stress stress_glo=Qbar*strain_glo; % Transformation matrix T=[c^2 s^2 2*s*c; s^2 c^2 -2*s*c; -s*c s*c c^2-s^2]; % Local Stress stress_loc=T*stress_glo; % Tsai-Hill criterion TSH=((stress_loc(1))/(strength(1)))^2 - (stress_loc(1))*(stress_loc(2))... /(strength(1))^2 + ((stress_loc(2))/(strength(3)))^2 + ((stress_loc(3))... /(strength(5)))^2; %Strength ratio per Tsai-Hill criterion SR=sqrt(1/TSH); end