%% Function name % alpha_micro %% Revised: % 13 January 2014 %% Author % Trey Moore & Autar Kaw % Section: All % Semester: Fall 2013 %% Purpose % Given elastic modulii, Poisson's ratios, and coefficients of % thermal expansion for a fiber and matrix, as well as a fiber volume % ratio, output coefficient of thermal expansion in the local % directions for the specified unidirectional lamina. %% Usage % function [alpha12] = alpha_micro(Ef,Em,nuf,numm,alphaf,alpham,Vf) % Input variables % Ef=fiber modulus % Em=matrix modulus % nuf=fiber Poisson's ratio % numm=matrix Poisson's ratio % alphaf=thermal expansion of fiber % alpham=thermal expansion of matrix % Vf=fiber volume fraction % Output variables % alpha12=vector of thermal expansion of unidirectional lamina % [alpha12]=[alpha1 alpha2 alpha12] % Keywords % coefficient of thermal expansion %% License Agreement % http://www.eng.usf.edu/~kaw/OCW/composites/license/limiteduse.pdf %% Code function [alpha12] = alpha_micro(Ef,Em,nuf,numm,alphaf,alpham,Vf) % Finding Longitudinal Elastic Modulus in Local Direction E1=Ef*Vf+Em*(1-Vf); % Finding Major Poisson's Ratio in Local Direction nu12=nuf*Vf+numm*(1-Vf); % Finding Coefficient of Thermal Expansions in Local Longitudinal and Local % Transverse Directions alpha1=(alphaf*Ef/E1)*Vf+(alpham*Em/E1)*(1-Vf); alpha2=(1+nuf)*alphaf*Vf+(1+numm)*alpham*(1-Vf)-alpha1*nu12; % Results in vector form [alpha12]=[alpha1;alpha2;0]; end