%% Function name % alpha_micro %% Revised: % 13 January 2014 %% Author % Trey Moore & Autar Kaw % Section: All % Semester: Fall 2013 %% Purpose % Given elastic moduli, Poisson's ratios, and coefficients of % thermal expansion for a fiber and matrix, as well as fiber volume % fraction, find the outputs coefficient of thermal expansion in the % local directions for the specified unidirectional lamina. %% Usage % function [alpha12] = alpha_micro(Ef,Em,nuf,numm,alphaf,alpham,Vf) % Input variables % Ef=fiber modulus % Em=matrix modulus % nuf=fiber Poisson's ratio % numm=matrix Poisson's ratio % alphaf=thermal expansion of fiber % alpham=thermal expansion of matrix % Vf=fiber volume fraction % Output variables % alpha12=vector of thermal expansion of unidirectional lamina % [alpha12]=[alpha1 alpha2 alpha12] % Keywords % coefficient of thermal expansion %% License Agreement % http://www.eng.usf.edu/~kaw/OCW/composites/license/limiteduse.pdf %% Testing Code clc clear all %% Inputs % Material: Glass/Epoxy Ef=85E9; Em=3.4E9; nuf=0.2; numm=0.3; alphaf=5E-6; alpham=63E-6; fprintf('\nFiber Elastic Modulus: %g ',Ef) fprintf('\nMatrix Elastic Modulus: %g ',Em) fprintf('\nFiber Poisson`s Ratio: %g',nuf) fprintf('\nMatrix Poisson`s Ratio: %g',numm) fprintf('\nFiber Coefficient of Thermal Expansion: %g',alphaf) fprintf('\nMatrix Coefficient of Thermal Expansion: %g',alpham) %% Test 1 % Testing for a particular Vf % Input desired Vf Vf=0.6; % Call function: alpha_micro [alpha12] = alpha_micro(Ef,Em,nuf,numm,alphaf,alpham,Vf); % Results for a particular Vf fprintf('\n\nFiber Volume Fraction: %G\n\n',Vf) disp(' Lamina Coefficient of Thermal Expansion') disp('___________________________________________________') fprintf('\n alpha1 | %G\n alpha2 | %G\n alpha12 | %G\n\n\n\n',... alpha12(1),alpha12(2),alpha12(3)) %% Test 2 % Table of Thermal Expansion Coefficients of a Unidirectional Lamina % as a Function of Fiber Volume Fraction for i=1:1:11 Vf(i)=i/10-0.1; [alpha12] = alpha_micro(Ef,Em,nuf,numm,alphaf,alpham,Vf(i)); alpha1(i)=alpha12(1); alpha2(i)=alpha12(2); alpha_12(i)=alpha12(3); end % Table of results disp(' Lamina Coefficient of Thermal Expansion') disp('______________________________________________________________') disp(' Vf | alpha1 | alpha2 | alpha12 ') for i=1:1:11 fprintf(' %3.2f | %E | %E | %g\n',Vf(i),alpha1(i),... alpha2(i),alpha_12(i)) end %% Test 3 % Graph of Thermal Expansion Coefficients of a Unidirectional Lamina % as a Function of Fiber Volume Fraction for i=1:1:101 Vf(i)=i/100-0.01; [alpha12] = alpha_micro(Ef,Em,nuf,numm,alphaf,alpham,Vf(i)); alpha1(i)=alpha12(1); alpha2(i)=alpha12(2); alpha_12(i)=alpha12(3); end hold on plot(Vf,alpha1,'LineWidth',2) plot(Vf,alpha2,'r','LineWidth',2) plot(Vf,alpha_12,'m','LineWidth',2) grid legend('alpha1','alpha2','alpha12') title('Coefficient of Thermal Expansion vs. Fiber Volume Fraction') xlabel('Fiber Volume Fraction') ylabel('Coefficient of Thermal Expansion') hold off