%% Function name % moduli_halphin %% Revised % 30 January 2014 %% Authors % Michael Cohen, Trey Moore, & Autar Kaw % Section: All % Semester: Fall 2013 %% Purpose % Given the elastic modulii, Poisson's ratios, of a fiber and matrix, % as well as the fiber volume fraction, output the elastic modulii % and Poisson's ratios of the lamina using the Halphin and Tsai % method %% Usage % function [moduli] = moduli_halphin(Ef,Em,nuf,numm,Vf,xi) % Input Variables % Ef=fiber elastic modulus % Em=matrix elastic modulus % nuf=fiber Poisson's ratio % numm=matrix Poisson's ratio % Vf=fiber volume fraction % xi=Halphin Tsai reinforcing factor % Output Variables % moduli=vector of elastic modulii and Poisson's ratio of unidirectional lamina % [E1 E2 nu12 G12] % Keyword % elastc modulii % Poisson's ratio % Halphin and Tsai method %% License Agreement % http://www.eng.usf.edu/~kaw/OCW/composites/license/limiteduse.pdf %% Code function [moduli] = moduli_halphin(Ef,Em,nuf,numm,Vf,xi) % Fiber shear modulus Gf=Ef/(2*(1+nuf)); % Matrix shear modulus Gm=Em/(2*(1+numm)); % Stress partitioning parameter for elastic modulii Eta1=((Ef/Em)-1)/((Ef/Em)+xi(1)); % Stress partitioning parameter for shear modulus Eta2=((Gf/Gm)-1)/((Gf/Gm)+xi(2)); % Longitudional elastic modulus E1=Ef*Vf+Em*(1-Vf); % Transverse elastic modulus E2=Em*((1+xi(1)*Eta1*Vf)/(1-Eta1*Vf)); % Shear modulus G12=Gm*((1+xi(2)*Eta2*Vf)/(1-Eta2*Vf)); % Major Poisson Ratio nu12=nuf*Vf+numm*(1-Vf); % Vector of elastic modulii and Poisson's ratio of unidirectional lamina [moduli]=[E1 E2 nu12 G12]; end