ABD

Computes extensional, coupling, bending, normalized extensional, normalized coupling, and normalized bending stiffness matrices

Inputs

```
nplies - Number of plies
Qplies - Reduced stiffness matrix for each ply
angleplies - Angle of each ply in degrees
tplies - Thickness of each ply
```

Outputs

```
[A] - Extensional stiffness matrix
```

[B] - Coupling stiffness matrix

[D] - Bending stiffness matrix

[An] - Normalized extensional stiffness matrix

[Bn] - Normalized Coupling stiffness matrix

[Dn] - Normalized Bending stiffness matrix

Calling the Function

[A,B,D,An,Bn,Dn]=ABD(nplies,Qplies,angleplise,tplies)

Testing File

Click here to see a testing file for using the function ABD

Example

```
Inputs:
```

Number of plies: 3

Reduced Stiffness Matrix:

For Ply: 2

Ply Angle: 30

Ply Thickness: 0.005

```
For Ply: 3
   Ply Angle: -45
   Ply Thickness: 0.005
Outputs:
Extensional Stiffness Matrix:
   1.0e+09 *
    1.7391 0.3884 0.0566
0.3884 0.4533 -0.1141
    0.0566 -0.1141 0.4525
Coupling Stiffness Matrix:
   1.0e+06 *
   -3.1286 0.9855 -1.0716
   0.9855
             1.1576 -1.0716
   -1.0716 -1.0716 0.9855
Bending Stiffness Matrix:
  1.0e+04 *
    3.3430 0.6461 -0.5240
    0.6461 0.9320 -0.5595
           -0.5595 0.7663
   -0.5240
Normalized Extensional Stiffness Matrix:
   1.0e+11 *
    1.1594 0.2589 0.0378
             0.3022 -0.0760
    0.2589
    0.0378 -0.0760 0.3016
Normalized Coupling Stiffness Matrix:
  1.0e+10 *
   -2.7810
            0.8760 -0.9525
             1.0290 -0.9525
    0.8760
   -0.9525
           -0.9525 0.8760
Normalized Bending Stiffness Matrix:
   1.0e+11 *
    \begin{array}{ccccccc} 1.1886 & 0.2297 & -0.1863 \\ 0.2297 & 0.3314 & -0.1989 \end{array}
                      -0.1863
```

-0.1863 -0.1989 0.2724

Description

Outputs the extensional, coupling, and bending stiffness matrices as well as their normalized counterparts $\,$