laminate_moduli

Computes the in-plane elastic modulii as well as the flexural elastic modulii

Inputs

```
tplies - Thickness of each ply
nplies - Number of plies
[A] - Extensional stiffness matrix
[D] - Bending stiffness matrix
```

Outputs

```
[moduliplane] - In-plane elastic modulii
[moduliflex] - Flexural elastic modulii
```

Calling the Function

[moduliplane,moduliflex]=laminate_moduli(A,D,nplies,tplies)

Testing File

Click here to see a testing file for using the function laminate_moduli

Example

```
Inputs:
```

For Ply: 3

```
Number of plies: 3

For Ply: 1
Ply Thickness: 0.005

For Ply: 2
Ply Thickness: 0.005
```

Extensional Stiffness Matrix:

Ply Thickness: 0.005

Bending Stiffness Matrix:

Outputs:

In-Plane Modulii

Ex	1.24542E+11
Ey	6.7466E+10
nuxy	0.0428924
Gxy	7.17333E+09

Flexural Modulii

Efx	1.74608E+11
Efy	1.6649E+10
nufxy	0.173509
Gfxy	7.17156E+09

Description

Outputs the in-plane elastic modulii as well as the flexural modulii in vector form: [Ex Ey nuxy Gxy] and [Efx Efy vfxy Gfxy]